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SUMMIT: An integrative approach for better
transcriptomic data imputation improves
causal gene identification

Zichen Zhang 1, Ye Eun Bae 1, Jonathan R. Bradley1, Lang Wu 2 &
Chong Wu 3

Genes with moderate to low expression heritability may explain a large pro-
portion of complex trait etiology, but such genes cannot be sufficiently cap-
tured in conventional transcriptome-wide association studies (TWASs), partly
due to the relatively small available reference datasets for developing
expression genetic prediction models to capture the moderate to low
genetically regulated components of gene expression. Here, we introduce a
method, the Summary-level Unified Method for Modeling Integrated Tran-
scriptome (SUMMIT), to improve the expression prediction model accuracy
and the power of TWAS by using a large expression quantitative trait loci
(eQTL) summary-level dataset. We apply SUMMIT to the eQTL summary-level
data provided by the eQTLGen consortium. Through simulation studies and
analyses of genome-wide association study summary statistics for 24 complex
traits, we show that SUMMIT improves the accuracy of expression prediction
in blood, successfully builds expression prediction models for genes with low
expression heritability, and achieves higher statistical power than several
benchmark methods. Finally, we conduct a case study of COVID-19
severity with SUMMIT and identify 11 likely causal genes associated with
COVID-19 severity.

Genome-wide association studies (GWASs) have shown that most
disease-associated variants reside in noncoding regions1–3, raising
challenges in biological interpretation and target gene identification4.
These findings also lead to the hypothesis that many genetic variants
can affect complex traits by regulating gene expression levels, which
has motivated large-scale expression quantitative trait loci (eQTL)
analyses5–7 and transcriptome-wide association studies (TWASs)8–13.
TWASs integrate expression reference panels (eQTL studies with
matched individual-level expressions and genetic data) with complex
trait GWAS results to discover gene-trait associations. First, an
expression reference panel is used to learn a per-gene expression
prediction model by regressing assayed gene expression levels on cis-
eQTL genotypes (i.e., single nucleotide polymorphisms (SNPs) within 1

megabase of the gene transcription start site and transcription end
site). Second, statistical associations are estimated between predicted
gene expression levels for GWAS samples and the trait of interest.
TWASs have garnered interest within the human genetics community
and have deepened our understanding of the genetic basis of many
complex traits14,15.

Despite these encouraging findings, the size of the expression
reference panels primarily determines the number of analyzable
genes, and hence the power of TWASs. Analyzable genes are defined as
genes with satisfactory gene expression prediction models (i.e., pre-
diction accuracy R2 ≥0.01). For example, building expression predic-
tion models with Genotype-Tissue Expression (GTEx) project v7p data
yielded more than twice as many prediction models (i.e., analyzable
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genes) than were developed using GTEx v6p data16. For whole blood
tissue, the number of analyzable genes increased from 2057 to
6006 solely owing to the increase in the size of the expression refer-
ence panel (from 338 samples17 to 369 samples16). Others have also
observed that the number of analyzable genes can be significantly
increased when using a slightly larger expression reference panel. For
example, Zhou et al.13 show that among the 44 overlapping tissues in
GTEx, the average number of analyzable genes increased from 4,570
(v6p) to 7,213 (v8) for one popular TWASmethod PrediXcan8 when the
average sample size increased from 160 (v6p) to 332 (v8). More
importantly, perhaps due to the small sample sizes of available
expression referencepanels, the current standardpractice of TWASs is
to only analyze genes with model performance R2 ≥0.018,9,11. This
practice may fail to capture genes with low expression heritability but
large causal effect sizes on the trait of interest, as suggested in pre-
vious literature1. It is of great interest to constructmore powerful gene
expression prediction models, especially for genes with low expres-
sion heritability.

One potential approach to improving the power of TWASs is to
combine individual-level expression reference panel data from several
consortia or studies, thereby increasing the sample size of the
expression reference panel. While this is straightforward, privacy
concerns and subject consent can preclude access to individual-level
expression reference panel data, making this approach challenging or
practically infeasible. On the other hand, one may use summary-level
expression panels (often publicly available) with much larger sample
sizes to build expression predictionmodels. However, to date, there is
limited exploration of how one can build expression prediction mod-
els using a summary-level expression panel.

In this work, we introduce the Summary-level Unified Method for
Modeling Integrated Transcriptome (SUMMIT), a method that inte-
grates summary-level expression reference panel data, derived from
much larger sample sizes, with trait GWAS results to identify asso-
ciated genes for the trait of interest. Specifically, we build gene
expression prediction models for blood based on the eQTL summary-
level data generated by the eQTLGen consortium6. To date, the
eQTLGen consortium has conducted the largest meta-analysis invol-
ving 31,684 blood samples from 37 cohorts6, and the corresponding
eQTL summary-level data have beenmade publicly available. Through
simulation studies and analyses of GWAS summary statistics from 24
complex traits, we show that SUMMIT improves the accuracy of
expression prediction in blood, successfully builds expression

prediction models for genes with low expression heritability, and
outperforms benchmark methods for identifying risk genes. Addi-
tionally, we conduct a case study on COVID-19 severity and identify 11
putatively causal genes.

Results
SUMMIT overview
We develop SUMMIT, which extends the conventional TWAS
methods8–12, by leveraging eQTL summary-level data to predict
expression levels. SUMMIT consists of three main steps. First, for each
gene, we train expression prediction models using a penalized
regression framework with eQTL summary-level data (e.g., eQTLGen6

with sample size of 31,684). Next, we test associations between the
predicted gene expression levels and the trait of interest for eachfitted
expression prediction model with satisfactory performance (e.g., with
R2 ≥0.005). Finally, as p-values from different gene expression pre-
diction models can be correlated, we apply the Cauchy combination
test18,19 to aggregate p-values from the fitted predictionmodels and the
combined p-value from the Cauchy combination test effectively
quantifies the overall gene-trait associations. The Cauchy combination
test is a computationally efficient p-value combination method that
provides an accurate p-value approximation for highly significant
results (which are of interest) and does not require the correlation
structure among the combined p-values to be estimated.

