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Abstract
Purpose BluePrint (BP) is an 80-gene molecular subtyping test that classifies early-stage breast cancer (EBC) into Basal, 
Luminal, and HER2 subtypes. In most cases, breast tumors have one dominant subtype, representative of a single activated 
pathway. However, some tumors show a statistically equal representation of more than one subtype, referred to as dual sub-
type. This study aims to identify and examine dual subtype tumors by BP to understand their biology and possible implica-
tions for treatment guidance.
Methods The BP scores of over 15,000 tumor samples from EBC patients were analyzed, and the differences between the 
highest and the lowest scoring subtypes were calculated. Based upon the distribution of the differences between BP scores, 
a threshold was determined for each subtype to identify dual versus single subtypes.
Results Approximately 97% of samples had one single activated BluePrint molecular subtype, whereas ~ 3% of samples 
were classified as BP dual subtype. The most frequently occurring dual subtypes were the Luminal-Basal-type and Luminal-
HER2-type. Luminal-Basal-type displays a distinct biology from the Luminal single type and Basal single type. Burstein’s 
classification of the single and dual Basal samples showed that the Luminal-Basal-type is mostly classified as ‘luminal 
androgen receptor’ and ‘mesenchymal’ subtypes, supporting molecular evidence of AR activation in the Luminal-Basal-type 
tumors. Tumors classified as Luminal-HER2-type resemble features of both Luminal-single-type and HER2-single-type. 
However, patients with dual Luminal-HER2-type have a lower pathological complete response after receiving HER2-targeted 
therapies in addition to chemotherapy in comparison with patients with a HER2-single-type.
Conclusion This study demonstrates that BP identifies tumors with two active functional pathways (dual subtype) with 
specific transcriptional characteristics and highlights the added value of distinguishing BP dual from single subtypes as 
evidenced by distinct treatment response rates.
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Introduction

Breast cancer (BC) is a heterogenous disease with respect to clini-
cal, histopathological, and molecular features. Based on clinical 
behavior and genomic characteristics, multiple methods have been 
utilized to categorize BC into distinct subgroups, be it with clini-
cal subtyping for hormone receptor (HR) protein status or more 
recently with molecular subtyping based on RNA assays [1–4].

Clinical subtyping relies on well-established immuno-
histochemistry (IHC) and fluorescence in situ hybridization 
(FISH) staining that determines estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) status [5, 6]. The BluePrint (BP) 80-gene 
subtyping assay was developed to bridge clinical pathology 
and molecular subtyping, by using IHC-based receptor status 
and mRNA expression, resulting in a molecular diagnostic 
array with predictive value [1, 7]. Each of the three subtypes 
determined by BP (Basal-type, Luminal-type, and HER2-type) 
is scored according to their respective gene signatures (con-
sisting of 28, 58, and 4 genes, respectively) reflecting specific 
functional pathways, with the highest score determining the 
subtype [1, 7]. In most cases, the highest score is significantly 
higher than the score of the other two subtypes, indicating a 
strong dominance of a single pathway activation in the tumor 
(so-called single subtype). However, in rare instances, the dif-
ference between the highest score and the second-highest score 
is statistically indiscernible, indicating that these tumors might 
be characterized by multiple activated pathways (dual sub-
type). Having a deeper understanding of which pathways are 
activated may help understanding the specific biology of BP 
dual subtypes that distinguish them from the single subtypes.

In addition to the standard BP subtypes (Basal-type, 
Luminal-type, and HER2-type), other studies have identi-
fied expression-based subtypes, which include normal-like, 
claudin-low, triple positive, and triple-negative [3, 8–11] types. 
Among others, Burstein and colleagues further classified the 
clinical triple-negative breast cancer (TNBC) subtype into 
basal-like immuno-activated (BLIA), basal-like immuno-
suppressed (BLIS), luminal androgen receptor (LAR), and 
mesenchymal-like (MES) [12]. Therefore, assessing further 
the differences between the BP scores may help identifying 
additional subtypes previously not detected by standard BP. 
Also, understanding the biological characteristics of BP dual 
subtypes may help in guiding more effective treatment plans.

