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Abstract

The potential of genomic selection (GS) is currently being evaluated for fruit breeding. GS

models are usually constructed based on information from both the genotype and pheno-

type of population. However, information from phenotyped but non-genotyped relatives can

also be used to construct GS models, and this additional information can improve their accu-

racy. In the present study, we evaluated the utility of single-step genomic best linear unbi-

ased prediction (ssGBLUP) in citrus breeding, which is a genomic prediction method that

combines the kinship information from genotyped and non-genotyped relatives into a single

relationship matrix for a mixed model to apply GS. Fruit weight, sugar content, and acid con-

tent of 1,935 citrus individuals, of which 483 had genotype data of 2,354 genome-wide single

nucleotide polymorphisms, were evaluated from 2009–2012. The prediction accuracy of

ssGBLUP for genotyped individuals was similar to or higher than that of usual genomic best

linear unbiased prediction method using only genotyped individuals, especially for sugar

content. Therefore, ssGBLUP could yield higher accuracy in genotyped individuals by add-

ing information from non-genotyped relatives. The prediction accuracy of ssGBLUP for non-

genotyped individuals was also slightly higher than that of conventional best linear unbiased

prediction method using pedigree information. This indicates that ssGBLUP can enhance

prediction accuracy of breeding values for non-genotyped individuals using genomic infor-

mation of genotyped relatives. These results demonstrate the potential of ssGBLUP for fruit

breeding, including citrus.
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Introduction

Genomic selection (GS) is considered to be a practical tool for accelerating genetic improve-

ment in plant breeding [1,2], and the potential of GS is now being evaluated for use in fruit

breeding [3]. Conventional phenotypic selection in fruit breeding has difficulties owing to

long juvenile periods and complex inheritance of quantitative traits [4], and GS is expected to

be an alternative method to phenotypic selection and work toward solving these problems.

In plant breeding, statistical GS models are generally constructed based on information

from both the genotypes and phenotypes of a population [5]. However, phenotypic data from

non-genotyped relatives can also be used to construct GS models when full pedigree records

are available [6]. This situation is common in fruit breeding because an organized fruit breed-

ing program has a well-defined recording system and continuously accumulates phenotypic

records along with pedigree information, such as in [7,8]. Therefore, phenotypic and pedigree

information from non-genotyped relatives could be used to improve the accuracy of GS

modeling in fruit breeding.

For GS in animal breeding, phenotypic data from non-genotyped relatives are often incor-

porated to obtain regular breeding values for genotyped individuals using pedigree informa-

tion and, subsequently, genomic prediction model is constructed by combining the estimated

breeding values and genotypes via multiple steps [9,10]. This procedure is called multiple-step

GS, which can be complicated to perform, and can result in lower accuracy, biased outputs, or

loss of information [11]. In contrast to multiple-step GS, single-step genomic best linear unbi-

ased prediction (ssGBLUP) has been proposed [11,12], where phenotypic data from both gen-

otyped and non-genotyped individuals are jointly analyzed to predict breeding values of all

individuals using a mixed linear model with a relationship matrix obtained by combining

genomic relationship information among genotyped individuals and pedigree information

between genotyped and non-genotyped individuals and within non-genotyped individuals

[13]. Thus, ssGBLUP can predict the breeding values of both genotyped and non-genotyped

individuals simultaneously, with lower bias and increased accuracy compared to multiple-step

methods [14,15]. Therefore, ssGBLUP could be a promise tool in fruit breeding.

In the procedure of ssGBLUP, a combined relationship matrix, denoted as H matrix, is

computed from a genome relationship matrix and a pedigree-based relationship matrix,

referred to as G matrix and A matrix, respectively, to fit the best linear unbiased prediction

(BLUP) model [13]. Through the H matrix, A is augmented by G and vice versa, enabling

ssGBLUP to improve accuracy in the evaluation of breeding values for both genotyped and

non-genotyped relatives. However, although ssGBLUP has several advantages to the multiple-

step method as described above, the application of this method for plant breeding has been

limited to several species, including rice (Oryza sativa L.) [16,17], wheat (Triticum aestivum L.)

