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Abstract

As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a
greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space
environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings
have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously,
several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further
investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the
understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data
types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources,
we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data
analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.

Keywords: space environment factors, disease, data characteristics, computational models, association prediction

Introduction
Beginning in the early 1970s, a series of Soviet space stations,
US Skylab stations and numerous space shuttles offered a basis
for humans to live and experiment in space. The International
Space Station (ISS), which was established through multinational
cooperation from 1998 to 2011, will continue to serve as the
Space Environment Research Laboratory until at least 2024 [1].
Additionally, China successfully launched a manned spacecraft
in 2003 [2], and the China Space Station project is now pro-
gressing steadily. Furthermore, private companies such as SpaceX
are developing new systems optimized for spacecraft landing

modes and other aspects [3]. These production advances have
dramatically improved the reusability of space vehicles, resulting
in a sharp decrease in launch costs, and will lead to the devel-
opment of a new generation of space launch vehicle systems [4].
Consequently, the commercialization of Low Earth Orbit (LEO)
travels and the acceleration of long-range exploration programs
will be greatly advanced. The majority of early manned flights,
including the ISS, orbited Earth in LEO, which is still shielded
by Earth’s magnetosphere [5]. As the scope of human explo-
ration broadens, forthcoming missions to the Moon, Mars and
beyond will expose the astronauts to more intense space radiation
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and longer mission durations, meaning higher health hazards
for them.

Environment factors affecting living systems in space include
microgravity, radiation, confinement/isolation, distance from
Earth [6], etc. They are inextricably related and often investigated
independently due to research constraints, while multifactorial
research does also exist. By simulating the effects of individual
stressors, it has been found that they can lead to different phys-
iological or psychological problems [7, 8]. Moreover, the effects of
multiple environmental factors co-existing in the actual mission
are not simply superimposed [9]. To protect the astronauts from
these environment factors and complete space missions, there is
a pressing need to understand what and how changes occur in
the living systems, which will contribute to providing appropriate
countermeasures to reduce the adverse effects. Furthermore,
space life science research could provide insights into organismal
health on Earth, such as muscle loss and osteoporosis in the
elderly, as well as the impact of isolation on mental health [10].
The biological adaptation changes caused by the space environ-
ment that have been identified so far are complex and lack sys-
tematic collation, especially in terms of cascading relationships.

Numerous spaceflight biology studies have been dedicated
to finding out organismal health threats in space [11]. They
measured biological adaptation changes in the presence of space
environment factors from multiple perspectives and provided
data with multiple dimensions, including but not limited to
multi-omics data. These data were incorporated into a variety
of associated spaceflight biodata resource platforms [1], such as
NASA’s GeneLab database (https://genelab.nasa.gov/) [12] and the
Life Sciences Data Archive (https://lsda.jsc.nasa.gov/). GeneLab
is a comprehensive space-related omics database that provides
access to data from experiments that explore the molecular
response of terrestrial biology to the spaceflight environment.
The Life Sciences Data Archive is a publicly accessible active
archive of data from spaceflight, flight-analog and ground-
based life sciences research investigations. In addition, Earth-
based human space simulation research [13, 14] will continue
to produce more experimental data, which are more affordable
and accessible than space missions [6]. How leveraging these
accumulated data resources to reveal more comprehensive
patterns of biological adaptations is the challenge of the day,
making it important to manage and integrate data across multiple
platforms, followed by data analysis and interpretation to achieve
biological understanding and provide countermeasures.

In this review, we summarized the multi-level adaptive changes
that occur in the living systems in response to space environ-
ment factors and their intrinsic connections, including molecular,
cellular and systemic changes at the physiological level, as well
as psychological outcomes. We also revealed many unknown
parts that remain to be complemented. Furthermore, we compiled
accessible metrics at each level, including omics and phenotypic
data, and outlined common challenges in data analysis. Accord-
ingly, we proposed some optional bioinformatic strategies and
assessed related models/tools to provide a reference framework
for the analysis of space biological data (Figure 1).

Biological adaptations to space
environment factors
The effects of environmental factors such as radiation, micrograv-
ity, confinement/isolation and distance from Earth on organisms
have now been explored in a number of ways, including single-
factor and multi-factor studies [6, 9, 15]. We summarized the
biological effects of these widely investigated environmental

factors in space. In addition to causing the global environmental
shift, ‘the distance from Earth’ has been singled out for its
significant impact on human psychology. These studies have
shown that these factors may have both psychological effects,
such as increased stress and mood disturbances, as well as phys-
ical health problems, such as altered musculoskeletal structure
and function, sensory-motor impairment and cardiovascular
dysfunction [7, 8]. And these factors’ combined effects differ
from their individual effects and require further investigation.
There are numerous findings related to these effects that need to
be systematically sorted out to reveal their intrinsic connection.
Thus, we summarized the multi-level adaptive changes in the
living systems in response to space environment factors and their
intrinsic connections (Figure 2).

Biological effects of microgravity
All life has evolved to form its present organismal structure under
constant gravity on Earth. In the microgravity environment of
space, the balance between cellular structure and external forces
is disturbed, leading to extensive changes at the cellular and
subcellular levels [16]. Studies on mice after space flight found
significantly altered genes, i.e. Gridley et al. [17] reported that the
expression of apoptosis-related genes, as well as genes involved
in extracellular matrix proteins and stem cell signaling proteins
in mouse lung cells, was significantly altered. In addition, Ham-
mond et al. [15] reported that the expression of genes involved in
apoptosis and cell death were significantly upregulated in mouse
kidneys and liver. It was found that microgravity has different
impacts on apoptosis of different cell types, mediated by different
signal transduction processes [18]. Changes in signal transduction
in microgravity-induced apoptosis have led to new insights into
the underlying regulatory mechanisms of apoptosis. And cancer
researchers have discovered a new direction for cancer therapy.
In most (but not all) tumor cell lines, the ability of micrograv-
ity to trigger cell apoptosis has been proven [19, 20]. However,
under some circumstances, apoptosis of some cancer cells can
be reduced in microgravity environments [21–23]. Overall, the
mechanisms and outcomes of microgravity affecting different
tumor cell types vary and need to be further investigated.