Materials and methods

Data

For this study, only data and no samples were collected, and 
all patient data were fully anonymized according to the ‘Gen-
eral Data Protection Regulation’ (GDPR) and the ‘Health 

Insurance Portability and Accountability Act’ (HIPAA) and 
are in compliance with the ‘Data Protection Act.’ This study 
was a retrospective analysis of (internal) studies between 
2015 and 2020. These studies included those previously 
described in Beumer et al. [13], the FLEX registry trial 
(NCT03053193), the Neoadjuvant Breast Registry Symphony 
Trial (NBRST) (NCT01479101), and the Multi-Institutional 
Neo-adjuvant Therapy MammaPrint Project I (MINT) trial 
(NCT01501487). Most samples comply with MammaPrint 
(MP) eligibility criteria [14, 15], stage I, II, or operable stage 
III breast cancer, tumor diameter ≤ 5 cm , and up to three pos-
itive lymph nodes, with any ER/PR/HER2 status. Microarray 
processing was performed following standard procedure at 
Agendia [7] (Supplementary methods). Agendia’s customized 
diagnostic arrays were either a targeted array or a full genome 
array, as previously described [7, 13, 16].

Of the 15,580 samples analyzed with BP, 7985 had 
full-genome expression data available of which 1978 with 
clinicopathological information (Table 1). All samples 
analyzed with the targeted array had clinicopathological 
information available (Table 1b).

The Neoadjuvant Breast Registry Symphony Trial 
(NBRST) [17–19] classified BC patients according to 
MP and BP and compared it with conventional IHC/FISH 
subtyping to predict treatment sensitivity. From the entire 
NBRST trial dataset (n = 1060), a subset that received 
HER2-targeted therapy (n = 289) was used to evaluate 
the association between the dual subtypes and response 
to HER2-targeted therapy. The NBRST trial protocol was 
approved by Institutional Review Boards at all participat-
ing sites (ClinicalTrials.gov NCT01479101). All patients 
consented to participation in the study and clinical data 
collection. Part of the anonymized data (BP results and 
IHC) used in this study was generated from early-stage BC 
patients collected from standard diagnostic testing and was 
only used to identify potential dual subtypes and not for 
any gene expression analysis. The data from studies can be 
shared by the authors upon reasonable request.

BluePrint single and dual‑subtype classification

Standard BP scores of 15,580 samples were calculated 
followed by dual-subtype classification, which was based 
on bootstrap technique [20], and multi-modality detection. 
Details on the procedure can be found in the Supplemen-
tary methods and Figure S1 (Fig. S1a).

Conventional subtype classification

Clinicopathological information was available for 9573 
of 15,580 samples, including IHC HR status for ER 
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and PR, Ki-67, and IHC/FISH HER2 status (Table S1). 
Tumors with at least 1% positivity for either ER or PR 
were classified HR-positive (HR+), otherwise HR-neg-
ative (HR−). Tumors with HER2 IHC 0, 1+ or 2+ (FISH 
non-amplified) score were considered HER2-negative 
(HER2−) while tumors with HER2 IHC 2+ (FISH 
amplified) and 3+ score were considered HER2-positive 
(HER2+).

Burstein classification

An algorithm published by Burstein et al., stratifies TNBCs 
into different subtypes by gene expression analyses of 80 
signature genes. This algorithm was used to classify the 
Basal-single-type and Luminal-Basal-type samples into 
BLIA, BLIS, LAR, and MES [12].

Software and statistics

Gene expression analysis was performed on full-genome 
microarray data (n = 7985) using limma (v3.2) [21]. 

Hallmark and Oncogenic gene sets from the Molecular 
Signatures Database v7.2 were used for gene set enrich-
ment analysis (GSEA) [22]. Genes were ranked based 
on the effect size ratio using the Cohen’s D effect size 
[23]. Differentially expressed genes (DEG) were con-
sidered significant with a p value ≤ 0.05 and a  log2 fold 
change ≥ 1.