[18,19], maize (Zea mays L.) [20], and those of forest trees [21–24], and to the best of our

knowledge, no previous studies of ssGBLUP have reported for fruit breeding. Accordingly, we

applied ssGBLUP to a real dataset of fruit-quality traits obtained from an ongoing citrus breed-

ing program. We compared the prediction accuracy of ssGBLUP with that of conventional

methods in both genotyped and non-genotyped individuals.

Materials and methods

Plant materials and phenotypic records

An outline of the plant materials tested is shown in Fig 1. A total of 1935 individuals were

obtained from the Kuchinotsu Citrus Research Station, National Agriculture and Food

Research Organization (NARO, Nagasaki, Japan). We used 106 parental cultivars and 1829 F1
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individuals derived from 122 pair-cross families (hereafter, referred to as families). Both the

parental cultivars and the F1 individuals were maintained as previously described [25]: briefly,

the F1 individuals were each grafted onto one tree of trifoliate orange (Poncirus trifoliata L.)

from 2006–2008, which were planted in the breeding fields at a spacing of 0.3 m within and 5

m between rows. Parental cultivars were grafted onto trifoliate orange or satsuma mandarin

(Citrus unshiuMarcow.) interstocks in adjacent fields. Crosses were performed solely for pro-

ducing commercial cultivars, and therefore, no specific mating design was adopted. All trees

were maintained in accordance with the standard management protocol in Japan, namely,

four applications of fertilizer and 10–20 applications of agrichemicals per year.

Three fruit-quality traits including fruit weight (FW), sugar content (SC), and acid content

(AC) were evaluated in each tree of the genotypes used in this study (Table 1). Five colored

fruits were sampled for immediate evaluations in December, and FW, SC, and AC were deter-

mined annually from 2009–2012. Thus, all 1935 individuals were evaluated one–four times for

each trait. These phenotypic records were collected through the selection process of our citrus

breeding program, NARO, and are summarized in Table 2.

Marker genotypes

All 106 parental cultivars and 377 F1 individuals derived from nine families were genotyped

using the genotyping-by-sequencing (GBS) method [26] to obtain genome-wide single

Fig 1. Outline of plant materials used in this study (parental cultivars, 106; F1 individuals, 1829; total, 1935). F1

individuals were derived from crosses between two parental cultivars. Numbers in the boxes indicate number of individuals in

each category described below. Gray and white boxes represent with or without single nucleotide polymorphism (SNP) data,

respectively; 483 individuals (106 parental cultivars and 377 F1 individuals) have SNP data. Numbers in parentheses represent

the number of pair-cross families; thus, e.g., 377 F1 individuals with SNP data were derived from nine pair-cross families. F1

individuals without SNP data were divided into two categories: those derived from pair-cross families that had less than 10 F1

individuals (upper) or more than 10 F1 individuals (lower). Family means of the phenotypic records of the latter category

were targeted for cross-validation of non-genotyped individuals.

https://doi.org/10.1371/journal.pone.0221880.g001

Table 1. Phenotypic traits evaluated in this study.

Trait Abbreviations Data type Measurement unit

Fruit weight FW Continuous mean weight of mature fruits (g)

Sugar content SC Continuous mean Brix of juice (Brix%)

Acid content AC Continuous mean citric acid concentration of juice (%)

https://doi.org/10.1371/journal.pone.0221880.t001
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nucleotide polymorphism (SNP) data. Accordingly, 483 of 1935 individuals have SNP data

(outlined in Fig 1). The obtained SNP data were subsequently subjected to quality control

(QC) procedures: briefly, the SNP loci were removed with a call rate<0.80 and a minor allele

frequency<0.01. The remaining SNPs were further filtered based on the consistency of Men-

delian inheritance, and missing SNP genotypes were imputed by Fimpute v. 2.2 [27]. Follow-

ing the imputation process, highly correlated SNP loci were eliminated according to Wiggans

et al. [28]. The detailed GBS conditions and QC procedure, including the extent of linkage dis-

equilibrium (LD) were described previously by Imai et al. [29].

Prediction models

The following linear mixed model was applied to compare the prediction performance of

ssGBLUP with that of genomic best linear unbiased prediction (GBLUP) in genotyped individ-

uals and that of conventional BLUP (ABLUP) in non-genotyped individuals:

y ¼ Xbþ Zuþ e; ð1Þ

where y is a vector of phenotypic records of the 1935 individuals observed from 2009–2012, b

is a vector of fixed effects including an intercept and year effect, X is a design matrix relating b

to y, and Z is an incidence matrix relating u to y. The vector u represents breeding values as

described below, and e is a vector of residuals assuming e � Nð0; Is2
eÞ, where I is an identity

matrix and s2
e represents residual variance.