In addition to the increased probability of apoptosis, cellular
changes under microgravity exposure include differentiation,
adhesion, migration and proliferation. By promoting apoptosis
or other changes in various cell types, microgravity may affect
multiple physiological systems in astronauts, including the
musculoskeletal system [24], the cardiovascular system [25], the
immune system [26], the digestive system [27] and the central
nervous system [28, 29]. It has also been linked to eye problems
(e.g. cataracts) after space missions [30, 31]. In conclusion,
microgravity requires more investigation, given the significant
effects on numerous aspects of living systems.

Biological effects of radiation
Radiation exposure in spaceflight poses a major potential risk to
astronauts’ health in the long run. The main effect of radiation
exposure is the damage to DNA, including base damage, single-
strand breaks (SSBs), double-strand breaks (DSBs), chromosomal
aberrations, micronuclei and genomic instability [32]. While SSBs
can be repaired by excision repair [33], DSBs involve a more
complex repair process. The repair process may be subject to
misrepair, further causing cell cycle arrest, cell death, mutations
and chromosomal rearrangements [34, 35]. The cellular responses
to DNA damage differ depending on the cell type, cell cycle
stage and degree of damage [32]. Damage at varying levels in
cell types causes multi-system damage, including the central
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Figure 1. The organizing framework of this review.

nervous system, musculoskeletal system, cardiovascular system
[36, 37] and immune system [38]. The carcinogenic risk of space
radiation is also a major health concern for astronauts because
ionizing radiation-induced genomic instability is a driving factor
for radiogenic carcinogenesis [39, 40]. The degree of carcinogenic
risk varies by tissue type, radiation type and age at exposure. Sin-
gle particle responses have been examined more widely, whereas
the impacts of mixed radiation types are less clear and lack
appropriate study support. Moreover, since outer space radiation
occurs in a microgravity environment, it is unknown if clustered
DNA damage occurs and is repaired under their dual action.

Combined effects of multiple space environment
factors
Biological effects in outer space are responses of organisms when
they are exposed to multiple space environment factors simulta-

neously, while most studies only examine the effects of individual
factors in a static environment. To fully comprehend the biological
effects in space, it is necessary to accurately assess the combined
effects of multiple factors. The performance of cells [41] and
mouse models [9] exposed to radiation and microgravity simulta-
neously revealed that the dual effect posed a greater health risk
than radiation alone. According to Xu et al. [9], heavy ion radiation-
induced human B lymphocyte apoptosis increased in micrograv-
ity. We compiled a list of biological responses resulting from the
combined effects of all environment factors in space, including
the physiological changes and the psychological consequences.

Oxidative stress and redox imbalance are typical molecular
features of spaceflight, induced by radiation and microgravity,
which may also trigger DNA damage. And DNA damage is often
correlated to apoptosis when there are defects in the DNA repair
system [42]. At the physiological level, oxidative stress and redox
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Figure 2. A collection of biological adaptations at various levels, including
molecular features, cellular responses and systemic changes. The white
arrows and lines represent cause–effect relationships or potential associ-
ations between different changes. CNS, central nervous system.

imbalance lead to dysregulation of the cardiovascular, immune,
neurological and metabolic systems. Additionally, oxidative stress
is closely associated with mitochondrial dysfunction. Mitochon-
drial dysfunction is characterized by a reduction in the expression
of the mitochondrial oxidative phosphorylation (OXPHOS) gene
encoded by nuclear DNA. Moreover, oxidative stress can induce
epigenetic changes through chromatin relaxation and thus regu-
late gene expression. Dynamic alterations in telomere length have
also been observed during spaceflight, which has been linked
to age-related disorders including dementia, cardiovascular dis-
ease and cancer, all of which have the potential to influence
astronaut health and performance during and after long-term
missions [6]. The space environment can also cause a shift in
the microbiome [43, 44]. Interactions between the microbiome
and the host affect key human physiological processes, including
inflammatory responses, metabolic functions, hormone levels,
disease susceptibility and pathogenesis [45]. The gut microbiome,
for example, is implicated in the pathogenesis of numerous diges-
tive diseases [46].

Aside from the major molecular features listed above, there
are a number of functional pathways that have been linked to
spaceflight health. The NF-κB pathway, for example, has been
linked to recognized spaceflight-related health hazards such as
immunological dysfunction, bone loss, muscle atrophy, central
nervous system dysfunction and space radiation dangers [47].
Accordingly, we suggest that the space environment induces a
wide range of adaptive changes at the molecular level, and many
are left to be discovered. Also, researches on the combined effects
of multiple spatial environmental factors are still at a preliminary
stage, and more studies for multi-factor situations are needed.

Biological effects of confinement and isolation
In long-term confined/isolated environments, such as the Mars-
500 mission [48] and the 180-day controlled ecological life support
system (CELSS) experiment [14], many aspects of human health
may be affected, including mental–emotional disturbances [49,
50], reduced muscle activity [13], changes in immune responses

[51], gut microbiota [52] and metabolism [44]. In addition, mood
disorders such as anxiety brought on by long-term isolation are
associated with abnormal bone metabolism [53]. Confinemen-
t/isolation also disrupts circadian rhythms [54], the disruption
of which may affect mood, cognition and performance [55] and
further lead to additional health disturbances.

Furthermore, prolonged isolation could trigger psychological
stress, which might result in a shift in biological vulnerability to
radiation danger. According to studies in which mice were sub-
jected to both psychological stress and low linear energy transfer
radiation, stress improved bone marrow radiation susceptibility
in some susceptible animals, but it did not affect hematological
toxicity or genotoxicity in wild-type mice [32]. The mechanisms of
how psychological stress modulates radiation susceptibility have
not yet been elucidated. Hence, more experiments are needed to
produce additional data for further research.