Computational analysis and visualization were per-
formed using R (v3.6.1) [24]. Principal component anal-
ysis (PCA) was performed using the “prcomp” package 
[25] (v3.6.2) and visualized using “ggplot” (v3.3.2) [26]. 
Unpaired, two-sample t-tests were used to measure if the 
means of ER, PR, and Ki-67 positivity were significantly 
different between single and dual subtypes. Chi-square test 
of Independence was used to test for differences of cat-
egorical variables within the Burstein classification (BLIA, 
BLIS, LAR, and MES) and a multivariate logistic regres-
sion analysis for response to therapy (pathological com-
plete response, pCR) between single and dual subtypes. 
Molecular subtype classification algorithms were used 
from the “Genefu” package [27].

Table 1  (a) The BluePrint single and dual classification of the sam-
ples with full-genome data, which were used in differential expres-
sion analysis and their standard BluePrint classification (n = 7985) 

and (b) the BluePrint single and dual classification of the samples for 
which both the clinical information and the standard BluePrint clas-
sification are available

Of the 9573 samples, 1978 were processed on full genome and 7595 on targeted arrays. The total number of unique samples with BP classifica-
tion is 15,580 (= 7985 + 7595) (highlighted in bold in the table) of which 15,087 are single subtypes, 449 are dual subtypes, and 44 are triple 
subtypes

Full genome Standard BluePrint Total

Basal Luminal HER2

(a) Single–dual subtype classification
Basal-single 712 712 0 0 712
Luminal-single 6732 0 6732 0 6732
HER2-single 277 0 0 277 277
Luminal-Basal 122 51 71 0 122
Luminal-HER2 99 0 50 49 99
HER2-Basal 23 7 0 16 23
Luminal-HER2-Basal 20 5 11 4 20
Total 7985 775 6864 346 7985

Full genome Targeted array Standard BluePrint Total

Basal Luminal HER2

(b) Single–dual subtype classification
Basal-single 150 440 590 0 0 590
Luminal-single 1727 6781 0 8508 0 8508
HER2-single 47 145 0 0 192 192
Luminal-Basal 32 124 58 98 0 156
Luminal-HER2 11 65 0 45 31 76
HER2-Basal 5 16 6 0 15 21
Luminal-HER2-Basal 6 24 10 13 7 30
Total 1978 7595 664 8664 245 9573
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Results

BluePrint single and dual subtype classification

Molecular subtyping of patient tumors (n = 15,580) was per-
formed at Agendia using the BP 80-gene assay as previously 
described [1, 7]. We applied the dual subtype classification 
method (see “Methods” for details) to assess the presence of 
multiple activated pathways. Most tumors were classified as 
single subtype (n = 15,087, 96.8%), followed by 449 (2.9%) 
tumors classified as dual subtype, and 44 (0.3%) tumors as 
triple subtype (Table 1). The most common dual subtypes in 
this dataset were the Luminal-Basal-type and the Luminal-
HER2-type. These had sufficient numbers for downstream 
analyses while HER2-Basal-type and Luminal-HER2-Basal-
type were not sufficient in size [28] and not further analyzed 
(Table 1a).

To note, only 1.9% of Luminal-type tumors were identi-
fied as dual subtype, whereas this was the case for 9.6% of 
the Basal-type and 23.8% of the HER2− type tumors. Since 
our dataset was largely HR+ HER2− (Table S1), in order 
to estimate the dual subtype prevalence in the overall BC 
clinical population, we iteratively created subsets represent-
ing expected distributions of clinical subtypes (https:// seer. 
cancer. gov/ statf acts/ html/ breast- subty pes. html) [29] (70% 
HR+ HER2−, 13% HR+ HER2+, 5% HR−/HER2+ and 12% 
HR-HER2−) and we detected 4.92% dual subtypes (95% CI 
4.91–4.93) (Fig. S2).

Principal component analyses using BluePrint 
reveals similarities between subtypes

To understand the similarities between single and dual sub-
types, we performed PCA based on the BP gene expression 
signatures (Fig. 1a–e). We observed a clear distinction of 
single subtypes shown in the first two principal components 
(Fig. 1a–c). Luminal-Basal-type cluster separately from 
both Basal-single-type (Fig. 1d) and Luminal-single-type 
(Fig. 1e), conversely, Luminal-HER2-type (Fig. 1e, f) are 
more closely related with both Luminal-single-type (Fig. 1b) 
and HER2-single type (Fig. 1c).

