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Abstract: Recently, formation flying of multiple unmanned aerial vehicles (UAVs) found numerous
applications in various areas such as surveillance, industrial automation and disaster management.
The accuracy and reliability for performing group tasks by multiple UAVs is highly dependent on
the applied control strategy. The formation and trajectories of multiple UAVs are governed by two
separate controllers, namely formation and trajectory tracking controllers respectively. In presence of
environmental effects, disturbances due to wind and parametric uncertainties, the controller design
process is a challenging task. This article proposes a robust adaptive formation and trajectory tacking
control of multiple quad-rotor UAVs using super twisting sliding mode control method. In the
proposed design, Lyapunov function-based adaptive disturbance estimators are used to compensate
for the effects of external disturbances and parametric uncertainties. The stability of the proposed
controllers is guaranteed using Lyapunov theorems. Two variants of the control schemes, namely
fixed gain super twisting SMC (STSMC) and adaptive super twisting SMC (ASTSMC) are tested using
numerical simulations performed in MATLAB/Simulink. From the results presented, it is verified
that in presence of disturbances, the proposed ASTSMC controller exhibits enhanced robustness as
compared to the fixed gain STSMC.

Keywords: quad-rotor control;adaptive robust control; super twisting sliding mode control; forma-
tion control

1. Introduction

A flight in which more than one quad-rotors fly and maintain the relative distance
among each other is called formation flight. Recently, the interest in the formation control
of quad-rotors has attracted a lot of attention. This trend is due to its potential appli-
cations in the defense industry, aerial mapping, search and rescue operations, oil fields
monitoring, agriculture and transportation of suspended loads [1]. It is expected that by
2027 the payload market value of global UAV may reach USD 3 billion due to its antic-
ipated usefulness [2]. Multiple quad-rotors increase the capacity for equipping sensors,
provides larger payload capacity and a wider surveillance area as compared to single
quad-rotor [3–7]. However, controlling the formation of multiple quad-rotors in the pres-
ence of uncertainties is a challenging task. Moreover, the derivation of formation dynamic
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model for multiple UAVs in presence of external perturbations has also become an impor-
tant topic . The transnational and rotational dynamics of a quad rotor is modeled as six
degree of freedom nonlinear differential equations [8–11]. For multiple UAVs, different
formation geometries exist depending upon the number of quad-rotors and the purpose
of flight. These include V shape geometry and finger four geometry. V shape geometry is
used in this paper for flight formation of three quad-rotors.The quad-rotors formation can
be stepped up, stepped down, and leveled based on the altitude position between leader
and follower. A leveled formation is used in this paper. Since a quad-rotor is a complex
system with under-actuated multi variable non-linear model hence its formation control
problem is more difficult to control. To ensure robust formation control, the modeling
uncertainties and the disturbance due to wind gust must be compensated using appropriate
control schemes.

To solve the formation control problem of the quad rotor, many research efforts
have been made. In [12] the authors proposed a leader–follower formation control using
classical proportional derivative scheme and fuzzy logic system for the formation pattern.
However the above controller did not take uncertainties into considerations. In [13], a
prescribed performance controller is proposed for formation control of multiple UAVs.
The prescribed performance controller ensures robust formation pattern and trajectory.
In [14], a classical PID control scheme with a sliding mode controller (SMC) is proposed
for multiple quad-rotors. However the above mentioned PID-SMC controller ignores the
disturbances and communication delays between multiple UAVs. In [15–17], classical
SMC method is proposed for formation control problems of multiple UAVs, however the
classical SMC method offers high frequency chattering in the excitation signal. Chattering
phenomena degrades the life of the actuators.A control scheme for the circular formation
scheme of multiple UAVs is presented in [18]. A classical PI control-based synchronization
control for the formation of two UAVs is presented in [19]. In [20] a distributed controller is
presented to compensate the communication delays in multiple UAVs formation. Similarly
a nonlinear distributed controller is proposed for formation of micro UAVs [21]. In [22],
the authors proposed a cohesive formation controller multiple UAVs.A back-stepping
control scheme is proposed for the formation control of multiple UAVs [23]. Similarly a
model predictive control scheme is proposed for multiple UAVs using adaptive gain tuning
method in [24,25]. Velocity tracking and formation control of quad-rotors is achieved by
the design of prior-bounded intermediary adaptive controller which gives the reference
orientation and bounded control thrust [26]. A guidance algorithm based on Lyapunov
function is used for the formation control of quad-rotors with attached slung load, where
the quad-rotors are controlled using linear quadratic tracking controller [27]. Leader
follower formation controller is designed for two parrot drones in [28], where a proportional
derivative controller is implemented in the respective models. The problems related to
formation and tracking control of quad-rotors in leader follower formation are addressed
and a formation controller is designed to avoid collision in swarm [29]. Adaptive law for
the formation control of swarm UAVs in leader follower mechanism influenced by motion
constraints and and unknown external disturbances is discussed in [30]. For a swarm of
three quad-rotors, a model reference adaptive control algorithm is presented in [31]. The
controller gains are tuned online, by which the algorithm allows the system to adapt to
unexpected disturbances. However, in this method, no robust controller is investigated.
A semi physical platform for formation control of multiple fixed wings UAV is proposed
in [32]. In [33], a detailed survey on low cost UAV platforms for infra structure monitoring
is proposed.