Simulation results
In the simulation studies, we first evaluated the accuracy of the
expression imputation models generated by SUMMIT and bench-
mark methods and the corresponding statistical power. Next, we
studied the impact of sample size on expression prediction accuracy
and TWAS power. We verified that SUMMIT recovered the informa-
tion of the individual-level expression reference panel from
summary-level data, and the improvement in expression prediction
accuracy was adequately translated into a higher power of sequential
TWASs Fig. 1.

First, we observed that SUMMIT performed better than two
widely used competing methods, TWAS-fusion and PrediXcan, yield-
ing a higher average imputation R2 with respect to different gene
expression heritability values (h2

e) and proportions of causal SNPs
(pcausal) (Fig. 2a). When h2

e =0:01 and pcausal = 0.2, the average impu-
tation R2 of 1000 replications was estimated to be 0.693% by SUMMIT,
showing 1735% improvement compared with PrediXcan and 305%
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Fig. 1 | SUMMIT workflow. SUMMIT consists of three main steps: (1) building prediction models to impute gene expression levels; (2) testing associations between the
predicted gene expression levels and the trait of interest; and (3) aggregating results from all fitted prediction models.
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Fig. 2 | Comparisonofperformance in simulations using theCHURC1gene as an
example. Plots of imputation R2 (a) and subsequent power (b) in test samples by
SUMMIT, Lassosum, TWAS-fusion, and PrediXcan, with varying expression herit-
ability h2

e and proportion of true causal SNPs pcausal. The results were based on
1000 simulation replicates. In subfigure (a), the box limits represent the lower and
upper quartiles, the central line represents themedian, and the whiskers represent
all samples lying within 1.5 times the interquartile range (IQR). Subfigure (c) shows

the relationship between the expression panel sample size and TWAS power or
expression prediction accuracy using SUMMIT. For subfigures (b) and (c), we set
h2
p =0:2; for subfigure (c), we set pcausal=0.05. p-values were calculated by the two-

sided tests; empirical power was estimated by the proportions of p-values less than
the significance threshold 2.5 × 10−6. The empirical power comparisons for h2

p 2
ð0:1,0:5,0:8Þ are shown in Supplementary Fig. 1.
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improvement compared with TWAS-fusion. Importantly, such
improvements in the expression prediction models result in con-
sistently higher TWAS power under different sparsity levels (Fig. 2b).
As a note, TWAS power is defined as the discovery rate of associations
between predicted expression levels and phenotypic outcomes using
simulated independent GWAS data. When h2

e =0:01 and pcausal = 0.2,
the power of SUMMIT was 0.992 while those of PrediXcan and TWAS-
fusion were 0.028 and 0.201, respectively. In addition, we observed
that SUMMIT achieved higher average imputation R2 than Lassosum, a
pipeline that is also capable of leveraging summary-level data.

The current standard practice of TWASs is to only analyze genes
with imputationR2 ≥0.01 andnot consider geneswith lower prediction
performance (i.e., genes with imputation R2 between 0.005 and 0.01).
However, such genes may have larger causal effect sizes on the trait of
interest1. To evaluate the performance of different methods under low
heritability, we simulated data with h2

e =0:005. Figure 2a shows that
SUMMIT achieved satisfactory performance under these scenarios.
When h2

e =0:005 and pcausal = 0.2, SUMMIT estimated the average
imputationR2 at 0.29%, whichwasmuchhigher than the values yielded
by TWAS-fusion (0.057%; 401% improvement) and PrediXcan (0.011%;
2460% improvement). This is because SUMMIT leverages summary-
level eQTL data with a larger sample size. Furthermore, SUMMIT also
achieved higher average imputation R2 than Lassosum because SUM-
MIT leverages the genetic distance to estimate the LD matrix and
combines results from multiple penalties.

Next, we evaluated the impact of the sample size of the expression
referencepanel (Supplementary Fig. 2). As expected, the imputationR2

increased as the sample size increased. For the setting of h2
e =0:05 and

pcausal =0.2, when the sample size increased from 300 to 31,684, the
average imputation R2 increased from 0 to 0.0474, highlighting the
advantages of using a larger expression reference panel. Importantly,
the imputation models became more stable (i.e., decreased in var-
iance) as the sample size increased. Additionally,we confirmed that the
imputation results from SUMMIT (average imputation R2: 0.0469)
were highly similar to those from analyses of individual-level data
(average imputation R2: 0.0474), confirming that SUMMIT can capture
individual-level information from summary-level data.

Finally, we conducted confirmatory simulation studies (Fig. 2c) to
verify that the gains in TWAS power came from an improved expres-
sion prediction accuracy. We varied N within (300, 600, 3000,
10,000, 31,684), and h2

e within (0.005, 0.01, 0.1), and we set h2
p =0:2

and pcausal = 0.05. We observed that the TWAS power and prediction
accuracy were highly correlated. As the sample size of the expression
reference panel increased, the expression prediction models became
more accurate, leading to higher TWAS power. Notably, due to the
setup (i.e., the two-sample framework) of the simulations, the gains in
the sample size of the expression reference panel could only interact
with the TWAS power through better prediction models. The results
were similar for pcausal = 0.01 (Supplementary Fig. 7).