Differential gene expression analysis highlights 
differences between BluePrint dual and single 
subtypes

Differential expression analysis using full-genome data 
(n = 7985) was performed to evaluate global transcrip-
tional differences between single and dual subtypes. As 
expected from the PCA, when compared with their corre-
sponding single subtypes, more DEGs were found for the 

Luminal-Basal-type (446 DEGs) (Fig. 2a, b) than for the 
Luminal-HER2-type (151 DEGs) (Fig. 2e, f).

Among the up-regulated genes in Luminal-Basal-type 
(vs. both Basal-single-type and Luminal-single-type) 
were present MUCL1, a known tumor suppressor gene [30], 
and CLCA2, a negative regulator of cancer cell migration 
and invasion [31].

Among the most up-regulated genes in Luminal-HER2-
type compared with Luminal-single-type tumors, we found 
GRB7, TCAP, and ERBB2 which belong to the HER2 ampli-
con and are known to be overexpressed in pathologically 
confirmed HER2 tumors [32]. Indeed, these genes were 
also up-regulated in HER2-single-type tumors (Fig. 2e). 
When comparing Luminal-HER2-type with HER2-sin-
gle-type, ESR1 was found to be upregulated, similarly as 
in Luminal-single-type tumors. Additionally, Luminal-
HER2-type tumors were mainly classified as either Lumi-
nal B (n = 34/99, 34%) or HER2 enriched (n = 44/99, 44%) 
using the intrinsic subtype classifier of the”Genefu” [27, 
33]. Together, these data suggest that both ER and HER2 
are activated in Luminal-HER2-type tumors.

Differences between BluePrint single and dual 
subtypes may impact therapy response pathways

A better understanding of the underlying biological charac-
teristics of the dual subtypes may come from analyzing gene 
pathway regulation.

Comparison of Luminal-Basal-type with Basal-single-
type revealed upregulation of two estrogen response (ESR) 
and one androgen response (AR)-related gene sets (Fig. 2c). 
Same ESR gene sets were downregulated in Luminal-Basal-
type versus Luminal-single-type, indicating that Luminal-
Basal-type has intermediate ER levels. Conversely, AR was 
upregulated in Luminal-Basal-type, versus both the Basal-
single-type and Luminal-single-type. G2M and E2F path-
ways [34, 35] were either downregulated or upregulated in 
Luminal-Basal-type compared with Basal-single-type and 
Luminal-single-type, respectively, indicating that Luminal-
Basal-type are less proliferative than Basal-single-type, but 
more proliferative than Luminal-single-type tumors. Taken 
together, Luminal-Basal-type tumors show a distinct biology 
from their single counterparts with decreased proliferation 
than Basal-single-type and AR activation.

Compared with single HER2-single-type tumors, a Lumi-
nal-HER2 type shows downregulation of MAPK (MEK and 
RAF) signaling pathways and ER activation (Fig. 2g). Clini-
cal characteristics of the single and dual BP subtypes and 
their response to therapy may confirm these hypotheses and 
provide additional insights.

https://seer.cancer.gov/statfacts/html/breast-subtypes.html
https://seer.cancer.gov/statfacts/html/breast-subtypes.html
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Fig. 2  Differential gene expression analysis between BluePrint single 
and dual subtypes. The x-axis and y-axis report the  Log2 fold change 
and the FDR-adjusted p-values (−   Log10(FDR)), respectively. Num-
ber of tumor samples used for the analysis are shown in between 
brackets in titles. Significance thresholds of ≤ 0.05 FDR and a  log2 
fold change of ≥ 1 were used. Red and blue dots illustrate significant 
differentially expressed genes. The strongest differentially expressed 
genes are labeled (abs(logFC) ≥ 2 or −Log10 adj p-value ≥ 50). Dif-
ferentially expressed genes are identified in the following compari-