In Eq (1), u are assumed to follow a normal distribution with a mean vector of 0 and a

covariance matrix As2
u in the ABLUP model and Gs2

u in the GBLUP model, where s2
u is the

Table 2. Summary statistics of the phenotypic records evaluated in this study.

Year Descriptive

statistics

Traits

FW (g) SC (Brix%) AC (%)

2009 Mean 141.5 11.8 1.18

S.D. 62.2 1.5 0.53

Min 29.7 8.4 0.46

Max 626.0 16.6 3.37

Records 390 389 389

2010 Mean 154.7 12.0 1.28

S.D. 65.5 1.5 0.54

Min 30.6 8.2 0.54

Max 621.5 18.3 3.93

Records 567 565 562

2011 Mean 192.4 10.9 1.20

S.D. 82.4 1.4 0.52

Min 38.2 7.4 0.41

Max 949.5 16.2 3.54

Records 592 592 592

2012 Mean 155.2 11.6 1.45

S.D. 60.2 1.3 0.64

Min 32.8 7.7 0.58

Max 541.0 16.2 4.48

Records 1641 1636 1637

FW fruit weight, SC sugar content, AC acid content

https://doi.org/10.1371/journal.pone.0221880.t002
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additive genetic variance, and A and G represent a pedigree-based additive relationship matrix

and a realized genomic matrix, respectively. We calculated G from SNP data according to Van-

Raden’s first method [6]. Using the A and G matrices, the best linear unbiased predictor of u,

denoted by û, was calculated for ABLUP as follows:

û ¼ ðZ0MZþ lA� 1Þ
� 1Z0My; ð2Þ

and for GBLUP as follows:

û ¼ ðZ0MZþ lG� 1Þ
� 1Z0My; ð3Þ

where λ is given as l ¼ s2
e=s

2
u, and M is a projection matrix defined as M = I−X(X’X)−1X’. The

A and G matrices were computed using airemlf90 [30] and preGSf90 software [12,31], respec-

tively, and û was calculated using airemlf90 software [30].

In the ssGBLUP model, it was assumed that u � Nð0;Hs2
uÞ in Eq (1). This H matrix com-

bines pedigree and genomic relationships, and was defined previously [11] as follows:

H ¼
A11 þ A12A

� 1

22
ðG � A22ÞA

� 1

22
A21 A12A

� 1

22
G

GA� 1

22
A21 G

" #

; ð4Þ

where A11, A12, A21, and A22 are submatrices of A, and the subscripted 1 and 2 represent non-

genotyped and genotyped individuals, respectively. Through the H matrix, the prediction

accuracy of genotyped individuals can be improved with data from non-genotyped relatives,

and the prediction accuracy of non-genotyped individuals can also be improved by G, which

accounts for the Mendelian sampling effect of genotyped relatives and can provide more accu-

rate relationships than A. For the H matrix calculation, we scaled G based on A22 so that the

mean diagonal and off-diagonal of G equals those of A22; appropriate scaling avoids the biases

of breeding values in genotyped individuals [14]. The inverse of H has a simple form [12,32],

and can be written with tuning-parameters α, β, τ, and ω as follows:

H� 1 ¼ A� 1 þ
0 0

0 tðaGþ bA22Þ
� 1
� oA� 1

22

" #

: ð5Þ

Fine tuning of α, β, τ, and ω can increase the accuracy and reduce biases of genomic prediction

of breeding values [33]. We used fixed values of α = 0.95 and β = 0.05 to enable inversion of

the matrix. We assigned the same value to τ and ω (τ = ω); in this context, τ defines a mixing

proportion of genomic and pedigree information [12]. If τ> 0, and τ = ω, then the portion of

genomic and pedigree information becomes τ:(1−τ). Adding pedigree information could be

beneficial for capturing the polygenic effects that could not to be accounted for by genomic

information. We tested three values of τ (1.00, 0.75, and 0.50) for evaluation of prediction

accuracy. Using the H matrix, the best linear unbiased predictor û was calculated as follows:

û ¼ ðZ0MZþ lH� 1Þ
� 1Z0My; ð6Þ

where λ and M are defined the same as the ABLUP and GBLUP models. The H matrices were

computed using the preGSf90 software [12,31], and û was calculated using airemlf90 software

[30].