Advances in technology will enable exploration at farther dis-
tances from Earth, where medical and surgical events will be
limited, thus endangering the safety of astronauts. As the explo-
ration mission becomes further away from Earth, the crew may
experience communication delays. A Mars mission could cause
communication delays of up to 20 min with Earth. And there will
be many unknown environmental factors, such as higher doses
of radiation and changes in the light and dark cycles [56]. So,
astronauts will be more stressed as they travel further away from
Earth. The exact impact is to be supported by the conduct of
relevant studies.

Multi-level measurements/data types
Multifaceted experiments were conducted to explore the effect
of spatial environmental factors on organismal health, including
neuroimaging, electrophysiology, biochemistry, systems biology
and clinical questionnaires, thus producing large amounts of
high-dimensional data. These data include but are not limited to
the following: multi-omics measurements at the molecular level
(epigenomics, transcriptomics, proteomics, metabolomics, micro-
biomics, etc.), systems level (biochemical index data, image data,
electrophysiological data) and psychological level (stress surveys,
mood). In this review, we have compiled various measurements
and the biological issues they can reflect (Figure 3), which will
assist in designing experiments to dissect the biological effects
in space.

Multi-omics measurement
Whether in spaceflight simulations or actual spaceflight experi-
ments, space biologists around the world are increasingly reliant
on omics approaches due to their ability to maximize the knowl-
edge gained from rare spaceflight experiments [57]. We reviewed
common omics measurements used in space biology, focusing on
the biological issues they can reflect and the available detection
platforms.

Epigenomics
Epigenomics can be used to detect space environment-induced
reversible modifications at DNA or RNA level, such as DNA methy-
lation, histone acetylation, RNA methylation, etc. Modifications
like these perform critical regulatory roles in gene transcription
and subsequent cellular functions [58]. They can also be used as
biomarkers, for example, one of the earliest events in the DSB
damage response is the phosphorylation of histone H2AX to pro-
duce γ -H2AX, which can be used as a sensitive tool for detecting
DSB [59–61]. Space environment factors can trigger alterations in
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Figure 3. Multi-level measurements/data types that can be used to investigate biological effects. Multi-level measurements include multi-omics
measurements at the molecular level, phenotype (Pheno) measurements at the system level and measurements of psychological (Psycho) impact.
Multi-level measurements will provide a more comprehensive understanding of biological adaptations in the space environment.

cell fate by changing these modifications, which are sometimes
reversible and sometimes permanent [62]. Related techniques
include the next-generation sequencing (NGS) and EPIC array to
quantify epigenetic changes [63].

Transcriptomics
Transcriptomics examines genome-wide changes in RNA levels
caused by the space environment. Up to 80% of the genome
is transcribed to produce RNA, including both coding and non-
coding RNA [64]. RNA-Seq studies enable the discovery of RNA
molecules with critical roles in many physiological adaptations
[65, 66] and their potential use as biomarkers or therapeutic
targets. Related techniques include probe-based arrays [67, 68]
and RNA-Seq [69, 70]. Furthermore, nanopore sequencing tech-
nology is quickly improving in terms of accuracy. It can be used
to sequence single DNA and RNA molecules, with extra-long

read lengths and high throughput [71, 72]. Instrument mass and
volume, crew operating time and instrument functioning are all
restricted in space. Nanopore sequencing techniques are more
portable and have simpler sample preparation processes, suggest-
ing that they might be used to perform DNA sequencing during
space flights to closely monitor crew health in the future [73].

Proteomics
Proteomics allows quantification of peptide abundance, mod-
ifications and interactions. These measurements can be used
to reflect functional changes at the cellular level, thus linking
changes at the systemic level. Mass spectrometry (MS)-based
approaches are commonly used for protein analysis and quantifi-
cation [74]. Protein modifications such as glycosylation, phospho-
rylation and ubiquitination [75–77] can also be measured directly
by MS by comparing the corresponding changes in protein mass
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before and after the modification [78]. Protein interactions can
be discovered utilizing unbiased approaches (e.g. MS, yeast two-
hybrid tests) or affinity purification methods (using antibodies or
genetic tags). Affinity methods can also examine overall interac-
tions between proteins and nucleic acids (e.g. ChIP-Seq).

Metabolomics
Metabolomics simultaneously quantifies multiple small molecule
metabolic function products in cells, including amino acids, fatty
acids, carbohydrates and other small molecules. Metabolite levels
and relative ratios reflect metabolic functions, and deviations
from the normal range are usually associated with diseases. Small
molecule abundance can be quantified using MS-based methods
[79–82].

Microbiome
The space environment, irregular diet and disrupted circadian
rhythms may lead to changes in the ecosystem of the microbiome
[83, 84], including the environmental microbiome [85], the skin
microbiome, the oral microbiome [86] and the gut microbiome.
The microbiome can be analyzed by amplifying and sequencing
certain highly variable regions of bacterial 16S rRNA genes, or
by birdshot metagenomics sequencing that sequences total DNA.
Several analytical tools for NGS data targeting 16S or metage-
nomics analysis have been developed, such as QIIME (Quanti-
tative Insights into Microbial Ecology) [87], which can be used
to identify taxa associated with diseases or other phenotypes of
interest [88].

Phenotype measurements
Phenotypes are the observable characteristics or traits of an
organism and can provide valuable explanations for the con-
sequences of living system responses to space environments.
Phenotypic data can be used to link genetics and phenotype.
Phenomics is a field that deals with high-dimensional phenotypic
data at the organismal scale and is an important complement
to genomics. The current phenotypic number throughput is low,
and technological advancements can reduce costs to enhance
phenotype throughput [89]. For space response assessments, we
compiled commonly used multi-system phenotypic metrics.