sons: a Luminal-Basal-type versus Basal-single-type. b Luminal-
Basal-type versus Luminal-single-type, e Luminal-HER2-type versus 
HER2-single-type, and f Luminal-HER2-type versus Luminal-single-
type. Similarly, differentially expressed pathways are shown between 
c Luminal-Basal-type versus Basal-single-type. d Luminal-Basal-type 
versus Luminal-single-type, g Luminal-HER2-type versus HER2-
single-type, and h Luminal-HER2-type versus Luminal-single-type. 
FDR = false discovery rate, UP = upregulated, DN = downregulated
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BluePrint dual subtypes present clear 
clinicopathological differences from single subtypes

Standard BP Luminal-, HER2−, and Basal-type tumors were 
further stratified using the single–dual subtyping classifica-
tion (Fig. 3a). Additionally, conventional clinical subtypes 
(based on IHC HR staining (ER, PR) and HER2 status) were 
further classified into BP single subtypes or dual subtypes 
(Fig. 3b, c).

Majority of HR-HER2− tumors were classified as Basal-
single-type (n = 150/176) (Fig. 3b), while only 26 were dual 
subtype of which 22 were Luminal-Basal type.

Most of the HR+ HER2− tumors were classified as 
Luminal-single-type (n = 4285/4548), but interestingly, 
3% (n = 152/4548) was classified as Basal-single-type, 

which corresponds to more than half of all Basal-single-
types identified by BP (n = 152/265) (Fig.  3b). Of the 
HR+ HER2− with a dual subtype, majority was Luminal-
Basal-type (n = 57/86) (Fig. 3c).

Most HR+ HER2+ tumors were classified as either 
Luminal-single-type (n = 165/272) or as HER2-single-type 
(n = 61/272) (Fig. 3b) with the most frequent dual subtype 
being the Luminal-HER2-type (n = 30/34) (Fig. 3c).

Luminal-single-type tumors had the highest IHC ER 
expression levels with the lowest levels observed in Basal-
single-type tumors (Fig. 3d). Dual subtypes showed interme-
diate ER expression, compared to their single counterparts 
(Fig. 3d). ER low positive tumors (1–10% IHC) were mostly 
found in the Basal-single-type (n = 62/147, 42%) and in the 
Luminal-single-type (n = 58/147, 39%) (Fig. 3d). However, 
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types (Basal-single-type, Luminal-single-type, HER2-single-type). 
c Further stratification of the same clinical-based subtypes as in (b) 
to the BP-based dual subtypes (Luminal-HER2-type, Luminal-Basal-

type, HER2-Basal-type, and Luminal-HER2-Basal-type). d, e Box-
plots reporting for each single and dual subtype category (x-axis), 
the level and spread of estrogen receptor and Ki67 positivity based 
on Immunohistochemistry assessment (y-axis). Significant differen-
tial positivity between ER and Ki67 was assumed at a p-value < 0.05 
determined with a t-test between subtype categories. To note, for 
4511 of the 9573 tumor samples with clinical annotation, HR and 
HER2 status were not available (Table S1)
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considering the differences in sample size of the subtypes, 
a larger fraction of Basal-single-type (24%) was found to 
be ER low positive, compared with other subtypes. Prolif-
eration measured by % Ki-67 positivity was significantly 
higher in Luminal-Basal-type and Luminal-HER2-type 
compared with Luminal-single-type, but significantly lower 
than Basal-single-type and HER2-single-type (Fig. 3e). 
Indeed, there were significantly more Luminal-Basal-type 
(n = 34/47, 72.3%; p value < 0.001) than Basal-single-type 
tumors (59/173, 34.1%) with Ki67 < 30%, threshold recently 
proposed for the so-called TNBC low proliferation (TNLP) 
tumors [36] (Fig. 3e).

Burstein LAR and MES subtypes are identified using 
BluePrint dual subtype classification

Since Luminal-Basal-type displays different transcriptional 
characteristics than Luminal-single-type and Basal-single-
type, we classified them using the Burstein classifier to 
better understand their biology. Indeed, we found a sig-
nificant association between BP single/dual subtypes and 
the Burstein BLIA, BLIS, LAR, and MES subtypes [12] (p 
value < 0.001) with the Basal-single-type classified mostly 
as BLIA or BLIS, whereas the Luminal-Basal-type as LAR 
or MES (Fig. 4a), irrespective of their standard BP subtype 
(Fig. 4b).