Heritability estimation

Additive genetic variance (s2
u), residual variance (s2

e ), and heritability ðh2 ¼ s2
u=ðs

2
u þ s

2
eÞÞ in

each trait were estimated based on the linear mixed model described above. We estimated the
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heritability by ABLUP and ssGBLUP with different τ values (1.00, 0.75, and 0.50). We did not

calculate the heritability by the GBLUP method, because GBLUP only applied to the dataset

with both phenotyped and genotyped individuals.

Evaluation of prediction accuracy

The prediction accuracy of ssGBLUP was compared with that of GBLUP in genotyped individ-

uals. Cross-validation (CV) was performed to evaluate these methods, assuming early selection

at the juvenile stage. CV was also performed to compare the prediction accuracy of ssGBLUP

with that of ABLUP in non-genotyped individuals.

To compare the prediction accuracy in genotyped individuals, genotypic values (i.e., sum of

the intercept and breeding values) of individuals from nine genotyped families were calculated

based on all phenotypic records of the 1935 individuals by the ABLUP method, and these val-

ues were predicted by the ssGBLUP and GBLUP methods. In each CV cycle, each of the nine

genotyped families was omitted and the remaining individuals, including the parental cultivars

and non-genotyped families (only in ssGBLUP), were used to construct the prediction model

to predict the genotypic values of the omitted family. Thus, CV consisted of nine cycles and

evaluated the accuracy of seedling selection based on SNP genotypes at the juvenile stage dur-

ing cross-breeding. The prediction accuracy was evaluated as a correlation coefficient (r)
between the targeted genotypic values and the predicted ones.

To compare the prediction accuracy in non-genotyped individuals, phenotypic mean values

in each of the 50 non-genotyped families with more than 10 F1 individuals (hereafter, referred

to as observed family mean) were calculated as the target values of the CV procedures. These

values were predicted by ssGBLUP and ABLUP methods, which calculated the predicted geno-

typic values in each target family for validation. The phenotypic records for calculation of the

family mean were adjusted for year effect that was estimated from all observations of the 1935

individuals by the ABLUP method. In the ssGBLUP analysis, we adopted the fixed values of τ
(ω) with the highest prediction accuracy in genotyped individuals. In each CV cycle, each of

the 50 non-genotyped families were omitted and the remaining individuals, including the

parental cultivars, genotyped families, and non-genotyped families with less than 10 F1 indi-

viduals, were used to construct the prediction model to predict the observed means of the

omitted family. In this case, the predicted genotypic values became identical within a family,

because their phenotypic records were omitted. The prediction accuracy was evaluated as

weighted correlation coefficient (r) between the target and predicted values. The weights of the

correlation coefficient were determined from the numbers of F1 individuals in each family.

Results

Heritability estimation

We estimated heritability using ABLUP and ssGBLUP with three τ values (Table 3). Heritabil-

ity ranged from 0.57 to 0.82 in three fruit-quality traits, and AC showed the highest estimates

of heritability. These estimates were somewhat lower than those from our previous report [25],

which reflects the differences in population to be analyzed. In all traits, ABLUP and ssGBLUP

offered almost the same heritability estimates. The mixing proportion τ of ssGBLUP also had

little effect on heritability estimation, thus we considered GBLUP provided similar estimates

of heritability in our case.
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Comparison of prediction accuracy in genotyped individuals

The GBS approach and successive QC procedures provided 2353 SNPs from 483 individuals.

Using the SNP data and pedigree information of all individuals, we constructed H matrices

and applied them to the ssGBLUP to evaluate the prediction accuracy in genotyped individuals

and to compare with those of GBLUP. For H matrix construction, we used the three values of

τ (1.00, 0.75, and 0.50), which define the mixing proportion of genomic and pedigree informa-

tion. Thus, we compared three ssGBLUP models with different τ values and one GBLUP

model for three fruit-quality traits.