Skeletal muscular system measurements
This includes both bone and skeletal muscle. Bone strength is
reflected by measuring bone mineral density or bone mineral con-
tent [90], and changes in bone mass are interpreted using markers
of bone status assessment (such as osteocalcin, OC; procollagen
type I N-terminal propeptide, P1NP; procollagen type I C-terminal
propeptide, P1CP; bone alkaline phosphatase, BAP; calcitonin, CT;
osteoprotegerin, OPG; tartrate resistant acid phosphatase, TRAP).
Skeletal muscle mass, function and muscle fiber changes are
measured to assess maximum voluntary isometric contraction of
the calf (mainly type I fibers) and maximum voluntary isometric
force of the quadriceps/hamstrings (mainly type II fibers) [13].
Reliable non-invasive measurements of muscle function, such as
muscle fiber type composition, muscle fiber size, cross-sectional
area, etc., can be performed using surface electromyography [91].

Cardiovascular system measurements
Cardiovascular function is reflected by measuring heart rate
variability (HRV), cardiac and macrovascular morphology and
function, and endothelial status [92]. HRV is recorded using a 24-h

EKG and autonomic activity is assessed by time- and frequency-
domain indices of HRV analysis [93]. Left ventricular diastolic vol-
ume, output per beat, cardiac output, aortic velocity and myocar-
dial thickness are estimated to characterize cardiac morphol-
ogy and function. Carotid intima-media thickness, carotid artery
dilatability and portal diameter are estimated to characterize the
morphology and function of the great vessels.

Immune system measurements
Immune cells, cytokines, chemokines, proinflammatory and reg-
ulatory proteins are all involved in immune regulation and induc-
tion of inflammation in the body. Absolute leukocyte counts and
percentages of each type of leukocyte are measured in whole
blood samples by a hematology analyzer, and peripheral blood
immunophenotyping is performed by flow cytometry [51].

Measurement of brain change
Numerous studies have revealed that spaceflight influences the
brain’s macrostructure as well as the microstructure and con-
nectivity of brain tissue. Of these, the integrity of the central
nervous system and the brain is the primary concern [94]. Cor-
tical activity before and after exercise is recorded using elec-
troencephalography (EEG) [95]. Neuronal and especially axonal
integrity is assessed using diffusion tensor imaging [96]. Non-
invasive ultrasound and lumbar puncture are used to assess
intracranial pressure [29]. The cognitive abilities (Wechsler Mem-
ory Scale), visuospatial working memory (Corsi Cubes test) and
spatial reasoning (Kohs Cubes test) of subjects are also measured
[97].

Sleep–wake cycle measurements
The duration of active arousal, sleep or wakeful rest is recorded
using a wrist activity recorder [54]. Drowsiness and alertness are
assessed using the Karolinska Sleepiness Scale and the Brief Psy-
chomotor Vigilance Test.

Investigation of psychological impact
Stress levels
A study examining the relationship between stress and simu-
lated flight performance assessed changes in stress awareness
using the Stress Rating Questionnaire and evaluated crews’ acute
psychological stress state using heart rate and HRV [98]. In a
Mars 105-day isolation experiment, stress levels were evaluated
by tonic cortisol levels, which were measured using urinary free
cortisol test-kit DKO018 Lot 1730 from DIAMETRA, Milan, Italy and
the Perceived Stress Scale questionnaire. These researchers also
recorded sleep EEG to investigate the relationships between stress
and sleep during isolation [97].

Emotional state
Subjects’ emotional state is usually measured in the form of
questionnaires and can be reflected by some hormone levels
[50]. During the Mars 520-day mission, crewmembers completed
a series of psychological measures including the Social Desir-
ability Scale 17, Visual Analog Scales, Profile of Mood States—
Short Form, Beck Depression Inventory and Conflict Question-
naire, which described the crews’ subjective ratings of mood,
psychological distress, health, stress, fatigue, sleep quality and
workload [99]. In addition, levels of four plasma hormones, cor-
tisol, 5-hydroxytryptamine, dopamine and norepinephrine were
also collected and analyzed [49]. A test run with 105 days of
isolation was performed prior to 520 days of isolation, and mood
assessments were made using MoodMeter®, which included three
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dimensions: perceived physical state (PEPS), psychological state
(PSYCHO) and motivational state (MOT). Meanwhile, EEG data
were recorded and correlation analysis revealed a significant
relationship between mood data and electrocortical activity [50].

Challenges in space biological effect data
analysis
We highlighted the common characteristics of data generated
from longitudinal experiments, which are also the major chal-
lenges faced in data analysis. For individual variables (e.g. the
expression values of a gene at different time points), we consid-
ered the time-series properties of the environmental adaptation
experimental design, as well as the range and trend of fluctua-
tions. We believe that the fluctuation pattern of time series can
reflect the process of biological adaptation to the environment. In
addition, there also exist several obstacles to overcome in space
life science data analysis, including but not limited to complex
influencing factors, small sample size, high dimensionality as
well as the heterogeneity of data and asynchronously changed
features.

Limited experimental subjects
Owing to the extraordinary expense of space launch payload
delivery systems and the limitations of orbital platform capacity,
the number of experimental replicates and variables in space
flight is very limited. Despite the relatively inexpensive Earth-
based experiments in support, scientific evidence is still restricted
by the limited number of experimental subjects. Small replicate
numbers constrain statistical power, in which case the impact of
interindividual variability on statistical outcomes must be care-
fully evaluated. And it is necessary to carry out more experiments
in space or on Earth for the advancement of the field of knowl-
edge. Notably, each individual is usually sampled at multiple time
points for various measurements in environmental adaptation
experiments.

Characteristics of individual variables produced
by longitudinal studies
Time-series experiments
To detect adaptive changes in the living systems due to the space
environment, the multi-level performance is usually tracked and
measured before, midway and after the space flight, such as
the Mars-500 mission [48], the 180-day CELSS experiment [14]
and the NASA twin study [11]. The resulting measured data are
time-sequenced, rather than the common case/control experi-
mental design. Time-series experiments sample the same indi-
vidual at different times and obtain multiple samples with strong
autocorrelation between the measured values, more specifically
the measured values at a certain time are correlated with the
measured values over the previous period. In contrast, static
experiments assume multiple samples are measured simulta-
neously and the resulting values are independent. As a result,
conventional statistical analysis tools established for static data
are inapplicable to time-series data analysis in operations like
difference analysis, clustering analysis, missing value filling, etc.
It is required to build or introduce more specialized analysis
procedures.