When using the PAM50 [3, 33] intrinsic subtype clas-
sifier of the”Genefu” [27] package, the Luminal-Basal-
type tumors were mostly classified as HER2 enriched 

(HER2-e) (Table S3a). When comparing "Luminal-Basal/
HER2-e” against “Luminal-Basal/ non-HER2-e”, common 
biomarkers for HER2 molecular classification were not dif-
ferentially expressed (Table S3b). Indeed, ~ 98% of Luminal-
Basal-type tumors were clinically HER2− (Fig. 3c).

BluePrint dual subtype classification of the NBRST 
dataset shows refined prediction to therapy

Our findings indicate that the Luminal-HER2-type shares 
clinical and genomic features with Luminal-single-type 
and HER2-single-type and previous studies suggest that 
HR and HER2 co-expression is associated with endocrine 
and HER2-targeted therapy resistance [37, 38]. Therefore, 
to better understand how Luminal-HER2-type relates to 
HER2-targeted therapy response, we analyzed the NBRST 
dataset (see Methods for details) [18] and selected only 
pathologically confirmed HER2+ tumors (n = 289) with 
gene expression and HER2-targeted therapy response data 
available [either Trastuzumab (T) only or with Pertuzumab 
(P)]. Patient tumors were stratified using the BluePrint dual 
subtype classification (Fig. 5).

BP HER2-single-type showed higher pCR rate to chemo-
therapy (C) + T compared to Luminal-HER2-type (61.3% vs. 
23.8%, p = 0.032) (Fig. 5a). Although not significant (also 
due to lower numerosity of Luminal-HER2-type), this trend 
remained for patients that received additional P (Fig. 5b). 
Response rates of Luminal-HER2-type tumors was higher, 
but not significantly different than for Luminal-single-type. 
Instead, a significant higher response rate was observed for 

BLIA

BLIS 

LAR

MES

Basal-single-type

Luminal-Basal-type

a

N = 3
N = 5

N = 23

N = 20

N = 2
N = 4

N = 46

N = 19

b

BluePrint Basal

BluePrint Luminal

Basal-single
(85.4%)

Luminal-Basal
(14.6%)

3.79%

56.56%

31.97%

26.54%

67.56%

2.11%

4.10%
7.38%

N = 834
p < 0.001
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m

in
al
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Fig. 4  BluePrint (BP) dual subtype classification compared with 
Burstein’s classification of triple-negative breast cancer tumors [12]. 
a The inner circle contains percentages of the BP Basal-single-type 
and BP Luminal-Basal-type. The outer circle illustrates the corre-
spondent Burstein classification into Basal-like immuno-activated 
(BLIA), Basal-like immuno-suppressed (BLIS), Luminal androgen 

receptor (LAR), or Mesenchymal (MES). b) Samples with the Lumi-
nal-Basal-type were split based on standard BluePrint classification 
to illustrate their distribution over BLIA, BLIS, LAR, and MES sub-
types. Significant differential classification of Burstein subtypes was 
assumed at a p-value ≤ 0.05 determined with a Chi-Square test of 
Independence between subtypes
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the HER2-single-type compared to the Luminal-HER2-type, 
after correcting for HR status, tumor stage, tumor grade, 
and therapy in a multivariate logistic regression analysis (p 
value = 0.006, Table S2).

Discussion

Molecular subtyping using the standard BP 80-gene assay 
enables to discern the tumor subtype by the underlying func-
tional pathways and not merely by HR and HER2 status 
[1, 7]. In most cases, the assay identifies a single, domi-
nant activated pathway distinctive of a Luminal-, Basal-, 
or HER2-type tumor. This information often confirms the 
pathologically defined subtype but in many cases further 
classifies tumors from their initial clinical subtype into a 
different molecular subtype. This phenomenon has clinical 
implications for the treatment of patients, perhaps most nota-
bly in the ER+/Basal and HER2+/Luminal subtypes which 
have been previously described [18, 19, 39, 40].