The CV for each genotyped family showed a similar or higher accuracy in ssGBLUP com-

pared with GBLUP (Table 4; S1–S3 Figs). While our result showed rather lower prediction

accuracy for GBLUP than that of previous study that evaluated the same traits [34], the

reduced accuracy may be caused by the differences in SNPs, plant materials, and the proce-

dures of CV. A considerable improvement in accuracy was attained in SC, and similar accu-

racy was obtained in FW and AC. The comparisons between the ssGBLUP models with

different τ values showed that the highest accuracy was obtained when τ = 1.00 for FW, 0.50

for SC, and 0.75 for AC (Table 4). However, the differences in accuracy were small and showed

little effect on the accuracy of ssGBLUP.

Comparison of prediction accuracy in non-genotyped individuals

The H matrix in ssGBLUP combined pedigree and genomic relationships. Consequently, this

method could provide more accurate genetic evaluation even for non-genotyped relatives than

ABLUP method only using a pedigree-based additive relationship matrix. We validated the

Table 4. Comparison of prediction accuracy between ssGBLUP and GBLUP methods in genotyped individuals.

Method τ (ω)a FW SC AC

GBLUP – 0.642 (0.040)b 0.432 (0.047) 0.655 (0.039)

ssGBLUP 1.00 0.650 (0.039) 0.512 (0.044) 0.661 (0.039)

0.75 0.648 (0.039) 0.516 (0.044) 0.666 (0.039)

0.50 0.642 (0.040) 0.519 (0.044) 0.654 (0.039)

FW fruit weight, SC sugar content, AC acid content
a mixing proportion of genomic information with pedigree information
b Pearson’s correlation coefficients measured as the prediction accuracy in genotyped individuals. Highest

coefficients are shown in bold. Numbers in parentheses are standard errors.

https://doi.org/10.1371/journal.pone.0221880.t004

Table 3. Heritability estimated by ABLUP and ssGBLUP methods.

Method τ (ω)a Heritability

FW SC AC

ABLUP – 0.61 0.57 0.81

ssGBLUP 1.00 0.63 0.58 0.82

0.75 0.63 0.58 0.82

0.50 0.62 0.58 0.81

FW fruit weight, SC sugar content, AC acid content

ABLUP best linear unbiased prediction with pedigree-based additive relationships, ssGBLUP single-step genomic

BLUP
a mixing proportion of genomic information with pedigree information

https://doi.org/10.1371/journal.pone.0221880.t003
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prediction accuracy of the ssGBLUP and ABLUP methods. The observed family means in each

of the 50 non-genotyped families were predicted using CV procedures for each trait. Slightly

higher correlation coefficients resulted from the ssGBLUP method compared to those of the

ABLUP method (Table 5; S4–S6 Figs). The improvement in prediction accuracy achieved by

ssGBLUP was higher for SC than it was for FW and AC. Although the prediction accuracy was

considerably different for each trait, large discrepancies between the observed and predicted

values were commonly detected in several families.

Discussion

Recently, GS has attracted the attention of those involved in fruit breeding, because it has the

potential to capture minor gene effects, and thus provide more accurate selection of complex

quantitative traits of economic importance [34–37]. However, to construct reliable models for

GS, a sufficiently large training population with both genotyped and phenotyped individuals is

required [38,39]. This is one of the main obstacles for the introduction of GS for fruit breeding,

because a long juvenile period and large plant size hinders the rapid accumulation of pheno-

typic data such as fruit-quality traits. In addition, the genotypic data necessary for GS can only

be obtained from living individuals, although most individuals evaluated in breeding programs

are culled after selection. Thus, obtaining both genotype and phenotype records for GS model

construction is more difficult for fruit breeding than it is for animal breeding or other crop

breeding.

One possible solution for constructing reliable GS models in fruit breeding would be to use

previously accumulated phenotype records, e.g., from the breeding procedure, which can be

achieved using the ssGBLUP methodology. Generally, an organized fruit breeding program

includes well-defined maintenance protocols for the breeding materials [40], and phenotyping

protocols [41–43]. These practices enable the continuous accumulation of phenotypes and

other records that are useful for breeding such as those containing pedigree information

[7,8,25]. Therefore, ssGBLUP can be introduced into fruit breeding programs with few

changes to the existing system for maintenance of breeding materials and phenotypic

evaluations.