The above cited work is specifically focused on the formation control of multiple
UAVs. It is also necessary to describe the back ground of robust control system due to
its utmost importance in control community. Robust control is designed for uncertain
systems in which the uncertainty belongs to bounded set [34]. Robust controllers are
designed both in frequency and time domains. A widely used frequency domain robust
controller is the H∞ method and it was first reported in [34]. Later on several variants of
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H∞ control were reported in the literature such as loop shaping in [35], optimal H∞ control
using Riccati equations [36] and Linear Matrix Inequalities (LMIs)-based design in [37].
In frequency domain, the performance and stability of the control system is measured in
terms of gain and phase margins, percent overshoot, rise, delay and settling times of the
signals. Apart from frequency domain, a modern approach for designing robust controllers
is the state space frame work. Sliding mode-based control (SMC) system variants are
the most widely used methods and it find numerous applications in all areas of science
and technology [38]. Classical SMC has several disadvantages such as high frequency
chattering and asymptotic convergence property. These shortcoming are addressed by
introducing new variants of SMC such as global sliding mode [39], LMI-based SMC [40],
Higher order SMC [41,42], Lyapunov-based adaptive SMC and Non singular terminal SMC
in [43]. A widely and important criteria to ensure the stability of the SMC controllers is the
Luyapunov theorem [44]. The proposed theorems ensure global stability of the nonlinear
systems and control using the condition that the disturbances are bounded.

Considering the aforementioned literature review, this paper proposes adaptive robust
formation and trajectory tracking of multiple UAVs using super-twisting sliding mode
control method.The proposed controller compensates for the disturbances using adaptive
control laws derived by Lyapunov function method.System stability is ensured using
Lyapunov theorem. Furthermore, the formation flight between multiple UAVs are also
controller using super twisting sliding mode control methods.

The rest of the paper is organized into four parts. First part is related to “system
description and mathematical modeling”. The objective of this part is the modelling of a
single quad-rotor and transnational dynamics of multiple UAVs. The second part includes
the trajectory and the formation controller formulation. Then the simulation results are
presented and comparative analysis for different controllers is done. At last, conclusions
are made. Following specific contributions are highlighted:

1. In presence of external disturbances, robust formation and trajectory tracking of mul-
tiple UAVs is achieved using adaptive super twisting sliding mode control method.

2. The adaptive laws are derived using Lyapunov theorem and implemented using
projection operators.

2. System Description and Mathematical Modeling

Figure 1 shows a quad-rotor UAV in earth’s reference coordinates (X, Y, Z). Apart
from inertial frame of reference, the body coordinates of the UAV are given as: (XB YB ZB).
To derive the model, the following assumptions are made.

Assumption 1. It is assumed that the UAVs are represented by a symmetrical rigid body configu-
rations with masses m.

Assumption 2. The external disturbances affect the X and Y accelerations components of each UAV.

Assumption 3. It is assumed that the disturbances are affecting the leader and followers
UAV uniformly.

Ẍi = (sin ψi sin φi + cos ψi sin θi cos φi)
U1i
mQi
− DXi (1)

Ÿi = (− cos ψi sin φi + sin ψi sin θi cos φi)
U1i
mQi
− DYi (2)

Z̈i = g− (cos θi cos φi)
U1i
mQi
− DZi (3)

φ̈i =
Iyi − Izi

Ixi
θ̇iψ̇i −

Jri
Ixi

θ̇iΩri +
li
Ixi

U2i − Dφi (4)
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θ̈i =
Izi − Ixi

Iyi
φ̇iψ̇i −

Jri
Iyi

φ̇iΩri +
li
Iyi

U3i − Dθi (5)

ψ̈i =
Ixi − Iyi

Izi
φ̇i θ̇i +

li
Izi

U4i − Dψi (6)

Figure 1. Quad-rotor in inertial reference frame.

Figure 2a shows the vector diagram of multiple UAV quad-rotors in leader follower
configuration. Based on the above assumptions, the dynamic model of the multiple UAV
quad-rotors is formulated as six degrees of freedom equations. The dynamic equations
expressing the linear and angular dynamics of the quad-rotors are given as follows:

(a)
Figure 2. Cont.
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(b)
Figure 2. (a) Leader-Follower Configuration (b) Block diagram.

Equations (1)–(6) formulate the mathematical model of multiple quad-rotors UAV.
From Equations (1)–(6), DXi and DYi represent the uncertainty in X and Y acceleration
channels, while i is an index representing [L, j] and j = [F1, F2]. The subscript L represents
the leader UAV, while F1 and F2 show follower1 and 2 UAVs respectively.

Referring to Figure 2, the transnational dynamics of the UAVs are expressed as follows:

Ẋi = VXi cos(ψi)−VYi sin(ψi) (7)

Ẏi = VXi sin(ψi) + VYi cos(ψi) (8)

ψ̇L = ωL (9)

where VXi and VYi represents the velocities in X and Y directions of the inertial frame. As
shown in Figure 2, let the follower UAVs maintain dXj and dYj distances in X and Y planes
respectively with respect to the leader UAV, so dXj and dYj are expressed as follows:

dXj = −
(
XL − Xj

)
cos(ψL)−

(
YL −Yj

)
sin(ψL) (10)

dYj =
(
XL − Xj

)
sin(ψL)−

(
YL −Yj

)
cos(ψL) (11)

where dXj = dicos(φ), dYj = disin(φ) and Xj = [XF1, XF2]. The error in ψ dynamics as
defined as follows: eψ = ψj − ψL. By taking the first derivatives of Equations (10) and (11)
with respect to time and combining the resultant expressions with Equations (7) and (8)
yields the following expressions:

ḋXj = dYjωL + VXj cos
(
eψ

)
−VYj sin

(
eψ

)
−VXL (12)

ḋYj = −dXjωL + VXj sin eψ + VYj cos eψ −VYL (13)

where VXj, VYj, VXL and VYL represent the longitudinal and lateral velocities of the fol-
lower1, follower2 and leader UAVs respectively. By defining errors in the longitudinal
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and lateral dynamics of Equations (12) and (13), the error state equation is represented
as follows:

χ̇ = F(χ) + G(χ)v (14)

Equation (14) are explained as follows:

χ =

 eXj
eYj
eψ

; χ̇ =

 ėXj
ėYj
ėψ

; v =

 VXj
VYj
ωF

 (15)