To consider the potential impact of genetic architecture, we
considered two additional randomly selected genes, and the results
were similar (Supplementary Figs 3–6). Furthermore, we ran the
simulations 5,000,000 times (5000 runs for each of 1000 computed
weights) under the null hypothesis to evaluate the Type 1 error rates,
confirming that all methods maintained well-controlled Type 1 error
rates (Supplementary Fig. 8).

In summary, these results demonstrate the potential of SUMMIT
for building expressionpredictionmodels and conducting subsequent
association studies, especially for genes with low expression
heritability.

SUMMIT improves the expression imputation accuracy
We compared the accuracy of the expression prediction models
developed using SUMMIT and five benchmark methods, Lassosum,

MR-JTI, TWAS-fusion, PrediXcan, and UTMOST for whole blood tissue.
We trained the SUMMIT and Lassosum models with eQTLGen sum-
mary data, and the other four benchmark methods were trained with
GTEx data. For a fair comparison, we compared the number of genes
with estimated R2 ≥0.01 and only focused on genes that appear in the
eQTLGen summary data. The R2 for MR-JTI, TWAS-fusion, PrediXcan,
and UTMOST, were based on cross validation and were provided by
the original authors, and the R2 for SUMMIT and Lassosum were cal-
culated based on the additional subjects in the GTEx version 8 data,
who were not included in the meta-analysis of eQTLGen and thus can
be viewed as an independent external dataset. Compared with the
benchmark methods, Lassosum (8249 genes), MR-JTI (9576 genes),
TWAS-fusion (5411 genes), PrediXcan (7512 genes), andUTMOST (7236
genes), SUMMIT developed satisfactory prediction models for more
genes (9749 genes with R2 ≥0.01). Importantly, SUMMIT could build
predictionmodels for themajority (8936 out of 12,230; 73.1%) of genes
that could be analyzed by any of the benchmark methods (Fig. 3a). In
addition, SUMMIT was able to establish prediction models of 1836
additional genes that were ignored by benchmark methods that
leveraged individual-level data, showing consistent improvement by
using a large training dataset. Furthermore, compared with Lassosum,
SUMMIT achieved marginally higher prediction accuracy in different
quantiles (T ≈0.017 and p ≈0.077, by one-sided Kolmogorov-Smirnov
test). Compared with the other four benchmark methods, SUMMIT
achieved significantly higher prediction accuracy in different quantiles
(MR-JTI: T ≈0.080 and p < 2.2 × 10−16; PrediXcan: T ≈0.089 and
p < 2.2 × 10−16; TWAS-fusion: T ≈0.240 and p < 2.2 × 10−16; and UTMOST:
T ≈0.076 and p < 2.2 × 10−16; all by one-sided Kolmogorov-Smir-
nov test).

SUMMIT identifies more associations than competing methods
To evaluate the performance in identifying significant associations, we
applied SUMMIT to the GWAS summary statistics of 24 traits (Ntotal ≈
5,600,000 without adjusting for sample overlap across studies, Sup-
plementary Data 1) and compared the results with those of the
benchmark methods (for all genes with R2 ≥0.01). The association
results for SUMMIT are summarized in Supplementary Data 1. While
SUMMIT analyzed all genes with R2 ≥0.005 and applied Bonferroni
correction accordingly, we focused on the genes with R2 ≥0.01 for a
fair comparison (Fig. 3b). Compared with the benchmark methods,
SUMMIT identified more associations for each trait analyzed, showing
50% improvement compared with Lassosum (T = 334.5 and p ≈0.013;
one-sided by the paired Wilcoxon rank test), 69% improvement com-
pared with MR-JTI (T = 349 and p ≈0.005; one-sided), 108% improve-
ment compared with TWAS-fusion (T = 362 and p ≈0.002; one-sided),
91% improvement compared with PrediXcan (T = 335 and p ≈0.005;
one-sided), and 63% improvement compared with UTMOST (T = 343
and p ≈0.008; one-sided).

Because different methods test different sets of genes, we also
compared the methods over a common set of 3980 genes that could
be analyzed by all themethods (Fig. 3c). Again, SUMMITmaintained an
edge over the competing methods, showing 16% improvement com-
paredwith the second-best-performingmethod in termsof association
pairs identified, Lassosum.

Importantly, SUMMIT was applicable in analyzing genes with low
expression heritability (0.005 ≤R2 < 0.01), which have been largely
ignored by benchmark methods. Out of the 11,585 genes with
R2 ≥0.005, 1836 had a testing R2 between 0.005 and 0.01. For these
1836 genes, we identified 659 gene-trait associations (Fig. 3b). In
comparison, for the remaining 9749 genes, we identified 3339 gene-
trait associations, indicating that genes with relatively smaller R2 may
be as important as those with larger R2. This finding is in line with the
fact that genes with low expression heritability have substantially lar-
ger causal effect sizes on complex traits1.
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SUMMIT achieves higher predictive power for identifying "silver
standard" genes
We compared different methods in identifying the likely causal genes
thatmediate the associations betweenGWAS loci and traits of interest.
Following Barbeira et al.20, we used a set of 1,258 likely causal gene-trait
pairs curated by using the Online Mendelian Inheritance in Man
(OMIM) database21 and a set of 29 gene-trait pairs based on rare variant
results from exome-wide association studies22–24, which provide
orthogonal information that is independent of the GWAS results.
These genes are counted as “silver standard” genes. Both sets of gene-
trait pairs can be found in Supplementary Data 2.

