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Abstract: Hepatitis B virus (HBV) infection is a serious global health problem. Patients with autoim-
mune diseases, such as Lupus Erythematosus, are exposed to a higher risk of acquiring infections. In
this study, a molecular characterization, genomic investigation of the Hepatitis B virus, polymerase
(P) and surface (S) genes, from a patient affected by Cutaneous Lupus Erythematosus (CLE), was
presented. Viral DNA was extracted from 200 µL of serum, and the HBV-DNA was amplified by real-
time polymerase chain reaction (PCR) with the Platinum Taq DNA Polymerase. The PCR products
were purified and sequencing reactions were performed. A phylogenetic analysis was performed
through maximum likelihood and Bayesian approaches. The HBV CLE isolate was classified as
sub-genotype D3 and related to other Italian HBV D3 genomes, and some from foreign countries.
No drug resistant mutations were identified. One mutation (a.a. 168 M) was located in the last
part of the major hydrophilic region (MHR) of the surface antigen (HBsAg). Moreover, three sites
(351G, 526Y, 578C) in the polymerase were exclusively present in the CLE patient. The mutations
identified exclusively in the HBsAg of our CLE patient may have been selected because of the Lupus
autoantibodies, which are characteristic in the Lupus autoimmune disease, using a possible molecular
mimicry mechanism.

Keywords: Hepatitis B virus; Lupus erythematosus; autoantibodies; phylogenetic analysis; mutations

1. Introduction

Hepatitis B virus infection is a serious global health problem [1]. Over 350 million
individuals chronically infected with HBV are at high risk of developing liver cirrhosis
and hepatocellular carcinoma (HCC) [2]. Based on its genetic divergence, HBV has been
classified into 10 genotypes [3], which also includes the newest genotype J identified in
Japan [4]. The majority of the HBV genotypes are further divided into sub-genotypes with
a specific geographic distribution, as previously described [5,6]. The prevalent genotypes
in Europe are A (mainly subgenotype A2) and D (mainly subgenotypes D1, D2, D3) and in
Italy D3 has been reported as the prevalent sub-genotype [6].
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Compared to healthy individuals, patients with autoimmune diseases such as Lupus
Erythematosus are exposed to a higher risk of acquiring infections. Systemic lupus ery-
thematosus (SLE) is a multisystem autoimmune disorder predominantly affecting women
of child-bearing age, with a chronic relapsing–remitting course. Moreover, an exclusively
cutaneous condition has been also widely described, the so-called Cutaneous Lupus Ery-
thematosus (CLE) [7,8]. The clinical heterogeneity of CLE is well recognized. Four major
subtypes are defined according to the modified Gilliam grouping system [9]; among them,
the discoid LE (DLE) is the most common form of chronic CLE. In a previous study, we
evaluated the prevalence of HBV and HCV infection, together with the possible associations
with clinical, epidemiological characteristics in a large cohort including patients affected by
SLE and CLE attending the Lupus Clinic of the Rheumatology Unit, Sapienza University
of Rome (Italy) [10]. The viral infections have been implicated in autoimmune diseases’
pathogenesis [11]. In this study, we performed the molecular characterization and genomic
diversity investigation of the Hepatitis B virus in order to determine the phylogenetic
relationships and mutations on the HBV polymerase (P) and surface (S) genes combined to
clinical description from a CLE patient belonging to our cohort.

2. Case Presentation

Here, we report a 63 years old female Italian patient, born in Calabria and living in
Rome (Lazio Region). She was diagnosed with Discoid Lupus Erythematosus (DLE) in
2009 at the Lupus Clinic of the Rheumatology Unit (Sapienza University of Rome, Italy).
At the time of diagnosis, we found a mild positivity for anti-nuclear antibodies (ANA, IFI
on Hep2, 1:80, homogenous pattern), that disappeared after 2 years. Starting from 2010,
she started treatment with hydroxychloroquine 400 mg/die, with fast improvement of
skin lesions. The patient denies having traveled abroad; moreover, the patient has never
received blood transfusions, tattoos or participated in drug use. The patient, from 1985 to
1996, received three gastroscopies due to epigastralgia. She receives regular dental care. In
1998, she underwent a basal cell carcinoma removal surgery. The patient was not vaccinated
for HBV.