In the present study, we compared the prediction performance of ssGBLUP with that of

GBLUP, assuming selection at the juvenile stage in the genotyped individuals. We also com-

pared the prediction performance of ssGBLUP with that of conventional ABLUP in the non-

genotyped individuals. Our results showed that ssGBLUP equaled or outperformed GBLUP

and ABLUP in terms of prediction accuracy in all cases, especially for SC. These gains in pre-

diction accuracy were consistent with those from previous reports on different plants, such as

Table 5. Comparison of prediction accuracy between ABLUP and ssGBLUP method in non-genotyped

individuals.

Method FW SC AC

ABLUP 0.294 (0.134)b 0.498 (0.125) 0.771 (0.091)

ssGBLUPa 0.295 (0.138) 0.538 (0.121) 0.783 (0.090)

FW fruit weight, SC sugar content, AC acid content
a The mixing proportion (τ) that showed the highest prediction accuracy in comparison with GBLUP method were

used (1.00 for FW, 0.50 for SC, and 0.75 for AC, respectively. See Table 4).
b Weighted Pearson’s correlation coefficients measured as the prediction accuracy in non-genotyped individuals.

Weights are determined by number of progeny in each combination.

Highest coefficients are shown in bold. Numbers in parentheses are standard errors.

https://doi.org/10.1371/journal.pone.0221880.t005
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rice [16,17] and wheat [18,19], and on domesticated animals including dairy cattle [44,45],

beef cattle [46,47], pigs [15], and chickens [48]. With the H matrix, genomic information that

can account for Mendelian sampling is incorporated into standard BLUP models. Further-

more, much larger datasets of phenotypic information can be used with the ssGBLUP method

than with the GBLUP method. These advantages of using the ssGBLUP method are herein

confirmed for citrus.

Although we have demonstrated the potential of ssGBLUP for use in citrus breeding, there

remains several problems. For CV of non-genotyped individuals, large discrepancies between

observed and predicted family means were detected (S4–S6 Figs). These large discrepancies

indicate that predictions from the ssGBLUP method could be inaccurate in some cases, at least

for fruit-quality traits in citrus. One possible cause of these large discrepancies may be the

influence of non-additive effects, such as dominance or epistasis effects. Under the assumption

of an infinitesimal model [49], ssGBLUP assumes additive polygenic effects as the mode of

inheritance for target traits. Although the assumption of additive effect captures a large part of

dominant and epistasis effects [50,51], the predictions from ssGBLUP may, in some cases,

have some outliers that are affected by large non-additive effects, despite moderate to high nar-

row-sense heritability traits as analyzed in our study.

In addition to the problems from non-additive effects, several previous studies have

reported factors that influence the accuracy of genomic predictions, including training popula-

tion size, heritability, genetic architecture of target traits, extent of LD, and marker density

[39,52–54]. For these factors, the extent of LD determines the marker density necessary for

genomic predictions, and an insufficient number of SNP markers against LD decreases the

model’s prediction accuracy due to imperfect associations between quantitative trait loci

(QTL) and SNP markers. Our previous study and others have reported relatively high LD in

fruit breeding populations [29,34,37]. Thus, a smaller number of SNPs may be sufficient for

GS in an advanced fruit breeding population. In addition, for the GBLUP method (and also

for ssGBLUP), the effect of increasing the number of SNPs on prediction accuracy can appear

to reduce the sampling error of G, and a larger number of SNPs would provide only small

improvements in accuracy if the effects of QTLs are well captured by a small number of SNPs

[33]. However, if it is not the case, it may be desirable to capture polygenic effects using an A

matrix and tuning the mixing proportion of the A and G matrices [33]. Nevertheless, our

study demonstrated that the τ parameters had little effect on prediction accuracy for the three

fruit-quality traits tested. This is in contrast to the results of the first report on ssGBLUP in

plants [18], which stated the importance of trait-specific weighting parameters (τ parameters

in the present study). Owing to the inconsistent results for τ parameters observed in the previ-

ous report and the present study, the effect of τ parameters on prediction accuracy should be

carefully considered when they are applied to other traits or other species of fruit.