Figure 3d shows that SUMMIT yielded good sensitivity and speci-
ficity for identifying the silver standard genes and achieved the highest

AUC (0.777) among all the methods compared. All methods achieved
relatively good sensitivity and specificity, showcasing the potential
predictive ability of TWAS-type methods to prioritize putative causal
genes. At a Bonferroni-corrected significance threshold of 5.21 × 10−6,
SUMMIT identified 69 genes in the silver standard gene list, whereas
Lassosum, the second-best-performing method in terms of AUC, iden-
tified 60 (15% improvement). Again, perhaps due to the increase in the
sample size of the expression reference panel, the methods based on
the summary-level expression reference panel (i.e., SUMMIT and Las-
sosum) achieved a higher AUC than methods based on the individual-
level expression reference panel. In summary, perhaps due to the
improvement in the expression prediction models, SUMMIT achieved
higher predictive power in terms of prioritizing likely causal genes.
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Fig. 3 | SUMMIT improves the performance of TWASson real data. a Is theUpSet
plot of overlapping imputation models with R2 ≥0.01 among different methods.
b Shows the numbers of associated genes identified by different methods when

using all available genes across GWASs of 24 traits, where (c) shows the number of
associated genes when evaluating a common gene set of all methods. d Is the ROC
plot for identifying “silver standard” genes.
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As a note, including imputation models with testing R2 < 0.01
increased the burden of multiple tests. To study this, we evaluated
SUMMIT’s performance for genes with R2 ≥0.01 under a less stringent
p-value threshold (as models with R2 < 0.01 were excluded). We con-
firmed that that the differences in the p-value threshold had only a
negligible impactonSUMMIT inour real data analyses (Supplementary
Fig. 9). SUMMIT identified 3399 gene-trait associations for genes with
R2 ≥0.01 using the less stringent threshold and identified 3339 gene-
trait associations for genes with R2 ≥0.01 when using the more strin-
gent threshold.

SUMMIT identifies risk genes for COVID-19 severity
We leveraged GWAS summary data from the COVID-19 host genetics
initiative (HGI)25 to identify risk genes for COVID-19 severity. Using
SUMMIT, we identified significant associations of 17 genes with COVID-
19 severity (B2 outcome) by comparing patients hospitalized with
COVID-19 and controls at a Bonferroni-corrected significance thresh-
old of 4.33 × 10−6 (Fig. 4). In comparison, the competing methods
PrediXcan, TWAS-fusion, UTMOST, and MR-JTI identified 1, 6, 2, and
1 significant genes, respectively (Supplementary Table 1). For the 17
genes identified by SUMMIT, 11 were prioritized by the fine-mapping
method FOGS (Table 1). We further validated these 11 genes by ana-
lyzing COVID-19 by comparing very severe confirmed respiratory
COVID-19 versus population controls (A2). Of them, 10 were validated
at p <0.05.

For some of these 11 putative causal genes related to COVID-19
severity, there is already prior knowledge supporting their potential
links with COVID-19. To elaborate, SNP rs1015164, which lies near the
antisense transcribed sequence RP11-24F11.2, has been associated
with HIV set-point viral load26,27 and CD4+ T-cell counts. Such che-
mokine receptor-ligand interactions mediating the traffic of inflam-
matory cells and pathogen-associated immune responses could
plausibly be related to COVID-19 severity. For FLT1P1, its expression
has been reported to be positively associated with predicted neu-
trophil count28. This may mediate the genetic link between this gene
and COVID-19 severity. Another identified gene, CCR5, is known to
play a role in immune cell migration and inflammation. A study found
that CCR5 blockade in critical COVID-19 patients induced decreased
inflammatory cytokines, increased CD8 T cells, and decreased SARS-
CoV-2 RNA in plasma29. For OAS1, both predicted and measured
protein levels are inversely associated with COVID-19 susceptibility
and severity, which is consistent with the current study’s findings30.
Two of the other genes, namely, OAS3 and IFNAR2, were identified in

our earlier work of COVID-19 TWASs using complementary methods
and designs31.

Discussion
By leveraging the summary-level expression reference panel with a
much larger sample size, our method SUMMIT improved the predic-
tion accuracy of built expression prediction models, which in turn
increased the power of identifying risk genes for complex traits.

Through simulations and analyses of the GWAS results for 24
traits, we demonstrated the performance gain of SUMMIT over exist-
ing methods. Briefly, we demonstrated that SUMMIT improved the
expression imputation accuracy (built more expression prediction
models with R2 ≥0.01), identified more associations, and achieved
higher power in identifying “silver standard” genes. Importantly,
SUMMIT was applicable in analyzing genes with low expression herit-
ability (R2 between 0.005 and 0.01), which have larger causal effect
sizes on complex traits1 but have not been well captured by existing
methods.

SUMMIT can be viewed as a type of gene-based Mendelian ran-
domization (MR) and can provide valid causal interpretations when all
genetic variants used in the expression prediction models (with non-
zero weights) are valid instrumental variables32–34. However, with the
widespread horizontal pleiotropy of genetic variables35, valid instru-
mental variable assumptions may be violated, and thus, we recom-
mend that practitioners use multiple complementary methods jointly
to identify likely causal genes. For example, we can applyfine-mapping
approaches such as FOCUS36 and FOGS37 to further prioritize likely
causal genes by modeling the linkage disequilibrium and correlation
among TWAS signals. In addition to fine mapping, it can be useful to
complement the TWAS/MR-type approaches with colocalization (in
the sense of38), which aims to identify causal genetic variants for both
gene expression and complex traits. Notably, the existence of colo-
calized genetic variants (especially those in the cis-acting region)
implies that the same variants are responsible for variations in both
expression and complex traits, indicating that a causal link between
expression and complex traits may exist.