Changing trends within the normal range
The majority of biological adaptations induced by the space envi-
ronment do not necessarily progress to a pathological state in a

short period, but rather show a pattern of progressive changes
within the normal range [11]. However, these changes are still
notable, given that these changes may break the threshold of the
normal level in longer stays of future space travel missions [100].
On the other hand, effects within the normal range, although not
pathological, can still cause stress in the body and thus increase
the risk of pathogenesis [101].

Overall characteristics of the datasets derived
from multiple measurements
Comprehensive and multidimensional data types
Because biological function requires synergistic control at mul-
tiple levels, measurements of different systems at multiple levels
yield multidimensional data, ranging from molecular to systemic.
The Mars-500 [48], for example, measured not only multiple omics
data (e.g. epigenomics, transcriptomics) but also various biochem-
ical indexes (e.g. cortisol levels), as well as psychological assess-
ments (e.g. mood), with a variety of data types (discrete, con-
tinuous). Organizing the multi-level datasets and extracting the
information interactions between them is one of the challenges
of such large studies.

Asynchronous changes in different features
Changes in organismal systems do not always happen simulta-
neously, and even alterations of two genes with regulatory links
are not completely synchronized. Analyzing cascading changes
at different levels might provide more information on causal
associations. As a result, while evaluating the connection between
distinct characteristics, the issue of time delay should be consid-
ered.

Proposed research directions and methods
To provide solutions to the main challenges faced in longitudi-
nal space experiment data analysis, we have compiled relevant
bioinformatic strategies as well as available models/tools for data
analysis. In cases where sample sizes are limited, it may be
considered in determining whether individual differences mask
environmental effects and should be pre-treated (Figure 4). Anal-
yses can then be conducted including forecasting and difference
analysis methods for univariate time series, the integration and
classification of multiple variables and the identification of their
regulating relationships. All of the above analysis methods have
considered temporal attributes of variables from longitudinal
space experiments.

Mining both general pattern and individual
characteristics
Mining the general adaptation pattern of experimental
subjects
It is generally accepted that a larger sample size is more beneficial
for mining commonalities between samples. However, due to the
specificity of the spaceflight environment, the number of sub-
jects that can participate in the experiment is limited, and each
individual could be sampled several times during the process. In
this case, the presence of individual differences must be carefully
evaluated. We offer a perspective here by treating samples from
various individuals as separate batches. The degree of interindi-
vidual differences could be assessed like batch effects, and if
significant individual differences do exist, batch effect removal
methods can be used to eliminate the effect of individual differ-
ences (Figure 4). We have compiled a list of common approaches
for the evaluating and correcting batch effects (Figure 5).
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Figure 4. A suggested process for mining both general pattern and
individual characteristics.

Principal Variance Component Analysis (PVCA) [102] and
Manifold Approximation and Projection (UMAP) [103] can
be used for evaluation and visualization of batch effects. A
commonly used algorithm to remove gene expression batch
effects is the empirical Bayesian approach, based on which
the ComBat method is more effective for small sample data
[104, 105]. It can be implemented using the combat function of
the sva package [106] in R. The Removing Unwanted Variation
approach, which relies on negative control genes and duplicate
samples to remove unwanted variance from microarray gene
expression data, is more suitable for large-scale datasets [107].
BatchServer is a web server that includes autoComBat, a
modified version of ComBat, as well as PVCA and UMAP, which
can be used to evaluate, visualize and correct batch effects
[108].

The presence of batch-correlated variation may skew analysis
in two ways without batch-effect correction: false positives and
false negatives. With batch-effect corrections, the results may
skew according to the way how the batch effects are removed,
e.g. the batch-group design, the completeness of the batch-effect

removal and appropriateness of the batch-effect removal. In a
multi-category sample analysis, variations across samples can
come from a variety of causes, but we are only interested in
differences are the result of experimental factors. If additional
non-experimental factors are causing significant batch effects,
we may be unable to isolate the differences of interest. In these
situations, it will be helpful to remove batch effects properly,
while excessive batch effect correction may make slight differ-
ences significant, leading to false positive results. Therefore, it
is necessary to conduct repeated tests to determine whether or
not it is appropriate to remove the batch effect. And the degree
of correction of batch effects by different methods should be
compared to choose the most suitable treatment method.

Explore individual adaptation patterns for each subject
It is of great importance to gain insights into general pattern;
moreover, depicting individual characteristics matters, as health
assessment and early warning will be highly personalized during
spaceflight. To address this issue, both data accumulation and
methods development would be crucial.

On the one hand, with the accumulation of spaceflight data,
there will be a sufficient amount of cohort data as reference, it will
be more easily and more directly to exact individual characteris-
tics from general pattern of spaceflight cohort; thus, the limits of
small sample size will be overcome eventually. However, it puts
forward higher demands for the experiment design and data type
consistency throughout sequential spaceflight missions. On the
other hand, analysis methods aiming to model with insufficient
data would help. In each specific analysis step, we mentioned
some of the analysis methods applicable to small sample size data
(Figure 5).

Univariate analysis method
Forecasting methods on time-series biological data
Although many tools for analyzing biological datasets with time-
series properties are available, irregular input data from space
experiments often lead to inaccurate clustering results, such as
missing values [109], unequal time intervals and an unequal
number of time points in various features [110]. Time-series fore-
casting methods may be the solution to the above problems.
Forecasting can estimate the values for missing data points and
predict the performance of specific genes at future time points
where experimental values are not available.