In the family history, the patient reported that her father had a HBV infection at
60 years, but no other data were available. This study was approved by the local Ethical
Committee (Prot. PRE-16/18, 15 January 2018—Istituto Superiore di Sanità), and the patient
provided written informed consent [10]. HBV serological markers, DNA extraction and
HBV-DNA levels quantification were previously reported [10]. In particular, HBV-DNA
levels in the plasma were detected and quantified by the COBAS AMPLIPREP/COBAS
TAQMAN HBV TEST, V2.0 with a claimed lower limit of detection of 20 IU/mL and a
claimed upper limit of quantification of 1.7 × 108 IU/mL. HBV-DNA was extracted from
200 µL of the serum sample at the National Institute of Health (Istituto Superiore di Sanità)
(Rome, Italy), using the EZ1 Virus Mini Kit v.2.0 (Qiagen, Hilden, Germany), and following
the manufacturer’s instructions. HBV-DNA was amplified by real-time polymerase chain
reaction (PCR) with the Platinum Taq DNA Polymerase (Invitrogen by Life Technologies
Corporation). The PCR products were purified using the QIAquick PCR Purification Kit
(Qiagen Hilden, Germany) in accordance with the manufacturer’s instructions. Sequencing
reactions were performed using the GenomeLab DTCS Quick Start KiT (Beckman Coulter,
Inc., Fullerton, CA, USA) and were run on an automated DNA sequencer (Beckman
Coulter, Inc., Fullerton, CA, USA). Raw output sequences were analyzed by the Chromas
software (http://www.technelysium.com.au/chromas.html accessed on 24 June 2020)
and the BioEdit Package [12]. The analysis of the serology demonstrated this patient
to be positive for the Hepatitis B surface antigen (HBsAg); thus, in 2009, HBV infection
was confirmed. The anti-HBc titre was 0.01. The AST and ALT values were 17 and
22 U/L, respectively. The serum blood hepatitis B virus deoxyribonucleic acid (HBV DNA)
concentration was 133.0 copies/mL. Based on the above reported clinical parameters and
previous history, the patient was classified as a chronic hepatitis B. Moreover, the subject
was confirmed negative for an HCV infection [10].

http://www.technelysium.com.au/chromas.html
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Six different datasets were built. The first one contained the HBV polymerase
gene sequence from the CLE patient (named 104, Accession Number: OP572234),
plus 40 genotype/sub-genotype specific reference HBV polymerase gene sequences down-
loaded from the National Centre for Biotechnology Information (NCBI) (http://www.
ncbi.nlm.nih.gov/ accessed on 14 July 2020); this dataset has been used to establish the
sub-genotype of our isolate. The second dataset included the HBV S gene sequence from
the CLE patient (named 104) plus 40 genotype/sub-genotype specific reference HBV S
gene sequences downloaded from the National Centre for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/ accessed on 14 July 2020); this dataset has been
used to confirm the sub-genotype of our isolate. The third dataset included the HBV poly-
merase gene sequences from the CLE patient (named 104, accession Number: OP572234)
plus 93 HBV D3 genotype polymerase sequences collected from different countries in
order to evaluate the phylogenetic relationships and intermixing, with respect to foreign
sequences. The fourth dataset was also composed by the HBV S gene sequences from
the CLE patient (named 104, accession Number: OP572234) plus 93 HBV D3 genotype S
sequences collected from different countries, to evaluate the phylogenetic relationships
and intermixing, with respect to foreign sequences. The fifth and sixth dataset contained
a total of 124 sequences: including our isolate sequence, together with 123 D3 genotype
sequences downloaded from the National Centre for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/ accessed on 10 March 2022), and were used respectively
for HBsAg and polymerase alignments, in order to investigate the exclusive presence of
mutations in our isolate, with respect to a high number of other D3 genotype sequences
available from databases. The sequences of all datasets were aligned by using Bioedit
software, followed by manual editing [12]. The maximum likelihood phylogenetic tree
together with the best fitting evolutionary models for the first and second dataset were
estimated through IQTREE [13]. The statistical support for the internal branches of the
ML tree was evaluated by bootstrapping (1000 replicates) and fast likelihood-based sh-like
probability (SH-aLRT). The alignments of the third and fourth dataset were also ana-
lyzed through Mr Bayes [14,15]. A Markov chain Monte Carlo search was conducted for
10× 106 generations using tree sampling every 100th generation, with the GTR + I + G
substitution model and a burn-in fraction of 25%. Statistical support for specific clades and
clusters was obtained by calculating the posterior probability of each monophyletic clade
(posterior probability > 0.90), and a posterior consensus tree was generated after a 25%
burn-in. Mutations predictions were performed in the polymerase and S gene (HBsAg) of
the HBV isolate number 104 through Geno2pheno HBV 2.0 (https://hbv.geno2pheno.org/
accessed on 11 August 2020) together with the prediction of resistance of the virus to five
antiviral drugs (Lamivudine, Adefovir, Entecavir, Tenofovir and Telbivudine). In addition,
the alignments of the fifth (HBsAg) and sixth (polymerase) dataset were subjected to visual
inspection through Bioedit [12], in order to confirm the mutations resulting exclusively in
our isolate.