Both SUMMIT and Lassosum39 are motivated by the recent pro-
gress in the estimation of polygenic risk scores using summary-level
GWAS data40,41. As a result, both Lassosum and SUMMIT construct the
primary loss function using penalized regression. However, Lassosum
and SUMMIT are different, and SUMMIT is tailored to eQTL summary
statistics in the following respects. First, SUMMIT adds an additional
step to estimate the LD matrix by utilizing genetic distance
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Fig. 4 | Manhattan plot for COVID-19 severity (B2 outcome) comparing hospitalized COVID-19 patients and controls. p-values were calculated by the SUMMIT (two-
sided). The horizontal line marks the genome-wide significance threshold (0.05/11539 ≈ 4.33 × 10−6).
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information. Second, Lassosum uses only the LASSO penalty, while
SUMMITconsidersfive different types of penalties. As a result, we have
confirmed that SUMMIT achieves much better performance in terms
of prediction accuracy and subsequent statistical power in both
simulations (Fig. 2) and real data analyses (Fig. 3). Additionally, SUM-
MIT shares similarities with CoMM-S47 as they both use summary-level
eQTL data to identify gene-trait associations.

There are several limitations of the current study. First, the
summary data of eQTLGen are for whole blood of subjects of Eur-
opean ancestry; thus, the built gene expression prediction models
would be applicable only to blood tissue of European ancestry sub-
jects. While SUMMIT can be applied equally to other tissues and
ancestry, the corresponding summary eQTL data would be needed
for such extensions. Second, several TWAS methods such as
UTMOST11 and MR-JTI13 have been proposed to leverage expressions
from other tissues or functional annotations to improve the predic-
tion accuracy of expression prediction models. Functional annota-
tion databases such as FAVOR42 may also provide prior information
to downweight SNPs that may not contribute to gene expression. We
expect that the number of analyzable genes could be increased fur-
ther if we leveraged information from either other tissues or func-
tional annotations. Third, similar to most existing TWAS methods,
the results of SUMMIT imply causality only when valid instrumental
variable assumptions are satisfied. A partial solution is to apply fine-
mapping to prioritize likely causal genes. However, the robustness of
SUMMIT would be significantly improved if we could relax these
stringent valid instrumental variable assumptions. We leave this
exciting topic for future research.

SUMMIT43 integrates summary-level eQTL data with GWAS sum-
mary statistics via advanced statistical methods. When combined with
fine-mapping and functional validations, its findingsmay yield insights
into the genetic basis of diseases and benefit the development of new
therapeutic strategies.

Methods
Penalized regression model for expression prediction
Consider the following linear regression model for estimating the
genetically regulated components of gene expression:

Y=
Xp

j = 1

wjXj + ϵ, ð1Þ

whereY is theN-dimensional vector of gene expression levels of a gene
of interest (corrected for important covariates such as age, sex, and
principal components of genotypes), X= ðX0, � � � ,X0Þ0 is the N × p

standardized genotype matrix of pcis-SNPs around the gene (within 1
MB of the gene transcription start site and end site), the p-dimensional
vector w= ðw1, � � � ,wpÞ0 is the cis-eQTL effect size, and ϵ is random
noise with a mean of zero.

We estimate w using a penalized regression framework. Specifi-
cally, the objective function is

f ðwÞ= ðY� XwÞ0ðY� XwÞ
N

+ JλðwÞ= Y0Y
N

+w0 X0X
N

� �
w

� 2w0 X
0Y
N

+ JλðwÞ,
ð2Þ

where Jλ( ⋅ ) is a penalty term. Since the performance of different
penalties may vary under different genetic architectures, we consider
several penalties, including LASSO44, elastic net45, the minimax con-
cave penalty (MCP)46, the smoothly clipped absolute deviation
(SCAD)47, andMNet48. Note that the objective function (Equation (2)) is
a function of the marginal statistics X0Y=N and the linkage dis-
equilibrium (LD) matrix X0X=N, and does not require the individual-
level data to be observed and stored. This allows us to build expression
prediction models using eQTL summary-level data, which are
computed using a much larger sample size. That is, we rewrite the
objective function as

f ðwÞ= Y0Y
N

+w0Rw� 2w0r+ JλðwÞ, ð3Þ

where r=X0Y=N = ðr1, � � � ,rpÞ0 is ap-dimensional vector of standardized
marginal effect size for cis-SNPs (i.e., correlation between cis-SNPs and
gene expression levels), andR =X0X=N is the LDmatrix of the cis-SNPs.
We use the z-scores provided in the summary-level eQTL dataset to
estimate r (denoted by ~r) and use a shrinkage estimator (illustrated
below) with an LD reference panel (such as that of the 1000 Genomes
Project49) to estimate R (denoted by ~R). We add an L2 penalty term
θw0w (where θ ≥0) to the objective function, which ensures a unique
solution upon optimization. Note that Y0Y=N does not depend on w
and can be ignored when optimizing f. Thus, the final objective
function that we optimize can be written as,

~f ðwÞ=w0 ~Rw� 2w0~r+θw0w+ JλðwÞ: ð4Þ

The estimates ŵ can be obtained by the coordinate descent
algorithm50, which solves the univariate penalized regression problem
sequentially and iteratively. Briefly, suppose that ðŵðtÞ

1 , . . . ,ŵðtÞ
p Þ are the

coefficients in the t-th iteration of the coordinate descent algorithm.