There are few studies dedicated to the prediction of time-series
gene expression data, but many statistical and machine learning-
based methods have been developed for time series forecasting
in other fields. ARIMA (autoregressive integrated moving aver-
age) [111] and Holt-Winters (tri-exponential smoothing) [112] are
two of the most popular and widely used statistical forecasting
methods in various fields. ARIMA combines autoregressive model,
moving average model and different methods to describe the
autocorrelation between historical data to predict the future. It
assumes that the future will repeat the historical trend, which
requires the time series to be stationary [111]. The Holt–Winters
model is suitable for non-stationary time series containing linear
trends and periodic fluctuations, using the Exponential Smoothed
Moving Average calculation method to allow the model param-
eters to gradually adapt to changes in the non-stationary series
[112].
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Figure 5. Challenges in biological effect measurement data analysis and proposed solutions, including forecasting and difference analysis methods for
univariate time series, the integration and classification for multiple variables, and the evaluation of whether individual differences mask environmental
effects and should be preprocessed.

In addition, there are time-series forecasting models based on
deep learning, for example, Gluon Time Series (GluonTS) devel-
oped by Alexandrov et al. [113], a toolkit for probabilistic time-
series modeling, focusing on deep learning-based models includ-
ing different generative, discriminative and autoregressive mod-
els. And Long Short-Term Memory (LSTM) is an artificial recurrent
neural network architecture model with the advantage of being
relatively insensitive to gap length. Tripto et al. [114] evaluated
Holt–Winters, ARIMA, LSTM, Artificial Neural Network (ANN) and
GluonTS feedforward neural networks for forecasting time series
in five sets of temporal gene expression profile data of different
sizes, and found that ARIMA and ANN worked better.

Differential expression analysis of time-series data
Since the values of time-series data from longitudinal space
experiments are probably not independent of each other, com-
monly used differential expression analysis methods such as t-
tests are no longer applicable, and therefore tools for differential
expression analysis dedicated to time-series data have arisen.

maSigPro (significant gene expression profile differences in
time course microarray data) [115] is an R package for analyzing
time-series data, supporting experiments with only time series
as well as complex designs with both time series and grouping.

This R package fits the relationship between factors such as time,
experimental conditions and gene expression based on a mul-
tiple linear regression model and then uses stepwise regression
to find the best combination of independent variables. It can
identify genes with significant expression changes by statistical
procedures and cluster genes with significant expression changes
over time. ImpulseDE2 [116] is another differential expression
algorithm for time-course sequencing experiments that simulates
temporal changes with a simple continuous function single pulse
(impulse) model. ImpulseDE2 employs a noise model specific
to count data from multiple batches and combines it with a
likelihood ratio test, leading to a much faster and more accurate
inference. It performs best when looking for differential genes in
time-course data in some review articles [117]. In addition, R pack-
age limma [118] is widely used in differential expression analysis,
which uses linear models to determine the size and direction of
the changes in gene expression. Through borrowing information
across genes, it has features that make the analyses stable even
for experiments with a small number of samples. Additionally, it
could handle time-series data with group information.

In summary, maSigPro is suitable for the case where samples
are grouped (e.g. from male and female astronauts). The per-
formance of ImpulseDE2 may be better when grouping is not
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considered, while limma provides one more possible choice. In
practice, given the poor robustness caused by small sample size,
a validation among different kinds of methods could help.

Multivariate integration analysis method
Organization of multidimensional data types
Available sequencing technologies and computational methods
allow people to obtain measurements of a wide range of analytes
from the molecular to the macroscopic level. For example, at
the cellular level, lymphocytes not only can be directly counted
by cell sorting, but also the proportion of various lymphocytes
can be estimated by computational methods based on tissue
transcriptome sequencing data. A commonly used tool is the
CIBERSORT method [119] which estimates the relative content
of multiple immune cells by an inverse convolution algorithm.
Ultimately, direct measurements or estimates of multi-level mea-
surements can be obtained, including at molecular level, cellular
level, tissue-organ level, system level, etc. The challenge is to
figure out how to organize these datasets so that complex changes
at various levels can be resolved.

Data combination and scaling
One of the important reasons why different analyte measure-
ments cannot be analyzed simultaneously is that they have differ-
ent magnitudes. In the NASA twin study [11], to identify complex
changes over time that occur across different analyte classes,
different data types were combined and scaled for the subse-
quent analysis. In fact, the main focus of time-series analysis is
usually on trends of change rather than specific measurements,
so combining and analyzing the features at different levels by
removing the magnitudes can make it easier to observe them
at the same time. A simple operation is to normalize the data,
which only changes the range of values without influencing their
distribution.

Clustering time-series biological data
While static experiments typically focus on common patterns
among samples, and the most common analysis method is to
cluster samples based on profiles, time-series experiments focus
on patterns that change over time, necessitating the clustering
of numerous time-series features. In the NASA twin study [11],
the c-mean clustering analysis was performed to observe features
with the same pattern of change. And several tools designed for
clustering multiple time series according to patterns of variation
are already available, which can be used in the analysis of multi-
omics data or other biological datasets with time-series proper-
ties. A few commonly used tools are listed as follows:

R package Mfuzz (http://mfuzz.sysbiolab.eu) [120] is a cluster-
ing tool based on Fuzzy C-Means Clustering, which is a soft clus-
tering algorithm with better noise-tolerance compared to hard
clustering algorithm. It can be used to analyze transcriptomic
and proteomic data with time-series properties to obtain temporal
trends of gene or protein expression, and to cluster genes or
proteins with similar expression patterns. TCseq package has
similar functions to Mfuzz. It has more options for time-series
clustering methods, including fuzzy c-mean clustering, hierarchi-
cal clustering, k-mean clustering, etc. Short Time-series Expres-
sion Miner (STEM) [121], a commonly used tool for clustering
temporal expression patterns, is a Java program that can be used
to cluster, compare and visualize gene expression data from short
time series (typically within eight time points). STEM is based on a
novel clustering algorithm. First, a unique and representative set
of temporal expression sequences (pattern sequences) is selected,

and then other genes are individually assigned to the pattern
group closest to that gene expression profile [122]. Also, STEM
can perform functional enrichment analysis on gene sets with the
same temporal expression pattern.