Also the terms G(χ) and F(χ) are expressed as follows:

F(χ) =

 eYjωL + VXL −ωLdYj
d

−eXjωL + VYL + ωLdXj
d

eψ

 (16)

G(χ) =

 −ceψ seψ 0
−seψ −ceψ 0

0 0 1

 (17)

In Equation (17), eψ is already defined, while c represents cos while s is a sin function.
Also from Equation (15), we define: eXj = dXj

d − dXj and eYj = dYj
d − dYj. Where dXj

d and
dYj

d represent the desired commands. Finally, the desired reference trajectories for follower
UAVs are expressed as follows:

Xdj = XL − dXj cos(ψL)− dYj sin(ψL)
Ydj = YL + dXj sin(ψL) + dYj cos(ψL)

(18)

3. Trajectory and Formation Controllers Formulation

In this section, as a first step, the derivations of the attitude, altitude and position
controllers are formulated for the leader UAV. As a second step, the formation controller is
derived and based on it, new references are calculated for follower1 and follower2 UAVs.
In the last step, the trajectory and attitude controllers of the leader UAV are generalized for
follower UAVs. Before deriving the control schemes, the following assumptions are made:

Assumption 4. It is assumed that the following condition is true for the uncertainty terms:
||DXi|| ≤ ∆1i; ||DYi|| ≤ ∆2i;||DZi|| ≤ ∆3i;||Dφi || ≤ ∆4i;||Dθi || ≤ ∆5i;||Dψi || ≤ ∆6i
where ∆1i, ∆2i,∆3i,∆4i,∆5i,∆6i represent the upper bound of the mentioned uncertainties.

3.1. Leader UAV Control Formulation

In this subsection, the attitude, altitude and position controllers are derived for leader
UAV using adaptive super twisting sliding mode control method.

3.1.1. Attitude Control

Attitude controllers regulate the roll, yaw and pitch angles of the UAV. Let the reference
Euler angle commands for the leader UAV are set as φdL, θdL,ψdL, then the desired sliding
manifold is chosen as follows:

SφL = k1eφL + k2 ėφL (19)

where SφL represents the sliding surface for φL loop, k1, k2 are the design constants and the
φL loop error dynamics are expressed as follows, i.e., eφL = φL − φdL, ėφL = φ̇L − φ̇dL . By
taking the first time derivative of Equation (19), the following expression is obtained :

˙SφL = k1 ˙eφL + k2 ¨eφL (20)
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Equations (4) and (20) are combined and expressed as follows:

˙SφL = k1 ˙eφL + k2[a1L θ̇Lψ̇L − a2L θ̇LΩrL + b1LU2L − DφL − φ̈dL] (21)

In Equation (21), the coefficients are defined as follows, i.e., a1L =
IyL−IzL

IxL
, a2L =

JrL
IxL

, b1L = l
IxL

; then the equivalent control law for φL loop is derived as follows:

U2Leq =
1

b1L

(
−k1

k2
˙eφL − a1L θ̇Lψ̇L + a2L θ̇LΩrL + φ̈dL

)
(22)

Using super twisting algorithm, the switching control law is derived as follows:

U2Lsw =
−kd1
b1L
|SφL |

0.5sgn(SφL)−
kd2
b1L

∫
sgn(SφL) (23)

Referring to Equation (22) and (23), the total control action is the sum of equivalent
and switching control parts, i.e., U2L = U2Leq + U2Lsw . Similar procedure is adopted to
derive the pitch and yaw controllers. The sliding surfaces for θL and ψL loops are defined
as follows i.e., SθL = k3eθL + k4 ėθL and SψL = k5eψL + k6 ėψL , then the θL and ψL loops
controllers are formulated as follows:

U3Leq =
1

b2L

(
−k3

k4
˙eθL − a3Lφ̇Lψ̇L + a4Lφ̇LΩrL + θ̈dL

)
(24)

U3Lsw =
−kd3
b2L
|SθL |

0.5sgn(SθL)−
kd4
b2L

∫
sgn(SθL) (25)

U4Leq =
1

b3L

(
−k5

k6
˙eψL − a5Lφ̇L θ̇L + ψ̈dL

)
(26)

U4Lsw =
−kd5
b3L
|SψL |

0.5sgn(SψL)−
kd6
b3L

∫
sgn(SψL) (27)

From Equations (19)–(27), constant parameters k1, k2, k3, k4, k5, k6, kd1, kd2, kd3, kd4,
kd5, kd6 represent controllers and sliding surface gains. The coefficients are defined as

follows: a3L = IzL−IxL
IyL

, a4L = JrL
IyL

, b2L = lL
IyL

, a5L =
IxL−IyL

IzL
and b3L = lL

IxL
, Moreover, SθL

and SψL represent the sliding surfaces for θL and ψL loops. The corresponding error dy-
namics for θL and ψL loops are expressed as follows, i.e., eθL = θL − θdL, ėθL = θ̇L − θ̇dL,
eψL = ψL − ψdL, ėψL = ψ̇L − ψ̇dL .

Theorem 1. Consider the nonlinear system presented in Equations (4)–(6),satisfying assumptions
1–3, then under the proposed controllers of Equations (22)–(25), states of the attitude dynamics will
converge to the origin in finite time [45].