Table 1 | Predicted gene expression in blood-COVID-19 associations for likely causal genes based on COVID-19 Host Genetics
Initiative data

Chromosome Gene R2 COVID-B2 COVID-A2

Direction p Direction p

3 ACTL6A 0.008 − 9.9 × 10−19 − 2.5 × 10−1

3 LRRC2 0.044 − 5.4 × 10−9 − 3.9 × 10−5

3 RP11-24F11.2 0.006 − 8.8 × 10−12 − 9.0 × 10−6

3 FLT1P1 0.116 − 3.3 × 10−14 − 1.0 × 10−7

3 CCR5 0.049 − 9.9 × 10−19 − 1.8 × 10−6

12 OAS1 0.056 − 1.4 × 10−7 − 1.2 × 10−8

12 OAS3 0.041 + 2.7 × 10−8 + 3.4 × 10−11

17 LRRC37A4P 0.668 + 2.6 × 10−6 + 3.5 × 10−3

17 RP11-707O23.5 0.599 − 2.8 × 10−6 − 3.4 × 10−3

17 DND1P1 0.489 − 2.7 × 10−6 − 3.3 × 10−3

21 IFNAR2 0.037 − 2.2 × 10−11 − 2.2 × 10−9

“ + ” and “ − ” represent positive and negative directions, respectively. p-values were calculated by the SUMMIT (two-sided)
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Define zðtÞj =~rj �
P

l≠j
~Rjlŵ

ðtÞ
l : When Jλ(w) is the LASSO penalty

( JλðwÞ= Pp
j = 1 λ∣wj ∣), we can update wj as

ŵðt + 1Þ
j =

zðtÞj �λ

1 +θ zðtÞj > λ

zðtÞj + λ

1 +θ zðtÞj <� λ

0 otherwise

8>>><
>>>:

ð5Þ

for j = 1,…, p and t =0, 1,… .
The convergence properties of the coordinate descent algorithm

guarantee a local minimum for ŵ50. We give the details of the optimi-
zation, including the choices of the initial starting values, λ, and θ, and
the updating formulas for the other penalties, in the Supplemen-
tary Note 1.

Estimating the standardized marginal effect size ~r and LD
matrix ~R
The standardized marginal effect size rj is often not provided in the
eQTL summary-level data, but it can be approximated well by
~rj = Zj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nj � 1 +Z2

j

q
, where Zj andNj are the z-score and sample size for

cis-SNP j, respectively. The eQTL summary-level data combine the
results from multiple cohorts and thus the sample size for each SNP
may vary. To obtain an unbiased estimation, we use the SNP-specific
sample size Nj instead of the largest sample size (cohort size)51.

The objective function (4) involves an estimated LD correlation
matrix ~R. Instead of using the sample correlation matrix estimated
from a reference panel such as 1000 Genomes Project49 data, we use
the shrinkage estimator of the LD matrix52–54, which stabilizes the
results by shrinking the off-diagonal entries toward zero. Specifically,
we first calculate the sample LD correlation matrix from a reference
panel. Each entry in the LD correlation matrix is then multiplied by
the factor expð� 2Necij

m Þ, where Ne is the effective population size, m
is the sample size of the data for generating the geneticmap, and cij is
the genetic distance between sites i and j in centimorgans. The
entries are set to zero if the factor expð� 2Necij

m Þ is less than a pre-
specified threshold c. Following others52,53, we use the genetic dis-
tance generated from 1000 Genomes OMNI arrays with Ne = 11,400
and m = 183 and the prespecified threshold c is set to 1 × 10−3.

Model training and evaluation
We trained our expression prediction models by using the cis-eQTL
summary-level data fromeQTLGen6, which consist of effect sizes of >11
million SNPs from 31,684 blood samples. Following PrediXcan8, SNPs
in the vicinity of the given gene (within 1Mbp of the gene transcription
start site and end site) were used as the cis-genotype information.
Furthermore, we filtered out all SNPs with minor allele frequency
(MAF) < 0.01 and those that were nonbiallelic, ambiguous or not
included in the HapMap3 SNP set8.

We used both genotype and gene expression data from the GTEx
project (version V7, dbGaP Accession number phs000424.v7.p2,
https://www.gtexportal.org/home/datasets)55 to select the tuning
parameters. The processed gene expression values in whole blood
(N = 369) were downloaded from the GTEx website. Briefly, the RPKMs
in each sample were standardized and normalized by quantile trans-
formation. The expression for each gene was further adjusted for sex,
genotyping platform, 35 PEER factors and three genotype-based
principal components (PCs) and the residuals were used as the pro-
cessed expression levels.Weused the squared correlationbetween the
predicted and observed expressions (that is, R2) to select the best
tuning parameters. Notably, the subjects in GTEx v6 (N = 336; 1.1%)
were meta-analyzed in eQTLGen6 and may result in suboptimal tuning
parameters.

We used independent data of subjects whowere included in GTEx
v8 but not in GTEx v7 (N = 309) for external validation. Notably, the
subjects in GTEx v8 were not meta-analyzed in eQTLGen and thus can

be viewed as an independent dataset for external validation. Because
geneswith lowexpressionheritability have substantially larger causal
effect sizes on complex traits1, we selected models with R2 ≥0.005
instead of the commonly used criterion of R2 ≥0.01. The threshold
(R2 ≥0.005) was justified by an informal theoretical investigation
using a well-established statistical theory by Cramer56. Briefly,
assuming a standard multiple regression model, Cramer56 showed
that under the null hypothesis of β = 0, R2 follows a beta distribution,
i.e., R2 ~Bððp� 1Þ=2,ðn� pÞ=2Þ. In SUMMIT, we used the eQTL-gen
summary-level data with n = 31,684 and the median number of SNPs
with nonzero weights for each gene was p = 34, leading to
R2 ~Bð16:5,15825Þ under the null hypothesis. The rejection region
≈ (0.00263, 1] (under the transcriptome-wide significance level of
α = 0.05/16884≃ 3.0 × 10−6). The above derivation, however, ignores
the impact of regularization induced by penalized regression. To
consider the potential impact of regularization, we propose using a
slightly conservative threshold of R2 ≥ 0.005 for SUMMIT. As a note,
formally considering the regularization bias is nontrivial and requires
additional assumptions; and we leave such interesting topics for
future research.