The maximum likelihood phylogenetic tree built on the first and second dataset
demonstrated that the sequence of the isolate 104 (CLE patient) belonged to sub-genotype
D3 and was located in a statistically supported cluster (Figure 1a and 1b, respectively).

The Bayesian phylogenetic tree performed on the polymerase gene D3 sequences
(Figure 2a) indicated that isolate 104 was related to other Italian D3 isolates. Sequences
from Brazil, Argentina, Martinique and Belgium appeared also proximal to our isolate.
The tree exhibited on panel b indicates that the isolate 104 belonged to a major clade
(without forming statistically supported internal clusters). It appears to be intermixed
mainly with other sequences from Italy, Brazil, Martinique and Canada. Some sequences
from Uzbekistan, Egypt, Argentina and Kyrgyzstan were also identified in this major clade.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://hbv.geno2pheno.org/
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Figure 1. The maximum likelihood phylogenetic tree built on the first (a) and second dataset of
HBV (b). The trees were rooted using the midpoint rooting method. The scale bar at the bottom
of the tree represents 0.03 and 0.02 nucleotide substitutions per site respectively for the first and
second dataset. An asterisk along the branches represents a SH-aLRT ≥ 80% and UFboot ≥ 95%.
Accession numbers of the sequences are indicated in the first part of the tip names followed by HBV
genotype/sub-genotype. The accession number for isolate 104 is: OP572234. The HBV sub-genotype
D3 cluster was highlighted by brackets.

Figure 2. Bayesian phylogenetic analysis on the third (a) and fourth dataset of HBV (b). Branch
lengths were estimated with the best fitting nucleotide substitution model according to a hierarchical
likelihood ratio test and were drawn to scale with the bar at the bottom indicating 0.08 (a,b) nucleotide
substitutions per site. The trees were rooted using the midpoint rooting method. One * along the
branches represent significant statistical support for the clade subtending that branch (posterior
probability > 90%). The accession number for isolate 104 is OP572234. The accession numbers of the
sequences of the third and fourth dataset are reported in Table S1.
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Geno2Pheno confirmed the assignment of our isolate 104 to sub-genotype D3 (simi-
larity to sub-genotype profile = 97.99%). The mutations identified through Geno2Pheno
for the polymerase and HBsAg in isolate 104 reported in Table 1a) and were confirmed
through visual inspection of the alignments. Six AA residues in the polymerase (five of
them belonging to the RT domain) were found mutated in the isolate Id. 104, with respect
to the reference D3 (Acc. Number X65257). In particular, three of the above reported
variations (351G, 526Y, 578C) appeared specific and present only in our isolate if compared
to the 93 HBV D3 reference sequences included in this dataset.

Table 1. (a). Mutations identified through Geno2Pheno for the polymerase and HBsAg. For poly-
merase, the amino acid positions are referred with respect to the complete polymerase (Acc Number
AB778116) starting from the first methionine. For HBsAg, the amino acid positions are referred
with respect to HBsAg complete (Acc Number AY040803) starting from the first methionine. The
symbols (#, ◦, §) indicate changes in RT, resulting also in changes in HBsAg. (b) Mutations identified
exclusively in our isolate, with respect to the 123 D3 genotype sequences of the fifth and sixth dataset.