Proof. Proof of Theorem 1 [45] The stability proof is only derived for φL loop only. Similar
procedures can be be adopted for the other two loops of attitude dynamics. Equation (23) is
modified as follows: U2Lsw = −kd1

b1L
|SφL |0.5sgn(SφL) + vφL; where the term vφL is calculated

from the following expression: v̇φL = kd2
b1L

sgn(SφL). By combining the above terms with
Equations (21) and (22), ṠφL is expressed as follows:

˙SφL =
−kd1
b1L
|SφL |

0.5sgn(SφL) + vφL − DφL

v̇φL = − kd2
b1L

sgn(SφL) (28)
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Let the Lyapunov function for φ loop dynamics is chosen as follows: VφL = 2τ2|SφL |+
0.5v2

φL + 0.5(τ1|SφL |0.5sgn(SφL)− vφL)
2. Where τ1 = kd1

b1L
and τ2 = kd2

b1L
. A new state vector

is defined as follows: ηT
φL = [|SφL |0.5sgn(SφL) vφL]. Define matrix PφL =

[
4τ2 + τ2 −τ1
−τ1 2

]
and then the Lyapunov function is expressed as follows: VφL = ηT

φLPηφL The time derivative
of the Lyapunov function along (28) yields the following relation [45]:

˙VφL = − 1∣∣∣S0.5
φL

∣∣∣ηT
φLQηφL + ∆4LqT

φLηφL (29)

where the new matrices are represented as follows: QφL = τ1
2

(
2τ2 + τ2

1 −τ1
−τ1 1

)
and

qT
φL =

(
2τ2 +

1
2 τ2

1 −
1
2 τ1

)
. Applying the uncertainty bounds mentioned in Assumption 4,

expression (29) is simplified as follows [45]:

˙VφL = − τ1

2
∣∣∣S0.5

φL

∣∣∣ηT
φL

˜QφLηφL (30)

where matrix ˜QφL =

(
2τ2 + τ2

1 −
(

4τ2
τ1

+ τ1

)
∆4L −τ1 + 2∆4L

−τ1 + 2∆4L 1

)
. Equation (30) is nega-

tive definite only if ˜QφL > 0. If the gains satisfy the following criteria τ1 > 2∆4L, τ2 >

τ1
5∆4Lτ1+4∆2

4L
2(τ1−2∆4L)

, then Q̃ > 0 and V̇φL < 0.

Remark 1. The proof of finite time convergence property can be derived by using the procedures
adopted in [45].

3.1.2. Altitude and Position Control

This section formulates the altitude and position control system for the leader UAV
expressed in Equations (1)–(6). First the altitude control system is derived and then using
the transformation matrix, the position controllers are formulated. With the desired altitude
ZdL, the sliding manifold is written as follows:

SZL = k7eZL + k8 ėZL (31)

In Equation (31), k7 and k8 represent the design constant. The error dynamics are
defined as follows: i.e., eZL = ZL − ZdL , ėZL = ŻL − ŻLdL

. Taking the first time derivative
of Equation (32) yields the following expression:

˙SZL = k7 ˙eZL + k8 ëZL (32)

Equation (32) and Equation (3) are combined and expressed as follows:

˙SZL = k7 ˙eZL + k8[g− cos θL cos φL
U1L
mQL

− DZL − Z̈dL] (33)

Using super twisting sliding mode theory, the altitude controller is derived as follows:

UZL = − k7

k8
˙eZL +

¨ZdL −
kd7
k8
|SZL |

0.5sgn(SZL)−
kd8
k8

∫
sgn(SZL)

U1L =
mQL

cos θL cos φL
[g− (− k7

k8
˙eZL +

¨ZdL −
kd7
k8
|SZL |

0.5sgn(SZL)−
kd8
k8

∫
sgn(SZL))] (34)
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Here UZL = Z̈L = g − (cos θL cos φL)
U1L
mQL

represents the virtual control law. The
stability proof is derived based on the same concepts presented for φ loop. The robust terms
of Equation (34) are modified as follows: U1Lsw = −kd7

k8
|SZL |0.5sgn(SZL) + vZL ; where the

term vZL is calculated from the following expression: v̇ZL = − kd8
k8

sgn(SZL). By combining
the above terms with Equation (33) and robust term of (34), ṠZL is expressed as follows:

˙SZL =
−kd7

k8
|SZL |

0.5sgn(SZL) + vZL − DZL

v̇ZL = − kd8
k8

sgn(SZL) (35)

Let the Lyapunov function for Z loop is chosen as follows: VZL = 2τ8|SZL |+ 0.5v2
ZL

+

0.5(τ7|SZL |0.5sgn(SZL)− vZL)
2. Where τ7 = kd7

k8
and τ8 = kd8

k8
. A new state vector is defined

as follows: ηT
ZL = [|SZL |0.5sgn(SZL) vZL ]. Define matrix PZL =

[
4τ8 + τ2

7 −τ7
−τ7 2

]
and then

the Lyapunov function is expressed as follows: VZL = ηT
ZLPZLηZL The time derivative of

the Lyapunov function along (35) yields the following relation [45]:

˙VZL = − 1∣∣∣S0.5
ZL

∣∣∣ηT
ZLQZLηZL + ∆3LqT

ZLηZL (36)

where the new matrices are represented as follows: QZL = τ7
2

(
2τ8 + τ2

7 −τ7
−τ7 1

)
and

qT
ZL =

(
2τ8 +

1
2 τ2

7 −
1
2 τ7

)
. Applying the uncertainty bounds given in Assumption 4,

expression (36) is simplified as follows [45]:

˙VZL = − τ7

2
∣∣S0.5

ZL

∣∣ηT
ZL

˜QZLηZL (37)

where matrix ˜QZL =

(
2τ8 + τ2

7 −
(

4τ8
τ7

+ τ7

)
∆3L −τ7 + 2∆3L

−τ7 + 2∆3L 1

)
. Equation (37) is nega-

tive definite only if ˜QZL > 0. If the gains satisfy the following criteria τ7 > 2∆3L, τ8 >

τ7
5∆3Lτ7+4∆2

3L
2(τ7−2∆3L)

, then ˜QZL > 0 and V̇ZL < 0.
Now to derive the XY controllers , we assume the following:

UXL = (sin ψL sin φL + cos ψL sin θL cos φL)
U1L
mQL

UYL = (− cos ψL sin φL + sin ψL sin θL cos φL)
U1L
mQL

.
With these expressions, Equations (1) and (2) are re-written for leader UAV in the

following form:
ẌL = UXL − DXL (38)