Association analyses with individual expression prediction
models
When individual-level GWAS data (genotype data Xnew, phenotype
Pnew, and covariance matrix Cnew) are available, one can apply a gen-
eralized linear regression model

f ðE½Pnew∣Xnew,Cnew�Þ=αCnew +βXnewŵ ð6Þ

to test H0 : β =0, where f( ⋅ ) is a link function, and Xnewŵ is the pre-
dicted genetically regulated expression for the trait of interest.

When only summary-level GWAS data are available, one can apply
a burden-type test:

~Z =Zŵ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ0Vŵ

p
, ð7Þ

where Z is the vector of z-scores for all cis-SNPs and V is the LDmatrix
of analyzed SNPs (which can be estimated by using a population
reference panel such as that of the 1000 Genomes Project49).

Association analyses with multiple expression prediction
models
To further improve the power, we apply the Cauchy combination test18

to integrate information from K models with R2 ≥0.005. Specifically,
we use the following test statistics:

T =
XK
j = 1

~R
2
j tanfð0:5� pjÞπg, ð8Þ

wherepj is the p-value formodel j and ~R
2
j is calculated byR2

j =
Pk

j = 1 R
2
j .T

approximately follows a standard Cauchy distribution, and the p-value
can be calculated as 0:5� arctanðTÞ=π. Notably, we use ~R

2
j as the

weights when combining multiple expression prediction models
because a larger ~R

2
j indicates a better expression prediction model.

The Cauchy combination test has been widely used in the human
genetics community18,57, because the p-value approximation is accu-
rate for highly significant results (which are of interest) and there is no
need to estimate the correlation structure among the combined
p-values.

One may be interested in the association direction for a specific
gene of interest. For a majority of the significant genes identified by
SUMMIT, all the expression prediction models yield the same asso-
ciation direction. When the expression prediction models provide
conflicting association directions, we determine the association
direction by majority voting. In the rare situation in which the number
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ofmodels indicating positive associations is the same as the number of
models indicating negative associations, we declare the association
direction unknown.

Simulation study design
We conducted simulation studies to evaluate how the sample size of
the expression reference panel impacts the expression prediction
accuracy and the subsequent power of TWASs. Additionally, we eval-
uated whether using the summary-level eQTL data yielded similar
performance to that of using the individual-level expression reference
panel. Specifically, we used data from the UK Biobank and randomly
chose genotype data from 31,684 (to match the sample size of the
eQTLGen data) unrelated white British individuals as training data,
genotype data from an additional 369 (tomatch the sample size of the
GTEx v7 data) unrelated white British individuals as tuning data, and
genotype data from an additional 10,000 unrelated white British
individuals as test data. The imputed data of 877 cis-SNPs (with
MAF > 1%, Hardy-Weinberg p-value > 10−6, and imputation “info”
score > 0.4) of the arbitrarily chosen gene CHURC1 were used for our
main simulations. We also considered several other randomly selected
genes (Supplementary Figs. 3–6).

We simulated gene expression levels and phenotype values by
Eg =Xw + ϵe and Y = βEg + ϵp, respectively. X is the standardized geno-
type matrix, w is the effect size, the scalar β is the association coeffi-
cient, ϵe ~Nð0,1� h2

e Þ, and ϵp ~Nð0,1� h2
pÞ, where h2

e and h2
p are the

expressionheritability (i.e., theproportionof gene expression variance
explained by SNPs) and phenotypic heritability (i.e., the proportion of
phenotypic variance explained by gene expression levels), respec-
tively.We randomly selectedpcausal, that is, theproportion of SNPs that
are causal, and generated its effect sizewj fromN(0, 1). The effect sizes
for the remaining noncausal SNPs were set to 0.We rescaled the effect
sizes w and β to achieve the targeted h2

e and h2
p.

To evaluate the performance of the proposed SUMMIT method,
weperformedan association scanon thewhole simulated trainingdata
(Eg,X) and computed the summary-level data (i.e., z-scores) using a
linear regression. To study the impact of the sample size of the training
data, we also built prediction models using training data of different
sample sizes (300, 600, 3000, 10,000, 31,684).We compared SUMMIT
with two widely used methods, PrediXcan8 and TWAS-fusion9. Fur-
thermore, we investigated the idea of using a polygenic risk score
method (e.g., Lassosum39) to train the expression prediction models.
We trained models with PrediXcan and TWAS-fusion using individual-
level data of 670 samples (to match the sample size of blood tissue in
the GTEx v8 data). As a note, in addition to Lassosum, we only com-
pared SUMMIT with PrediXcan and TWAS-fusion in simulations
because all of thesemethods focus on single-tissue information. While
leveraging cross-tissue information can further improve the perfor-
mance as demonstrated in UTMOST11 and MR-JTI13, it is not our focus
here, and thus, we did not compare cross-tissue methods such as
UTMOST andMR-JTI in our simulations, leaving such interesting topics
for future research.

We considered comprehensive scenarios that varied the propor-
tion of causal SNPs pcausal (0.01, 0.05, 0.1, 0.2), expression heritability
h2
e (0.005, 0.01, 0.1), and phenotypic heritability h2

p (0.1, 0.2, 0.5, 0.8).
For each scenario, we repeated the simulations 1000 times. The sta-
tistical power was calculated as the proportion of 1000 repeated
simulations with a p-value less than the genome-wide significance
threshold 0.05/20,000 = 2.5 × 10−6.