Isolate 104 Amino Acid in Reference Acc Number: X65257

(a)

polymerase

339 H Y
351G # W
402H Y
468G R

526Y ◦ F
578C § S

HBsAg

168M # I
266 T I
268 S L

344 I ◦ F
381 N S
394 S § F
396 V L

(b)

polymerase

351G W
526Y F
578C S
168M I
268 S L

HBsAg
344 I F
394 S F
396 V L

Seven AA residues in the HBsAg isolate 104 sequence were found mutated with respect
to the reference D3 (Acc. Number X65257), six of them identified through Geno2Pheno and
one confirmed through the alignment. In particular, five of them (168M, 268S, 344I, 394S,
396V) appeared to be specific and present only in our isolate if compared to the 93 HBV
D3 reference sequences included in this dataset. By analyzing a larger number of HBV D3
sequences (n = 123, fifth and sixth dataset for HBsAg and polymerase protein, respectively,
whose accession numbers are indicated in Table S1) we found that, five residues were
confirmed exclusive in our isolate 104 HBsAg protein sequence and reported in Table 1b.
Moreover, three sites (351G, 526Y, 578C) were confirmed in the polymerase protein as
exclusive to the CLE patient. The resistance analysis through Geno2Pheno revealed no
drug resistance; accordingly, the prediction of susceptibility to Lamivudine, Adefovir,
Entecavir, Tenofovir and Telbivudine.
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3. Discussion

Systemic Lupus Erythematosus (SLE), a chronic autoimmune disease, is characterized
by a multifactorial etiology, in which genetic and environmental factors interplay [16,17].
The disease is characterized by chronic inflammation, production of different autoanti-
bodies, complement activation and immune-complex deposition, resulting also in tissue
damage [16]. The viral infections can have a role in disease development and exacerba-
tion [16,18,19]. This study focused on a form that was exclusively cutaneous, and defined
the so-called Cutaneous Lupus Erythematosus (CLE). HBV infections have posed a ma-
jor public-health problem worldwide, representing the major cause leading to chronic
liver disease, but few data are available in literature concerning these infections in Lupus
Erythematosus patients. This study reported for the first time, to the best of our knowl-
edge, the clinical description and phylogenetic characterization of HBV sequences derived
from a patient affected by Cutaneous Lupus Erythematosus in Italy. HBV genotypes and
sub-genotypes have distinct geographical and ethnic distribution [20]. In particular, the
HBV genotype D has a relatively broad geographical distribution, being found in regions
including the Mediterranean, North-eastern Europe, India, Oceania and parts of southern
Africa [21]. It is characterized by a high degree of heterogeneity. Here, we demonstrated the
circulation of genotype D, sub-genotype D3 in our patient, in agreement with the findings
that HBV/D3 is highly prevalent in Italy [22,23]. Using phylogenetic analysis, several
studies conducted in different parts of the world have demonstrated that HBV migrates
with its hosts. Our data demonstrated that the HBV CLE isolate sequences were related
to other Italian D3 genomes, but also with other foreign genomes (i.e., Brazil, Argentina,
Martinique, Canada and Belgium, which are also proximal to our isolate). The relationship
of HBV/D3 isolated in Brazil with sequences from Italy was previously observed by other
authors [24] and explained by an intense European immigration to Brazil, mostly due to
Italian people occurring in the XIX and XX centuries. The reverse transcriptase of HBV
polymerase consists of 344 amino acids, starting with the highly conserved EDWGPCDEHG
motif and partially overlapping with the HBV surface antigens. Mutations within reverse
transcriptase probably affect the replication capacity of HBV, which in turn might alter the
antigenicity, encapsidation and virulence of the virus as well as the generation of drug
resistance [25–27]. In regard to the HBV polymerase mutations identified in this study, no
drug resistant mutations in the reverse transcriptase were identified.

The determination of the resistance profile is crucial in choosing the right antiviral
agent to initiate therapy, to monitor, to optimize the best treatment and, consequently,
reduce the progression of the disease. The prediction of susceptibility to Lamivudine,
Adefovir, Entecavir, Tenofovir and Telbivudine was here identified.

The HBV surface antigen (HBsAg) includes the main epitopes recognized by neu-
tralizing antibodies. The central core of HBsAg, comprising amino acids 99–169, which
is referred to as the major hydrophilic region (MHR), is exposed on the surface and is in-
volved in binding to antibodies directed against HBsAg and comprises the “a determinant”
(aa 124–147). Changes inside the “a determinant” can lead to conformational changes and
can affect the binding of neutralizing antibodies.