ŸL = UYL − DYL (39)

Let the sliding manifolds for the position loops of leader UAV are expressed as follows:{
SXL = k9eXL + k10 ėXL
SYL = k11eYL + k12 ėYL

(40)

In Equation (40) k9,k10,k11 ,k12 are the design constants and the error dynamics are
expressed as follows: eXL = XL − XdL, ėXL = ẊL − ẊdL, eYL = YL − YdL, ėYL = ẎL − ẎdL.
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By taking the first time derivative of Equation 40, and combining it with Equations (38)
and (39) one acquires the following expressions:{ ˙SXL = k9 ˙eXL + k10[UXL − DXL − ẌdL]

˙SYL = k11 ˙eYL + k12[UYL − DYL − ŸdL]
(41)

From Equation (41), the virtual controllers UXL and UYL are expressed as follows:

UXL = (ẌdL − k9
k10

˙eXL −
kd9
k10
|SXL |0.5sgn(SXL)−

kd10
k10

∫
sgn(SXL))

UYL = (ŸdL − k11
k12

˙eYL −
kd11
k12
|SYL |0.5sgn(SYL)−

kd12
k12

∫
sgn(SYL))

(42)

The stability proof is derived based on the same concepts presented for Z loop. The
robust terms of Equation (42) are modified as follows: UXLsw = −kd9

k10
|SXL |0.5sgn(SXL)+ vXL ;

where the term vXL is calculated from the following expression: v̇XL = − kd10
k10

sgn(SXL) and

UYLsw = −kd11
k12
|SYL |0.5sgn(SYL) + vYL ; where the term vYL is calculated from the following

expression: v̇YL = − kd11
k12

sgn(SYL). By combining the above terms with Equations (41)
and (42), ṠXL and ṠYL are expressed as follows:

˙SXL =
−kd9
k10
|SXL |

0.5sgn(SXL) + vXL − DXL

v̇XL = − kd10
k10

sgn(SXL)

˙SYLL =
−kd11

k12
|SYL |

0.5sgn(SYL) + vYL − DYL

v̇YL = − kd12
k12

sgn(SYL) (43)

Let the Lyapunov function for X loop dynamics is chosen as follows: VXL = 2τ10|SXL |+
0.5v2

XL
+ 0.5(τ9|SXL |0.5sgn(SXL)− vXL)

2, where as for Y loop dynamics is the Lyapunov
function is given as follows: VYL = 2τ12|SYL | + 0.5v2

YL
+ 0.5(τ11|SYL |0.5sgn(SYL) − vYL)

2.

Where τ9 = kd9
k10

, τ10 = kd10
k10

,τ11 = kd11
k12

, τ12 = kd12
k12

.The following new state vectors are
defined : ηT

XL = [|SXL |0.5sgn(SXL) vXL ]; ηT
YL = [|SYL |0.5sgn(SYL) vYL ]. Define new matrices

as follows: PXL =

[
4τ10 + τ2

9 −τ9
−τ9 2

]
; PYL =

[
4τ12 + τ2

11 −τ11
−τ11 2

]
and then the Lyapunov

functions are expressed as follows: VXL = ζ1ηT
XLPXLηXL + DT

XLDXL; VYL = ζ2ηT
YLPYLηYL +

DT
YLDYL The time derivative of the Lyapunov functions along (43) yields the following

relation [45]:  ˙VXL = −ζ1
1∣∣∣S0.5
XL

∣∣∣ηT
XLQXLηXL + ζ1DXLqT

XLηXL + DT
XLḊXL

˙VYL = −ζ2
1∣∣∣S0.5
YL

∣∣∣ηT
YLQYLηYL + ζ2DYLqT

YLηYL + DT
YLḊYL

 (44)

where: QXL = τ9
2

(
2τ10 + τ2

9 −τ9
−τ9 1

)
; QYL = τ11

2

(
2τ12 + τ2

11 −τ11
−τ11 1

)
and qT

XL =(
2τ10 +

1
2 τ2

9 −
1
2 τ9

)
;qT

YL =
(

2τ12 +
1
2 τ2

11 −
1
2 τ11

)
. From Equation (44), since DXL and

DYL are scalar quantities so DT
XL = DXL and DT

YL = DYL, then adaptive laws are derived
as follows:

˙DXL = −ζ1qT
XLηXL

˙DYL = −ζ2qT
YLηYL

(45)
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Applying the uncertainty bounds given in Assumption 4, and by combining Equation (44)
with Equation (45), the simplified expressions of (44) are given as follows [45]: ˙VXL = − τ9

2|S0.5
XL|

ηT
XLQ̃XLηXL

˙VYL = − τ11
2|S0.5

YL|
ηT

YLQ̃YLηYL

 (46)

Here the matrices are defined as follows:

˜QXL =

(
2τ10 + τ2

9 −
(

4τ10
τ9

+ τ9

)
E∆1L −τ9 + 2E∆1L

−τ9 + 2E∆1L 1

)
and

˜QYL =

(
2τ12 + τ2

11 −
(

4τ12
τ11

+ τ11

)
E∆2L −τ11 + 2E∆2L

−τ11 + 2E∆2L 1

)
.

The expressions ˙VXL and ˙VYL are negative definite only if ˜QXL > 0 and ˜QyL > 0.

If the gains satisfy the following criteria τ9 > 2E∆1L, τ10 > τ9
5E∆1Lτ9+4E∆2

1L
2(τ9−2E∆1L)

; τ11 >

2E∆2L, τ12 > τ11
5E∆2Lτ11+4E∆2

2L
2(τ11−2E∆2L)

, then ˜QXL > 0; ˜QYL > 0 and V̇XL < 0;V̇YL < 0. Here the
terms E∆1L = DXLestimated − DXL; E∆2L = DYLestimated − DYL represent estimation error of
the adaptive loops.