Comparison with existing methods
We further compared SUMMIT with several TWASmethods, including
Lassosum39, MR-JTI13, PrediXcan8, TWAS-fusion9, and UTMOST11, for
whole blood tissue in the following respects. Lassosum is a polygenic
risk score method that can be used to build expression prediction
models with a summary-level reference panel. After building the

expression prediction models, we apply the standard TWAS frame-
work to obtain the results. PrediXcan uses Elastic Net to build gene
expression prediction models; TWAS-fusion applies several methods,
including BLUP, BSLMM, Elastic Net, LASSO, and TOP1 to build
expression prediction models. MR-JTI and UTMOST leverage cross-
tissue information when building gene expression prediction models.
All four TWAS methods are based on an individual-level expression
reference panel, while our method SUMMIT and Lassosum are based
on a summary-level expression reference panel.

First, we compared the prediction accuracy (in terms of R2) esti-
mated by different methods. Notably, while the prediction perfor-
mances of the models developed using competing methods were
estimated through cross validation, the prediction performances of
themodels developed using SUMMIT and Lassosumwere estimated in
an external testing dataset. This difference may slightly favor Pre-
diXcan and TWAS-fusion. The difference in R2 across genes was tested
by the one-sided Kolmogorov-Smirnov test, a nonparametric test that
calculates the largest distance between the empirical distribution
functions to determine whether two distributions are equivalent.

Second, we compared different methods by analyzing GWAS
summary statistics for 24 complex traits. The details of the 24 traits are
summarized in Supplementary Data 1. We used the Bonferroni cor-
rection for each method with different significance thresholds as dif-
ferentmethods have different numbersof analyzable genes. Tomake a
fair comparison, we also evaluated a common gene set that can be
analyzed by all methods and used the same Bonferroni-corrected
significance threshold to determine the significant gene sets. The
numbers of significant genes identified by the different methods were
further compared by the Wilcoxon signed-rank test, which compares
two matched samples to test whether their population mean ranks
differ.

Third, as a TWAS can be viewed as a special case of Mendelian
randomization58, we further compared different methods in terms of
identifying the causal genes that mediate the associations between
GWAS loci and the traits of interest. Following Barbeira et al.20, we
curated a set of likely causal gene-trait pairs using information thatwas
independent of the GWAS results. Briefly, we utilized the OMIM
database21 and rare variant results from exome-wide association
studies22–24, obtaining 1, 287 gene-trait pairs. We used LDetect to par-
tition the genome into approximately independent LD blocks59 and
refined the gene-trait pairs by considering only the genes that were
located in LD blocks with at least one genome-wide significant variant,
leading to 148 likely causal gene-trait pairs (among 24 distinct traits).
We compared different methods by the area under the receiver
operating characteristic curve (AUC).

Applications to COVID-19 GWAS data
To identify genes associated with COVID-19 severity, we applied
SUMMIT-derived models to GWAS summary data from the COVID-19
HGI (Release 5 (January 2021))25. The detailed information of partici-
pating studies, quality control, and analyses are included on the
COVID-19 HGI website (https://www.covid19hg.org/results/). Briefly,
data from 9, 986 hospitalized COVID-19 patients and 1, 877, 672
population controls were used in the current analyses. Hospitalized
COVID-19 cases included patients who (1) had laboratory confirmed
SARS-CoV-2 infection (RNA- and/or serology-based) and (2) were
hospitalized due to corona-related symptoms. The controls are sub-
jects who are not cases. Only individuals of European ancestry were
included to ensure a homogeneous population structure for the ana-
lyses. A fixed-effect meta-analysis of the individual participating stu-
dies was performed and variants with imputation quality > 0.6 were
retained.

We applied the fine-mapping method FOGS37 to prioritize likely
causal genes for COVID-19 severity. We evaluated the associations of
the identified genes with an additional COVID-19 phenotype. Briefly,
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we leveraged A2_ALL_eur (Europeans; 5, 101 cases and 1, 383, 241 con-
trols) to compare very severe confirmed respiratory COVID-19 vs.
population controls.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary data used in this study are summarized in Sup-
plementary Data 1 (with the download link). The eQTL summary data
are available at https://www.eqtlgen.org/cis-eqtls.html. The COVID-19
HGI summary data can be downloaded from https://www.covid19hg.
org/results/. The UK Biobank is an open-access resource but requires
registration, available at https://www.ukbiobank.ac.uk/researchers/.
The genotype and RNA sequencing data for the GTEx project are
available at the database of Genotypes and Phenotypes (accession
number phs000424.v8.p2, https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2). The processed
gene expression for the GTEx project is available from the GTEx portal
(https://gtexportal.org). The MR-JTI, PrediXcan, and UTMOST models
can be downloaded from https://doi.org/10.5281/zenodo.3842289.
The TWAS-fusion’s model can be downloaded from http://gusevlab.
org/projects/fusion/. The 1000 Genomes Project data can be down-
loaded from https://www.internationalgenome.org/data. The genetic
distance data for 1000 Genomes Project can be downloaded from
https://github.com/joepickrell/1000-genomes-genetic-maps. The
SUMMIT models generated in this study are available from OSF.IO at
https://doi.org/10.17605/OSF.IO/7MXSA. The raw data and code to
replicatefigures and tables in themanuscript are available fromOSF.IO
at https://doi.org/10.17605/OSF.IO/FJPDU. All real data results are
available at https://chongwulab.shinyapps.io/SUMMIT-app/, where
practitioners can search and download results easily. All other data
are available in the paper and its supplementary information
files. Source data are provided with this paper.

Code availability
The SUMMIT software is available on GitHub (https://github.com/
ChongWuLab/SUMMIT) and Zenodo43. The codes and corresponding
data for reproducing the results described in this study are available on
OSF.IO60.
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