In addition to the above tools, machine learning algorithms
can also be considered. Few-shot learning uses limited numbers
of samples to build a model, the key step of which is to reduce
parameter dimension and combine regularization with loss func-
tions to resolve the overfitting problem. It can be performed
through various tools like Torchmeta [123], Meta-Transfer Learn-
ing for Few-Shot Learning [124], LibFewShot [125], etc. Transfer
learning reuses a pre-trained model on a different but related
task. It develops rapidly in deep learning for the advantage of
training with much less data, which quite fits the scenario of
spaceflight. And transfer learning methods can be used for time-
series classification [126]. It has been applied to solve a variety of
biological problems, including but not limited to medical image
analysis [127], drug discovery [128], cancer morbidity prediction
[129], cancer classification [130], etc.

The above tool visualizes the multidimensional features after
clustering, helping understand the dynamic patterns of these bio-
logical molecules over time. Based on the resulting clusters, some
interesting sets of genes or other features from the graph can be
identified, such as certain clustered groups of genes showing the
expected trend of increasing or decreasing over time, or observing
a clear inflection point at a certain time point, etc.

Gene set scoring
In differential expression analyses, a high level of significance is
usually selected and some subtle gene expression changes are
ignored. Such subtle changes are generally considered insignif-
icant, but assuming that a set of genes that perform similar
functions are all slightly altered, it may result in significant
changes in that function. Therefore, detecting overall differences
in the activity of a functionally important gene set can com-
pensate for subtle changes missed by single-gene differential
analysis. Four unsupervised, single sample enrichment methods
have been developed, Gene Set Variation Analysis [131], Pathway
Level Analysis of Gene Expression [132], single sample GSEA [133]
and the combined z-score [134]. For small datasets (the number
of samples < 25), the singscore method may help. All genes are
first sorted by expression level and then an enrichment score is
calculated based on the position of the gene set in the overall
sort, which can be used to assess the activity of each gene set
in each sample. Once the activity of the gene sets is obtained,
how they change over time can be analyzed. In addition, the idea
of integrating features with similar meanings can be extended to
analyze other types of high-dimensional biological data.

Association prediction between different features
In addition to tracking trends in features over time, it is valuable
to broadly predict associations between different analytes, such
as transcriptional regulatory networks. In biology, constructing
regulatory networks is a typical approach to addressing causes
and correlation issues. Predicting regulatory relationships based
on time-series expression data has unique advantages and
challenges. Compared with static expression data, time-series
expression data of the same size contain additional information
due to temporal order, which can be utilized to develop regulatory
networks. However, there are also some challenges. First, time-
series expression data usually detect a few time points, which
have a great impact on the estimation of model parameters.
Another issue is the time difference between changes in multiple

http://mfuzz.sysbiolab.eu
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Table 1. Available methods/tools for regulatory network prediction

Method Type Open source
availa-bility

Short summary Link

LEAP Correlation Yes LEAP infers gene regulatory networks based on gene
co-expression relationships and considers possible lags
in time.

https://cran.r-project.org/
web/packages/LEAP/index.
html

dynGENIE3 Regression Yes dynGENIE3 extends GENIE3 by considering changes in
expression over time and building dynamic models based
on ordinary differential equations.

https://github.com/
vahuynh/dynGENIE3

Inferelator Regression Yes Inferelator infers gene regulatory networks by selecting
the regulators whose levels are most predictive of gene
expression based on a LASSO regression model.

https://github.com/
baliga-lab/cMonkeyNwInf

SWING Granger
causality

Yes SWING is a gene regulatory network inference
framework based on multivariate Granger causality and
sliding window regression.

https://github.com/
bagherilab/SWING

DREM Probabilistic
graph model

Yes DREM integrates time-series gene expression data and
static or dynamic transcription factor–gene interaction
data (e.g. ChIP-seq data) and produces as output a
dynamic regulatory map.

http://sb.cs.cmu.edu/
drem/

LEAP, lag-based expression association for pseudotime-series; dynGENIE3, dynamical GENIE3; SWING, sliding window inference for network generation;
DREM, Dynamic Regulatory Events Miner.

dimensions, and even transcriptional regulation between genes
has a delay problem. Many tools for gene regulatory network
prediction based on time-series gene expression data are
now available, and we exemplify some representative ones
(Table 1).

One class of regulatory network prediction methods is based on
correlation, for example, LEAP (lag-based expression association
for pseudotime series) [135], which considers the time-lagged
correlation of one gene before another and therefore predicts
the directed regulatory relationship. The positive/negative coef-
ficients represent the activation/repression regulation between
genes. LEAP considers all possible time spans of lags to search
for the maximum correlation for each gene pair to construct the
regulatory network. There are also several regression-based meth-
ods available for determining dynamic interactions in time-series
expression data. These include dynGENIE3 (dynamical GENIE3)
[136], a modified method based on GENIE3 (gene network infer-
ence with ensemble of trees), which is a model-free method for
inferring networks based on static expression data [137]. GENIE3
combines regression and random forest (RF) to determine the
regulator for each target gene, providing excellent scalability and
ease of use due to its non-parametric nature. The improved
dynGENIE3 models changes in expression over time with ordi-
nary differential equations (ODEs) and then learns the putative
gene interactions using an RF regression framework. Another
similar tool is Inferelator [138], which combines regression and
ODE to reveal gene regulatory relationships. In addition, Granger
causality test is also a time-series regulatory prediction method.
Granger causality test is a statistical method for hypothesis test-
ing, which is based on the autoregressive model in regression
analysis and can be used to test whether there is a causal rela-
tionship between time series. SWING (sliding window inference
for network generation) is a tool based on this statistical method
[139]. Probabilistic graphical model is another widely used method
for inferring interaction networks from time-series data. Based
on this method, Dynamic Regulatory Events Miner (DREM) [140]
integrates time-series gene expression data and static protein
DNA interaction data (e.g. ChIP-Seq data) using input–output
hidden Markov models to produce dynamic regulatory maps as
output. Dynamic regulatory maps highlight the major divergence

events in the time-series expression data and the transcription
factors that may be responsible for them.