Remark 2. Discontinuous projection operator is used to implement the adaptive laws ˙DXL, ˙DYL.
The projection operator is defined as follows:

projD(X,Y)L(?) =


0 i f D(X,Y)L = D(X,Y)Lmax

; ? > 0

0 i f D(X,Y)L = D(X,Y)Lmin
; ? < 0

? otherwise

(47)

In Equation (45), ζ1 and ζ2 represent the adaptation gains. To generate reference
trajectories for θdL and φdL, the virtual controllers UXL and UYL are expressed as follows:

UXLmQL

U1L
= cos ψL sin θL cos φL + sin φL sin ψL (48)

UYLmQL

U1L
= sin ψL sin θL cos φL − cos ψL sin φL (49)

Multiplying Equation (48) by sin ψ and Equation (49) by cos ψ and the deference of
the resultant equations yields the following expression:

UXLmQL

U1L
sin ψ−

UYLmQL

U1L
cos ψ = sin φdL (50)

Equation (50) is simplified to get the reference command for φ loop of the leader UAV
as follows:

φdL = sin−1[
UXLmQL

U1L
sin ψ−

UYLmQL

U1L
cos ψ] (51)

Multiplying Equation (48) by cos ψ and Equation (49) by sin ψ and the summation of
the resultant equations yields the following expression:

UXLmQL

U1L
cos ψ +

UYLmQL

U1L
sin ψ = sin θdL cos φL (52)
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Squaring Equation (50) on both hand sides and equating sin2 φL = 1− cos2 φL, the
expression is written in terms of cos φL and given as follows:

cos φdL =

√
1− [

UXLmQL

U1L
sin ψ−

UYLmQL

U1L
cos ψ]2 (53)

Now form Equations (51) and (52), reference command for θdL is expressed as follows:

θdL = sin−1[

UXLmQL
U1L

cos ψ +
UYLmQL

U1L
sin ψ√

1− [
UXLmQL

U1L
sin ψ− UYLmQL

U1L
cos ψ]2

] (54)

3.2. Leader Followers Formation Control

Before discussing the trajectory controllers for the followers UAV, it is necessary to
derive the formation controller which will generate the desired trajectory for the followers
UAV. Let the following sliding surface is defined for formation controller:

Sχj = χj + τ
∫

χj (55)

where τ represents gain matrix of the sliding surface. By taking time derivative of
Equation (55) and combining it with Equation (14), one obtains the following expression:

˙Sχj = F(χj) + G(χj)vj + τχj (56)

For formation control, the desired longitudinal and lateral velocities of the followers
UAV are calculated as follows:

vjeq = G(χj)
−1[−F(χj)− τχj] (57)

vjsw = −η1|Sχj |
0.5sgn(Sχj)− η2

∫
sgn(Sχj) (58)

For the stability proof, the same procedures as adopted for XYZ loops are
applied here.

3.3. Followers UAV Control Formulation

In this section, we briefly explain the trajectory control of followers UAV.As mentioned
above, the reference position trajectories are generated using Equation (18), and governed
by the formation controller of Equations (57) and (58). Thus, by defining the attitude,
altitude and position errors for the followers UAV, the rest of the analysis used for the
derivation of the subject controllers is the same as leader UAV. For simplicity, here the final
control laws are included: let the attitude sliding manifolds are defined as follows:

Sφj = k1jeφj + k2j ėφj

Sθj = k3jeθj + k4j ėθj

Sψj = k5jeψj + k6j ėψj

(59)

where j = [F1, F2] and F1 and F2 represent follower1 and follower2 UAVs respectively.
Also k1j,k2j,k3j,k4j,k5j,k6j represent the constants of sliding surfaces for followers UAV. The
respective errors are defined as follows: eφj = φj − φdj; eθj = θj − θdj; eψj = ψj − ψdj.
Similarly position and altitude sliding manifolds for follower1 and 2 are given as follows:

SZj = k7jeZj + k8j ˙eZj
SXj = k9jeXj + k10j ˙eXj
SYj = k11jeYj + k12j ˙eYj

(60)



Sensors 2021, 21, 2401 13 of 24

where k7j,k8j,k9j,k10j,k11j,k12j represent the constants of sliding surfaces for followers UAV.
The respective errors are defined as follows: eZj = Zj − Zdj; eXj = Xj − Xdj; eYj = Yj −Ydj.
Now following the same procedures, the attitude, altitude and position controllers for
followers UAV are formulated as follows:

U2jeq =
1

b1j

(
−k1j

k2j
˙eφj − a1j θ̇jψ̇j + a2j θ̇jΩrj + φ̈dj

)
(61)

U2jsw =
−kd1j

b1j
|Sφj |

0.5sgn(Sφj)−
kd2j

b1j

∫
sgn(Sφj) (62)

U3jeq =
1

b2j

(
−k3j

k4j
˙eθj − a3jφ̇jψ̇j + a4jφ̇jΩrj + θ̈dj

)
(63)

U3jsw =
−kd3j

b2j
|Sθj |

0.5sgn(Sθj)−
kd4j

b2j

∫
sgn(Sθj) (64)

U4jeq =
1

b3j

(
−k5j

k6j
˙eψj − a5jφ̇j θ̇j + ψ̈dj

)
(65)

U4jsw =
−kd5j

b3j
|Sψj |

0.5sgn(Sψj)−
kd6j

b3j

∫
sgn(Sψj) (66)

U1j =
mQj

cos θj cos φj
[g− (− k7 j

k8j
˙eZj + Z̈dj

− kd7j
k8j
|SZj |0.5sgn(SZj)−

kd8j
k8j

∫
sgn(SZj))]

(67)

UXj = (Ẍdj −
k9j

k10j
˙eXj −

kd9j

k10j
|SXj |

0.5sgn(SXj)−
kd10j

k10j

∫
sgn(SXj))

Uyj = (Ÿdj −
k11j

k12j
˙eYj −

kd11j

k12j
|SYj |

0.5sgn(SYj)−
kd12j

k12j

∫
sgn(SYj)) (68)

˙DXj = −ζ1 jSXj
˙DYj = −ζ2 jSYj

(69)

The reference commands for θdj and φdj are derived using the same procedures given
in Equations (48)–(54).