The vast majority of the breast cancer tumors analyzed in 
this study using the BP test show a single activated pathway 
(i.e., single BP subtype) (97%); however, less frequently, 

they exhibit multiple activated pathways (i.e., dual or tri-
ple subtype) (3%), as we showed in a preliminary analysis 
[41]. Notably, this dataset mostly reflects a HR + popula-
tion but upon sampling the data based on observed frequen-
cies of clinical subtypes, such a percentage raises to ~ 5%. 
Importantly, the single and dual assessment performed on 
the NBRST dataset and also reported for the TRAIN2 [42] 
and APHINITY [43] patient cohorts show a higher number 
of dual subtypes, ranging from 11 to 30%, indicating that 
the dual subtype classification might have a greater clinical 
impact on a HER2+ population and that the potential clini-
cal utility should be found in specific subgroups rather than 
in the entire EBC population. The analysis on the NBRST 
dataset was performed on limited numbers of dual subtypes 
(n = 32); however, the size was sufficient to generate statisti-
cally powerful results.

Overall, in this manuscript, we aimed to provide a bet-
ter understanding of the biological diversity of EBC and 
these results should be taken with caution with respect to 
any immediate change in clinical management.

Next, by analyzing whole-transcriptomic data, we set 
out to understand if and how dual subtypes were distinct 
from single subtypes. For the analysis, we focused on the 

Fig. 5  Distribution of pathologically confirmed HER2+ patients of 
the NBRST trial [18–20] based on the BluePrint single and dual sub-
type classification and their treatment response (N = 253). Patients 
are grouped based on their therapy regimen [chemotherapy (C) plus 
Trastuzumab (T) (panel a) or C + T and Pertuzumab (P) (panel b)], 
and their HR and HER2 status (HR+  HER2 + or HR-  HER2+. The 

colored bars represents if a tumor did (pCR, blue) or did not [Resid-
ual Disease (RD), bisque] achieve pathological complete response 
(pCR). p-value determined with a chi-square test of independence 
between subtypes. Of the entire NBRST set (n = 289), 253 samples 
are showed due to low numerosity of HER2-Basal-type (n = 19) and 
Luminal-HER2-Basal (n = 17)
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Luminal-Basal-type and Luminal-HER2-type tumors as the 
other dual subtypes were limited in size.

Neither the Basal nor the Luminal BP template genes 
were able to fully capture the biology of the Luminal-Basal-
type tumors. The majority of tumors expressing typical 
Basal gene patterns are TNBC by pathology [44], and it 
is known that there is a large overlap between BP Basal 
subtypes and TNBCs. Therefore, we applied the TNBC 
Burstein classifier on the Basal-single-type and Luminal-
Basal-type. Basal-single-type tumors were mostly classified 
as BLIA and BLIS while Luminal-Basal-type tumors were 
more likely to be either LAR or MES. Genes described by 
Burstein et al. to be up-regulated in the LAR subtype, such 
as DHRS2, AGR2, FOXA1, AR, and MUCL1, were indeed 
higher expressed in Luminal-Basal-type compared with the 
Basal-single-type samples. Since the majority of Luminal-
Basal-type tumors were classified as LAR, and according to 
Burstein et al., those patients derive benefit from traditional 
anti-estrogen or anti-androgen therapy, we could speculate 
that Luminal-Basal-type cancers would benefit from such 
treatment as well. Furthermore, ADH1B and FABP4 genes 
were up-regulated in Luminal-Basal-type samples compared 
with Basal-single-type samples. The upregulation of these 
genes is typical of the MES subtype, which is characterized 
by the dysregulation of cell cycle and DNA damage repair 
pathways. On the contrary, BLIS subtype-specific genes, 
HORMAD1, SOX10, SERPINB5, and FOXC1, were up-reg-
ulated in Basal-single-type samples compared with Luminal-
Basal-type samples. Therefore, we could hypothesize that 
among the Basal-single-type samples, two subgroups are 
present which are indiscernible with the current dual subtype 
classification, but might have a different prognosis according 
to Burstein et al. and require additional analyses. Notably, 
majority of the Luminal-Basal-type showed a Ki67 positiv-
ity below 30% which might indicate that they share features 
with the TNLP tumors recently described by Bhargava and 
colleagues [36]. Additionally, no large agreement was found 
between any of the dual subtypes and the normal-like [3, 4] 
(Table S3) or claudin-low classifications [9, 27] (data not 
shown). Conversely, BluePrint Basal-, Luminal-, and HER2-
single type classifications were largely concordant with the 
intrinsic subtypes (> 90%) (see Table S3). Interestingly, and 
perhaps unexpectedly, the Luminal-Basal-type tumors were 
mostly classified as HER2-e intrinsic subtype, possibly due 
to the absence of Luminal- and Basal-type biology in the BP 
Luminal-Basal-type.