The mutations identified in our study in the HBsAg protein did not fall within those
highlighted by Lazarevic I. et al. [28] as clinically relevant with a possible related role in
vaccine escape and OBI; in only one of them the a.a. 168 (mutation 168 M identified in our
isolate) was in any way located in the last part of the MHR. Mutations in certain regions of
the HBV genome could be responsible for an unwanted clinical outcome or the evasion of
detection by diagnostic tools, thus making the monitoring for these mutations a necessity
in the proper evaluation of patients. A possible explanation for the mutations identified
exclusively in the HBsAg protein of our CLE patient could be that they can be selected as a
consequence of the Lupus auto-antibodies, characteristic in Lupus autoimmune disease,
using a possible mechanism of molecular mimicry [29,30]. Patients with SLE demonstrate
enhanced expression of miR-30e, pro-inflammatory cytokines, type-I interferons, or type-I
interferon-inducible genes. Some authors reported that several negative regulators of
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innate immunity play a crucial role in the development of autoimmune diseases. In SLE
pathogenesis, the enhanced expression of miR-30e might play a crucial role by suppressing
the expression of negative regulators of the innate immune signaling pathway, which in
turn enhances innate immune cytokines and contributes to the development or severity
of the disease [30]. Before drawing conclusions, a limit of this study consists certainly in
being a case report, based on only one patient affected by CLE with chronic HBV infection,
available from our cohort. Future multi-center studies should be applied in order to confirm
this assumption.

4. Conclusions

Patients with autoimmune diseases such as Lupus Erythematosus are exposed to a
higher risk of acquiring infections. It is important to monitor by molecular characterization
the HBV mutations potentially selected in these fragile populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12112866/s1, Table S1: The accession numbers of the
HBV sequences used in molecular investigations for the third, fourth, fifth and sixth dataset.

Author Contributions: Conceptualization, A.L.P. and F.C. (Fulvia Ceccarelli); methodology, U.V.,
E.M. (Elida Mataj) and A.L.P.; software, A.L.P.; formal analysis, U.V., M.E., E.M. (Elida Mataj), E.M.
(Elisabetta Madonna), M.D., R.B., G.P., A.M. and M.S.; investigation, A.L.P., F.C. (Fulvia Ceccarelli)
and C.P.; resources, A.L.P.; data curation, F.C. (Fulvia Ceccarelli), C.P., E.M. (Elida Mataj), E.M.
(Elisabetta Madonna), M.D., F.F. and C.V.; writing—original draft preparation, A.L.P. and F.C.
(Fulvia Ceccarelli); project administration, A.L.P.; funding acquisition, A.L.P.; writing—review and
editing, G.I., M.C., A.R.C., F.C. (Fabrizio Conti), F.C. (Fulvia Ceccarelli) and A.L.P. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors received financial support for this research by Gilead Sciences Srl through the
Project “Fellowship Program 2017” entitled “Valutazione epidemiologica e monitoraggio dell’infezione
da HBV e HCV, in pazienti affetti da Lupus Eritematoso Sistemico mediante un nuovo modello di
screening integrato dall’analisi filogenetica” Principal Investigator: Alessandra Lo Presti.

Institutional Review Board Statement: The study was conducted and approved following the local
Ethical Committee (Prot. PRE-16/18, 15 January 2018—Istituto Superiore di Sanità).

Informed Consent Statement: The patient provided written informed consent according to the local
Ethical Committee (Prot. PRE-16/18, 15 January 2018—Istituto Superiore di Sanità).

Data Availability Statement: The sequence has been submitted to GenBank—NCBI and the accession
number is: OP572234.

Acknowledgments: We gratefully acknowledge Gilead Sciences Srl, which granted the Project
entitled “Valutazione epidemiologica e monitoraggio dell’infezione da HBV e HCV, in pazienti affetti
da Lupus Eritematoso Sistemico mediante un nuovo modello di screening integrato dall’analisi
filogenetica” (Gilead Fellowship Program 2017).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 142, 1264–1273.e1. [CrossRef]

[PubMed]
2. Trépo, C.; Chan, H.L.Y.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [CrossRef]
3. Kao, J. Molecular Epidemiology of Hepatitis B Virus. Korean J. Intern. Med. 2011, 26, 255–261. [CrossRef] [PubMed]
4. Tatematsu, K.; Tanaka, Y.; Kurbanov, F.; Sugauchi, F.; Mano, S.; Maeshiro, T.; Nakayoshi, T.; Wakuta, M.; Miyakawa, Y.; Mizokami,

M. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and
provisionally assigned to new genotype J. J. Virol. 2009, 83, 10538–10547. [CrossRef] [PubMed]

5. Schaefer, S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J. Gastroenterol. 2007, 13, 14–21. [CrossRef]
6. Zehender, G.; Ebranati, E.; Gabanelli, E.; Sorrentino, C.; Lo Presti, A.; Tanzi, E.; Ciccozzi, M.; Galli, M. Enigmatic origin of hepatitis

B virus: An ancient travelling companion or a recent encounter? World J. Gastroenterol. 2014, 20, 7622–7634. [CrossRef]
7. Patel, J.; Borucki, R.; Werth, V.P. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical

Practice. Curr. Rheumatol. Rep. 2020, 22, 69. [CrossRef]

https://www.mdpi.com/article/10.3390/diagnostics12112866/s1
https://www.mdpi.com/article/10.3390/diagnostics12112866/s1
http://doi.org/10.1053/j.gastro.2011.12.061
http://www.ncbi.nlm.nih.gov/pubmed/22537432
http://doi.org/10.1016/S0140-6736(14)60220-8
http://doi.org/10.3904/kjim.2011.26.3.255
http://www.ncbi.nlm.nih.gov/pubmed/22016585
http://doi.org/10.1128/JVI.00462-09
http://www.ncbi.nlm.nih.gov/pubmed/19640977
http://doi.org/10.3748/wjg.v13.i1.14
http://doi.org/10.3748/wjg.v20.i24.7622
http://doi.org/10.1007/s11926-020-00946-z


Diagnostics 2022, 12, 2866 8 of 8

8. Garelli, C.J.; Refat, M.A.; Nanaware, P.P.; Ramirez-Ortiz, Z.G.; Rashighi, M.; Richmond, J.M. Current Insights in Cutaneous Lupus
Erythematosus Immunopathogenesis. Front. Immunol. 2020, 11, 1353. [CrossRef]

9. Klein, R.S.; Morganroth, P.A.; Werth, V.P. Cutaneous lupus and the Cutaneous Lupus Erythematous Disease Area and Severity
Index instrument. Rheum. Dis. Clin. N. Am. 2010, 36, 33–51. [CrossRef]

10. Lo Presti, A.; Ceccarelli, F.; Dorrucci, M.; Farchi, F.; Pirone, C.; Garufi, C.; Valdarchi, C.; Spinelli, F.R.; Alessandri, C.; Chionne,
P.; et al. Hepatitis B and C Virus Infection in Patients with Systemic and Cutaneous Lupus Erythematosus. New Microbiol.
2022. accepted. In Press on 1/2023 of New Microbiologica.

11. Nelson, P.; Rylance, P.; Roden, D.; Trela, M.; Tugnet, N. Viruses as potential pathogenic agents in systemic lupus erythematosus.
Lupus 2014, 23, 596–605. [CrossRef]

12. Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic
Acids Symp. Ser. 1999, 41, 95–98.

13. Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models
and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [CrossRef]

14. Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [CrossRef]
15. Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003,

19, 1572–1574. [CrossRef]
16. Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2022, 365, 2110–2121. [CrossRef]
17. Ceccarelli, F.; Perricone, C.; Borgiani, P.; Ciccacci, C.; Rufini, S.; Cipriano, E.; Alessandri, C.; Spinelli, F.R.; Scavalli, A.S.; Novelli,

G.; et al. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype. J. Immunol. Res. 2015,
2015, 745647. [CrossRef]

18. Rigante, D.; Mazzoni, M.B.; Esposito, S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun.
Rev. 2014, 13, 96–102. [CrossRef]

19. Rigante, D.; Esposito, S. Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners? Int. J. Mol. Sci. 2015,
16, 17331–17343. [CrossRef]

20. Rajoriya, N.; Combet, C.; Zoulim, F.; Janssen, H.L.A. How viral genetic variants and genotypes influence disease and treatment
outcome of chronic hepatitis B. Time for an individualised approach? J. Hepatol. 2017, 67, 1281–1297. [CrossRef]

21. Liu, Z.; Zhang, Y.; Xu, M.; Li, X.; Zhang, Z. Distribution of hepatitis B virus genotypes and subgenotypes. Medicine 2021,
100, e27941. [CrossRef] [PubMed]