All of these methods can predict gene regulatory networks
based on temporal data, and fully consider the time delay.
Correlation-based methods (e.g. LEAP) are the fastest and
more suitable for large datasets, while regression-based (e.g.
dynGENIE3, Inferelator, SWING) or probabilistic graphical models
(e.g. DREM) are more computationally intensive but are expected
to be more accurate. DREM method combines data on protein–
DNA interactions and the predicted regulatory relationships are
more reliable. The other methods that only consider expression
value associations may be extended to predict associations
between different measures (e.g. between gene expression and
phenotype).

As health disorders in spaceflight are complex, it is crucial
to uncover the underlying biological mechanism of each individ-
ual. Liu et al. [141] developed a sample-specific network analysis
method to meet this demand, which implements personalized
characterization of disorders.

Future directions in spaceflight biology
research
In the future, the costs and hazards of manned space flight may
become more affordable to support burgeoning space tourism.
The larger sample sizes and more diverse study populations
will provide unprecedented opportunities for spaceflight biology
research. Some humans may leave Earth and establish permanent
bases and larger settlements on the Moon, Mars or elsewhere.
Under longer exposure, slight changes in short-term space mis-
sions may develop health hazards [100]. When space migration
programs become a reality, human populations in the new envi-
ronment may have evolved to distinct genotypes, at which point
an immigration genome project may even be conducted. For these
ambitious frontiers, developments in the fields of space biology
and aerospace medicine are crucial enablers. Furthermore, multi-
omics, longitudinal profiling can capture the combined effects
of multiple space environment factors as well as interactions
between multiple levels, paving the way for a thorough exami-
nation of space biological adaptations.

https://cran.r-project.org/web/packages/LEAP/index.html
https://cran.r-project.org/web/packages/LEAP/index.html
https://cran.r-project.org/web/packages/LEAP/index.html
https://github.com/vahuynh/dynGENIE3
https://github.com/vahuynh/dynGENIE3
https://github.com/baliga-lab/cMonkeyNwInf
https://github.com/baliga-lab/cMonkeyNwInf
https://github.com/bagherilab/SWING
https://github.com/bagherilab/SWING
http://sb.cs.cmu.edu/drem/
http://sb.cs.cmu.edu/drem/
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There are still many mechanisms of space biological adap-
tations unknown, such as the mechanisms of telomere length
dynamics and their long-term consequences. Moreover, some
trends within the normal range that have been overlooked in
previous studies may also be of interest. Additional studies and
systematic research protocols will provide more comprehensive
insights. And it still takes a lot of effort to transform detected
data into interpretable results, and a systematic analysis process
will speed up the process. This review clarifies each method
has a specific range of applicability when compiling the known
available data analysis methods. Appropriate methods must be
chosen based on the data characteristics in a given study. Espe-
cially, determining whether interindividual differences should be
removed requires careful assessment of the data distribution and
considerations of whether this action would disrupt time trends
from a single individual.

In bioinformatics, machine learning has become a popular and
successful method for extracting knowledge from big data. While
traditional machine learning relies on feature selection, deep
learning overcomes these limitations to demonstrate advanced
performance in bioinformatics problems [142], such as splice site
discovery from DNA sequences [143], finger joint identification
from X-ray images [144], error detection from EEG signals, etc.
However, because most deep learning approaches require appro-
priate and balanced data to optimize numerous weight param-
eters in a neural network, they are usually not applicable to
restricted and unbalanced data in bioinformatics [120]. This is due
to the need to optimize a large number of weight parameters in
neural networks. Biological studies usually contain small sample
sizes that limit statistical power, in which case simple models with
fewer parameters may be more suitable while more parameters
may introduce additional errors and overfit. Deep learning is still
making efforts to improve interpretability. Both the assessment
of applicability of existing methods and the proposal of new
improved methods are necessary processes to perform human
spatial-omics analysis.

The study of biological adaptations has led to a deeper under-
standing of the needs of astronauts. In response to these needs,
researchers have made many attempts to improve the quality of
life of astronauts, which is the ultimate goal of future biological
research in space. For example, space synthetic biology aims to
leverage local resources to manufacture critical products for the
crew. The Space Synthetic Biology (SynBio) project conducted at
NASA’s Ames Research Center in California’s Silicon Valley is
concentrating on developing in-space nutrient production meth-
ods and microbial biomanufacturing technologies that chemically
convert carbon dioxide (CO2) and water into organic compounds
for ‘feeding’ microbes to produce food, pharmaceuticals, plas-
tics, etc.

Currently, most of the researches on space response studies are
scattered across tissues or systems and lack consideration of tem-
porality. The emergence of spatiotemporal molecular medicine
promises to provide more comprehensive insights by integrating
clinical spatialization, temporalization, phenomics and molecu-
lar multi-omics to present a four-dimensional dynamic picture
of disease [125]. The perspective of spatialization encompasses
genetics, population distribution and intra-individual location.
The temporal perspective considers the disease’s initiation and
progression, clinical phenotype changes over time and patient
response to treatment. When depicting overall body changes in
space, it is essential to note that they were multisystemic related
and duration time-dependent. Application of perspectives from
spatio-temporal molecular medicine in space physiopathology

studies may provide a holistic and dynamic picture. Some aging
system research programs that combine temporal, spatial (struc-
tural organization) and molecular processes [145] may also serve
as references for studying temporal changes.

Key Points

• The compilation of previous biological response investi-
gation results not only contributes to refining the pro-
cess of biological adaptation to the spaceflight environ-
ment but also reveals many parts to be complemented.

• The collation of multi-level measurements, data types
and the biological functions they reflect can be ref-
erenced by researchers in designing biological experi-
ments.

• A summary of common features of data generated from
longitudinal biological experiments related to space
environment factors suggests challenges or caveats in
data analysis.

• This review provides strategies and models/tools to
address the challenges in data analysis from a bioinfor-
matics perspective for different analytical goals.
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