4. Results and Discussion

In this section, the proposed ASTSMC controller is tested numerically for the system
of multiple quad-rotors shown in Figure 2. The parameters of the leader and followers
UAVs are identical and given in Table 1. The control parameters of leader and follower
UAVs are given in Tables 2 and 3. Since the UAVs are identical, leader and followers UAV
use the same control parameters.The parameters for formation control loops are chosen

as follows: τF1 = τF2 =

1.5
1.5
0.5

, η1F1 = η1F2 =

 0.1
0.1

0.075

;η2F1 = η2F2 =

0.05
0.05
0.02

. For the

leader UAV, the reference position and altitude commands are set as follows: XL = sin t,
YL = cos t and ZL = t. Figure 3 shows the applied acceleration disturbance on X and Y
dynamics of the leader and followers UAV. it is assumed that same type of disturbance
acceleration is applied for all UAVs. Furthermore the disturbance acceleration has no
effect on the Z dynamics of UAV. Moreover, the following parametric uncertainties are
applied: a1L = 2.5a1L;a1j = 2.5a1j;a2L = 2.5a2L;a2j = 2.5a2j;a3L = 2.5a3L;a3j = 2.5a3j;a4L =
2.5a4L;a4j = 2.5a4j;a5L = 2.5a5L;a5j = 2.5a5j;b1L = 1.75b1L;b1j = 1.75b1j;b2L = 1.75b2L;b2j =
1.75b2j;b3L = 1.75b3L;b3j = 1.75b3j.
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Figure 3. Applied acceleration type disturbance in X and Y dynamics.

Table 1. Leader-followers UAV parameters.

Symbol Value Unit

mQL = mF1 = mF1 0.65 kg
lL = lF1 = lF2 0.23 m
JrL = JF1 = JF2 6.5× 10−5 kg·m2

IxL = IxF1 = IxF2 7.5× 10−3 Ns2rad−1

IyL = IyF1 = IyF2 7.5× 10−3 Ns2rad−1

IzL = IzF1 = IzF2 1.3× 10−2 Ns2rad−1

Table 2. Leader UAV control parameters for attitude, altitude and position loops.

Parameter Value Parameter Value

k1 200 k2 1
kd1 70 kd2 15
k3 200 k4 1
kd3 50 kd4 10
k5 95 k6 1
kd5 4.6 kd6 0.5
k7 97 k8 1
kd7 300 kd8 1.5
k9 60 k10 1000
kd9 2.5 kd10 180
k11 60 k12 1000
kd11 2.5 kd12 5
ζ1 1.5 ζ2 2.5

Table 3. Follower UAVs control parameters for attitude, altitude and position loops.

Parameter Value Parameter Value

k1j 200 k2j 1
kd1j 70 kd2j 15
k3j 200 k4j 1
kd3j 50 kd4j 10
k5j 95 k6j 1
kd5j 4.6 kd6j 0.5
k7j 97 k8j 1
kd7j 300 kd8j 1.5
k9j 60 k10j 1000
kd9j 2.5 kd10j 180
k11j 60 k12j 1000
kd11j 2.5 kd12j 5
ζ1j 1.5 ζ2j 2.5
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Figure 4 shows the trajectory tracking simulations of leader followers UAV in presence
of applied disturbance of Figure 3. From the presented results, it is concluded that in
presence of disturbances, ASTSMC controllers ensure robust behaviour, while the fixed
gain STSMC controllers exhibit steady state errors in the X and Y tracking responses of the
leader and followers UAVs.

Figure 4. XYZ trajectory tracking comparison under wind disturbance.

To have a clear picture of the trajectory deviations under wind disturbance, Figures 5–8
show the trajectory tracking comparisons in XY plane for leader, follower1 and follower2
UAVs respectively. From the presented results, it is concluded that minimum deviations
are observed in the trajectory tracking for all UAVs with ASTSMC controllers, while with
fixed gain STSMC controllers all UAVs show significant drift from the reference trajectories
in XY plane. Figure 8 shows the combined trajectories of leader followers UAVs with
ASTSMC and fixed gain STSMC controllers in XY plane. From the presented results, it is
obvious that the proposed ASTSMC controllers ensure robust formation control between
the leader and followers UAVs, while with fixed gain STSMC controllers, all UAVs show
drift in their trajectories.

Figure 5. XY leader trajectory tracking comparison under wind disturbance.
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Figure 6. XY follower1 trajectory tracking comparison under wind disturbance.

Figure 7. XY follower2 trajectory tracking comparison under wind disturbance.

Figure 8. XY Leader-followers trajectory tracking comparison under wind disturbance.