22. Sagnelli, C.; Ciccozzi, M.; Pisaturo, M.; Zehender, G.; Lo Presti, A.; Alessio, L.; Starace, M.; Lovero, D.; Sagnelli, E.; Coppola, N.
Molecular epidemiology of hepatitis B virus genotypes circulating in acute hepatitis B patients in the Campania region. J. Med.
Virol. 2014, 86, 1683–1693. [CrossRef] [PubMed]

23. De Maddalena, C.; Giambelli, C.; Tanzi, E.; Colzani, D.; Schiavini, M.; Milazzo, L.; Bernini, F.; Ebranati, E.; Cargnel, A.; Bruno,
R.; et al. High level of genetic heterogeneity in S and P genes of genotype D hepatitis B virus. Virology 2007, 365, 113–124.
[CrossRef] [PubMed]

24. Chachá, S.G.F.; Gomes-Gouvêa, M.S.; de Mello Malta, F.; da Costa Ferreira, S.; Villanova, M.G.; Souza, F.F.; Teixeira, A.C.; da Costa
Passos, A.D.; Pinho, J.R.R.; de Lourdes Candolo Martinelli, A. Distribution of HBV subgenotypes in Ribeirão Preto, Southeastern
Brazil: A region with history of intense Italian immigration. Braz. J. Infect. Dis. 2017, 21, 424–432. [CrossRef]

25. Sheldon, J.; Rodès, B.; Zoulim, F.; Bartholomeusz, A.; Soriano, V. Mutations affecting the replication capacity of the hepatitis B
virus. J. Viral Hepat. 2006, 13, 427–434. [CrossRef]

26. Torresi, J. The virological and clinical significance of mutations in the overlapping envelope and polymerase genes of hepatitis B
virus. J. Clin. Virol. 2002, 25, 97–106. [CrossRef]

27. Zhang, M.; Ge, G.; Yang, Y.; Cai, X.; Fu, Q.; Cai, J.; Huang, Z. Decreased antigenicity profiles of immune-escaped and drug-resistant
hepatitis B surface antigen. Virol. J. 2013, 10, 292. [CrossRef]

28. Lazarevic, I.; Banko, A.; Miljanovic, D.; Cupic, M. Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation
upon Immunosuppression. Viruses 2019, 11, 778. [CrossRef]

29. Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari,
A.A.; Gershwin, M.E.; Anaya, J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [CrossRef]

30. Mishra, R.; Bhattacharya, S.; Rawat, B.S.; Kumar, A.; Kumar, A.; Niraj, K.; Chande, A.; Gandhi, P.; Khetan, D.; Aggarwal, A.; et al.
MicroRNA-30e-5p has an Integrated Role in the Regulation of the Innate Immune Response during Virus Infection and Systemic
Lupus Erythematosus. iScience 2020, 23, 101322. [CrossRef]

http://doi.org/10.3389/fimmu.2020.01353
http://doi.org/10.1016/j.rdc.2009.12.001
http://doi.org/10.1177/0961203314531637
http://doi.org/10.1093/molbev/msaa015
http://doi.org/10.1093/bioinformatics/17.8.754
http://doi.org/10.1093/bioinformatics/btg180
http://doi.org/10.1056/NEJMra1100359
http://doi.org/10.1155/2015/745647
http://doi.org/10.1016/j.autrev.2013.09.004
http://doi.org/10.3390/ijms160817331
http://doi.org/10.1016/j.jhep.2017.07.011
http://doi.org/10.1097/MD.0000000000027941
http://www.ncbi.nlm.nih.gov/pubmed/34918643
http://doi.org/10.1002/jmv.24005
http://www.ncbi.nlm.nih.gov/pubmed/24980631
http://doi.org/10.1016/j.virol.2007.03.015
http://www.ncbi.nlm.nih.gov/pubmed/17451771
http://doi.org/10.1016/j.bjid.2017.01.011
http://doi.org/10.1111/j.1365-2893.2005.00713.x
http://doi.org/10.1016/S1386-6532(02)00049-5
http://doi.org/10.1186/1743-422X-10-292
http://doi.org/10.3390/v11090778
http://doi.org/10.1016/j.jaut.2018.10.012
http://doi.org/10.1016/j.isci.2020.101322

	Introduction 
	Case Presentation 
	Discussion 
	Conclusions 
	References