Luminal-HER2-type samples consistently showed pat-
terns of both ER and HER2 activation (by expression and 
IHC/FISH), which may suggest similarities to the clinically 
triple-positive tumors [10]. Expression of both ER and 
HER2 may lead to receptor crosstalk which has often been 
associated with resistance to both endocrine and HER2-
targeted therapies [45]. However, down-regulation of the 

MAPK-related gene sets MEK and RAF may indicate no 
downstream activation of the HER2 pathway. Therefore, 
Luminal-HER2-type tumors are unlikely fueled through the 
HER2 pathway alone and HER2-targeted therapies might 
not be as effective as in the HER2-single-type tumors. This 
suggestion is strengthened by the observation in the NBRST 
data that Luminal-HER2-type tumors have a significantly 
lower pCR rate to neoadjuvant chemotherapy including 
HER2-targeted agents compared with HER2-single-type 
tumors (p-value < 0.032). This is supported by preliminary 
subanalysis of the TRAIN2 [42, 46] and APHINITY [43, 
47, 48] trial datasets, suggesting that BluePrint HER2-sin-
gle-type tumors derive the most benefit from HER2 dual-
targeted treatment [43].

It has been suggested that clinically triple-positive tumors 
develop endocrine resistance as downstream-activated 
MAPK inhibits ER transcription and phosphorylates ER 
[38]; however, in this study, Luminal-HER2-type tumors 
may be only driven by the ER pathway, as MAPK is down-
regulated compared with HER2-single-type tumors and 
not significantly different from that of Luminal-single-type 
tumors. Further analysis on Luminal-HER2-type samples 
treated with endocrine therapy is required to investigate and 
confirm this hypothesis.

Conclusion

Our study showed that by further dissecting the BP scores, 
it is possible to identify a small proportion of EBCs that 
have dual-activated BP pathways. These dual subtypes dis-
play specific transcriptional and clinicopathological features 
supporting the idea that they represent a different biological 
subgroup than their single counterparts. Most dual BP sub-
types are either Luminal-Basal-type or Luminal-HER2-type.

The Luminal-Basal-type shows lower proliferation lev-
els compared with the Basal-single-type and AR activa-
tion. Interestingly, using the Burstein classification, Lumi-
nal-Basal tumors are mostly classified as LAR and MES 
subtypes.

The Luminal-HER2-type resembles features of both 
the Luminal-single-type and HER2-single-type. How-
ever, patients with Luminal-HER2-type tumors have a 
lower pCR rate after receiving HER2-targeted therapies in 
addition to chemotherapy compared with patients with a 
HER2-single-type.

Taken together, BP dual classification shows potential 
clinical utility in helping treatment decision for a limited, 
but still relevant, fraction of EBC patients with dual sub-
types that may benefit from additional or alternative tar-
geted therapies. Even though molecular subtyping is not 
yet standardly used in routine clinical diagnostics, increas-
ing number of evidences are emerging indicating that 
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molecular subtypes should become part of breast can-
cer management [49]. In this light, results presented 
here further support the need toward such transition and 
implementation.

Future work will be focused on further confirming and 
prospectively validating the findings described here in 
additional independent datasets.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10549- 022- 06698-x.
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