To compare the trajectory tracking performance of the leader followers UAV quanti-
tatively, the X and Y trajectories are individually plotted against time and the results are
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presented in Figures 9 and 10 for the leader UAV. From Figure 9, and at time t = 45 s, the
eXL tracking error is 0.1 m with fixed gain STSMC controller while with ASTSMC controller,
the measured error eXL is 0.05. ASTSMC ensures lowest error due the adaptive disturbance
compensation term DXL and from the presented results of Figure 9, it is obvious that at time
t = 45 s, the adaptive term DXL adds appropriate compensation to cancel the disturbance
and it switches from 50 to −100. Similarly from Figure 10, eYL is measured 0.28 m and
0.05 m with fixed gain STSMC and ASTSMC controllers respectively. ASTSMC controller
offers lowest error due to the adaptive estimator term DYL. From the presented results
of Figure 10, it is obvious that at time t = 45 s, the adaptive term DYL adds appropriate
compensation to cancel the disturbance and it switches from 0 to −150. Similarly for
followers UAV, the X and Y tracking responses are plotted against simulation time and
the results are shown in Figures 11–14. From the presented results and at time t = 45 s,
the measured error signals with fixed gain STSMC controller are as follows: eXF1 = 0.2 m,
eYF1 = 0.3 m, eXF2 = 0.2 m, eYF1 = 0.5 m , while with ASTSMC controllers , the errors are
measured as follows: eXF1 = 0.1 m, eYF1 = 0.1 m, eXF2 = 0.05 m, eYF1 = 0.05 m. From the
presented results of Figures 11–14, it is obvious that at time t = 45 s, the adaptive terms
DXF1 ,DYF1 , DXF2 ,DYF2 add appropriate compensation to cancel the disturbances.

Figure 9. Xleader tracking comparison under wind disturbance.

Figure 10. Yleader tracking comparison under wind disturbance.
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Figures 15 and 16 show θ and φ tracking responses for leader and follower UAVs
with both fixed gain STSMC and ASTSMC controllers respectively. From the presented
results and at time t = 45 s, it is evident that the proposed ASTSMC controllers generate
appropriate reference commands for both θ and φ loops of leader and follower UAVs. To
have a better understanding of the above claim, Figure 17 shows the difference of the
generated reference θ and φ commands with ASTSMC and fixed gain STSMC controllers.
From the presented results , it is obvious that at time t = 45 s, the proposed ASTSMC
controllers generate appropriate reference commands for both θ and φ loops of leader and
follower UAVs.

Figure 11. XF1 tracking comparison under wind disturbance.

Figure 12. YF1 tracking comparison under wind disturbance.
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Figure 13. XF2 tracking comparison under wind disturbance.

Figure 14. YF2 tracking comparison under wind disturbance.

Figure 15. θ tracking comparison under wind disturbance.
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Figure 16. φ tracking comparison under wind disturbance.

Figures 18 and 19 show Z and ψ loops tracking responses for leader and follower
UAVs. Since no disturbances are applied on both these loops, the tracking responses under
fixed gain STSMC and ASTSMC controllers are comparable. Finally, Figure 20 shows the
robustness of the formation controllers for tracking the respective reference commands
i.e., the distance between the leader and the followers in X , Y plane. From the presented
results it is obvious that apart from the transient error, the formation controllers accurately
maintain the desired distance between the leader- follower1 and leader-follower2 UAVs.

Figure 17. Difference between desired θ, φ with ASTSMC and STSMC controllers.
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Figure 18. z tracking.

Figure 19. ψ tracking.

Figure 20. Formation controller tracking.

Figure 21 shows the simulation results of the control inputs using the proposed control
schemes. Since the attitude loops are not adaptive and gains are fixed so the control signals
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chatters, however the control inputs are feasible for practical implementations and well
bounded. Moreover, the virtual XY control outputs of the proposed control schemes offer
vert low chattering (Figures 15 and 16) In future work, gains of the proposed control
schemes will be tuned online to overcome the chattering phenomena.

Figure 21. Control inputs using proposed control scheme.

5. Conclusions

This paper proposes adaptive super twisting sliding mode trajectory and formation
controllers for multiple UAVs flying the leader follower configuration. Acceleration type
disturbances and parametric uncertainties are applied to = X and Y dynamics of leader
and follower UAVs. The formation control of UAVs is tested with the proposed ASTSMC
and fixed gain STSMC controllers. The robust performance of the proposed control is
verified from the following measured errors of the leader and follower UAVs. For leader
UAV, eXL = 0.05 m, eYL = 0.05 m with ASTSMC control while with the fixed gain STSMC
controller, the measured errors are as follows: eXL = 0.1 m, eYL = 0.25 m. Similarly for
follower UAV,eXF1 = 0.09 m, eYF1 = 0.05 m, eXF2 = 0.09 m, eYF1 = 0.04 m, with ASTSMC
control while with the fixed gain STSMC controller, the measured errors are as follows:
eXF1 = 0.18 m, eYF1 = 0.25 m, eXF2 = 0.2 m, eYF1 = 0.14 m. Moreover, the settling time of
XY states after the occurrence of disturbances is faster as compared to fixed gain STSMC
control methods. From the quantitative comparison here; it is concluded that the proposed
ASTSMC controllers show enhanced robust behaviour to the acceleration type disturbances
and parametric uncertainties of the system.
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Nomenclature

Jri Rotor inertia of ith quad-rotor [kg·m2]
g Acceleration due to gravity [m/s2]
DXi Uncertainty in Ẍ dynamics of ith quad-rotor [m/s2]
DYi Uncertainty in Ÿ dynamics of ith quad-rotor [m/s2]
Ωri Overall speed of the propellers of ith quad-rotor [rad/s]
Ixi, Iyi, Izi Moments of ith quad-rotor inertia in X, Y and Z coordinates [kg·m2]
mQi Mass of ith quad-rotor [kg]
Mφ i Roll moment of ith quad-rotor [Nm]
Mθ i Pitch moment of ith quad-rotor [Nm ]
Mψ i Yaw moment of ith quad-rotor [Nm ]
θi Pitch angle of ith quad-rotor [rad]
φi Roll angle of ith quad-rotor [rad]
ψi Yaw angle of ith quad-rotor [rad]
Xi, Yi, Zi Position of ith quad-rotor in earth coordinates [m]
Ẋi, Ẏi, Żi Velocity of ith quad-rotor in earth coordinates [m/s]
Ẍi, Ÿi, Z̈i Accelerations of ith quad-rotor in earth coordinates [m/s2]
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