The accuracy of genomic predictions is also affected by the heritability of the target traits

[39]; the higher prediction accuracy is obtained for a trait with higher heritability. For three

fruit-quality traits evaluated in this study, AC showed the highest heritability, and showed

slightly or considerably higher prediction accuracy compared with the other two traits in both

genotyped and non-genotyped individuals (Tables 4 and 5). These results suggested that heri-

tability can be a measure for evaluating prediction accuracy in genomic predictions with

ssGBLUP for fruit breeding, although an inconsistent result was observed between FW and SC

in non-genotyped individuals. Furthermore, the heritability of target traits is used to estimate

the training population size necessary to achieve predetermined accuracy of genomic predic-

tions [55], and a larger population size is necessary if heritability is low. Although ssGBLUP

could achieve larger sample sizes compared with those of GBLUP, the greater number of indi-

viduals is more desirable for the construction and validation of GS models, especially for low
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heritability traits. Our study included only moderate to high heritability traits (0.57 to 0.82);

therefore, the prediction accuracy of ssGBLUP for lower-heritability traits should be further

evaluated with larger datasets in future studies.

As for the genetic architecture of target traits, ssGBLUP assumes additive polygenic inheri-

tance of target traits which are contributed by a large number of QTLs each with small effect.

However, several studies have reported the QTLs with large effects in three fruit-quality traits

evaluated in our study [29,34,56–58]. Therefore, these genetic architectures may decrease the

prediction accuracy of ssGBLUP. As a modified ssGBLUP method, a single-step methodology

using Bayesian regression, which can assume different marker variances, was recently pro-

posed by Fernando et al. [59]. Their method can treat large QTL effects which are estimated as

marker effects in the prediction model, and thus has the potential to further improve genomic

prediction accuracy. Although the studies of Hayes et al. [9] and VanRaden et al. [10] indicated

that a suitable number of markers with equal variance is appropriate for most traits, the appli-

cation of Fernando et al.’s single-step methodology using Bayesian regression may be an alter-

native choice for GS in fruit breeding.

Although there are still problems to overcome, we have demonstrated the potential of

ssGBLUP for fruit breeding using actual data of citrus. We consider that the several features of

ssGBLUP methodology, which uses information from both genotyped and non-genotyped rel-

atives with simple manners, makes it suitable for ongoing fruit breeding programs. The advan-

tages of ssGBLUP and other single-step GS approaches can increase in the future with the

accumulation of larger phenotypic and genotypic datasets
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S4 Fig. Plots of the observed family means vs. predicted family means via cross-validation

in fruit weight. Observed family means refer to mean values of phenotypic records, and pre-

dicted family means refer to predicted genotypic values in each pair-cross family. Phenotypic

records for calculation of observed family means were adjusted for year effects. Predicted val-

ues via cross-validation were calculated using a pedigree-based BLUP model (ABLUP) or sin-

gle-step GBLUP model (ssGBLUP) excluding the phenotypic records of each target family;

thus, they offered the same values within a family. Mixing proportion τ showing the highest

accuracy in prediction of genotypic values was used for ssGBLUP model. (a) ABLUP model

(b) ssGBLUP model with τ = 1.00.

(PDF)
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in fruit weight. Observed family means refer to mean values of phenotypic records, and pre-

dicted family means refer to predicted genotypic values in each pair-cross family. Phenotypic

records for calculation of observed family means were adjusted for year effects. Predicted val-

ues via cross-validation were calculated using a pedigree-based BLUP model (ABLUP) or sin-

gle-step GBLUP model (ssGBLUP) excluding the phenotypic records of each target family;

thus, they offered the same values within a family. Mixing proportion τ showing the highest

accuracy in prediction of genotypic values was used for ssGBLUP model. (a) ABLUP model

(b) ssGBLUP model with τ = 0.50.

(PDF)

S6 Fig. Plots of the observed family means vs. predicted family means via cross-validation

in fruit weight. Observed family means refer to mean values of phenotypic records, and pre-

dicted family means refer to predicted genotypic values in each pair-cross family. Phenotypic

records for calculation of observed family means were adjusted for year effects. Predicted val-

ues via cross-validation were calculated using a pedigree-based BLUP model (ABLUP) or sin-

gle-step GBLUP model (ssGBLUP) excluding the phenotypic records of each target family;

thus, they offered the same values within a family. Mixing proportion τ showing the highest

accuracy in prediction of genotypic values was used for ssGBLUP model. (a) ABLUP model

(b) ssGBLUP model with τ = 0.75.

(PDF)
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