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Abstract: Reduced graphene oxide (rGO) fiber as a carbon-based fiber sensor has aroused widespread
interest in the field of gas sensing. However, the low response value and poor flexibility of the rGO
fiber sensor severely limit its application in the field of flexible wearable electronics. In this paper, a
flexible and wearable nylon fiber sensor modified by rGO and ZnO quantum dots (QDs) is proposed
for wide-range NO2 gas detection at room temperature. The response value of the nylon fiber sensor
to 100 ppm NO2 gas is as high as 0.4958, and the response time and recovery time are 216.2 s and
667.9 s, respectively. The relationship between the sensor’s response value and the NO2 concentration
value is linear in the range of 20–100 ppm, and the fitting coefficient is 0.998. In addition, the test
results show that the sensor also has good repeatability, flexibility, and selectivity. Moreover, an early
warning module was also designed and is proposed in this paper to realize the over-limit monitoring
of NO2 gas, and the flexible sensor was embedded in a mask, demonstrating its great application
potential and value in the field of wearable electronics.

Keywords: reduced graphene oxide; ZnO quantum dots; NO2 gas sensor; flexible and wearable;
early warning system

1. Introduction

With the development of modern industry, the types of toxic and harmful gases
produced in production activities are becoming more and more diverse, especially the
nitrogen dioxide (NO2) gas produced in the chemical production process, which poses a
great threat to people’s lives and property [1]. Therefore, it is necessary to develop high-
performance gas sensors for NO2 gas detection. NO2 gas sensors that can work at room
temperature are particularly important because they have the advantages of low power
consumption, no heating, and easy operation [2,3]. So far, many different types of NO2
gas sensors that work at room temperature have been manufactured by using different
sensitive materials [4–8]. Among them, wearable NO2 gas sensors have the characteristics
of flexibility, a light weight, and a low cost and important application potential and value
in the field of wearable electronics [9–11].

rGO is a potential gas-sensing material. On the one hand, rGO’s conductivity at room
temperature allows it to work at room temperature, and, on the other hand, its large surface
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area provides many active sites for gas sensing [12–16]. Reddeppa et al. [17] spin-coated an
rGO layer on gallium nitride nanomaterials (GaN NRs) for improving the H2 and H2S gas
sensing properties. The experimental results suggested that rGO is a promising material
for improving the performance of GaN-based gas sensors. Metal oxide semiconductor
materials, such as ZnO [18,19], SnO2 [20,21], CuO [22,23], and Ag2O3 [24–26], have a broad
range of application prospects in the field of flexible gas sensors with the advantages of a
simple preparation method, a controllable morphology, environmental friendliness, a low
price, and stable physical and chemical properties. Mokrushin et al. [27] synthesized highly
dispersed ZnO powders doped with europium and praseodymium by the solvothermal
method. The morphology of the obtained nanopowders is nanorods with an average length
of 67–82 nm, and the resulting ZnO-based films showed a high and selective response to
4–100 ppm NO2 at temperatures of 125–150 ◦C. Combining rGO with a metal oxide is also
an important strategy for improving the room-temperature gas sensing performance. For
example, Liu et al. [28] proposed a NO2 gas sensor based on a three-dimensional graphene
aerogel and SnO2 nanomaterials. The response value of the sensor to 50 ppm NO2 gas
is 0.065, and the response time and recovery time are 190 s and 224 s, respectively. The
sensor’s response value to 200 ppm NO2 is also only 0.12. In addition, they also designed a
NO2 gas sensor mixed with ZnO nanoparticles based on a graphene aerogel. The test results
showed that the sensor has a faster response speed and a shorter recovery time, but the
response value is only 0.089 for 100 ppm NO2 [29]. Based on graphitic carbon nitride, silver
nanoparticles, and rGO, Qui et al. [30] designed and manufactured a sensor for detecting
toxic gases. The sensor has a high response value to NO2 gas at room temperature, but the
recovery is very poor, which is not conducive to practical application.

Materials whose three-dimensional scales are less than 100 nm are called nanoparticles,
and when the particle radius is less than its exciton Bohr radius, the particles can be called
quantum dots (QDs). It can be said that QDs are small-sized nanoparticles [31,32]. QDs
have become a research hotspot in the field of gas sensors due to their multi-exciton effect,
small size effect, surface effect, and tunnel effect. In particular, their small size enables
them to have a larger specific surface area, thereby providing more active adsorption
sites for gases [33]. Using a simple synthetic strategy, Liu et al. [34] fabricated a NO2
gas sensor based on MoS2 nanosheets decorated with PbS QDs. Compared with pristine
MoS2 nanosheets, the response time and recovery time of the sensor are significantly
improved. Purbia et al. [35] prepared a zero-dimensional nitrogen-doped graphene/SnO2
QDs heterostructure by a simple wet chemical method, and the test results showed that the
sensor has a high response to ultra-low concentrations of NO2.

Therefore, combining rGO with QDs is an effective means by which to develop flexible
nitrogen dioxide gas sensors with a high response value and good recoverability. In this
work, a flexible sensor with rGO and ZnO QDs was designed and fabricated for detecting
a wide range of NO2 gas concentrations. Nylon fiber was used as the sensor substrate for
better flexibility. Test experiments were carried out to explore the sensor’s performance.
The results show that the sensor can detect a wide range of NO2 gas concentrations with
high response and gas selectivity values, short response and recovery times, and good
flexibility. The sensor’s sensitivity mechanism to NO2 gas is also discussed and explained.
In addition, a gas over-limit warning device was also designed and manufactured. Finally,
the warning module was combined with the nylon fiber sensor embedded in a mask to
carry out research on the wearable application to NO2 gas.

2. Materials and Methods
2.1. Materials and Gas Sensor Fabrication

The preparation process of the rGO/ZnO nylon fiber sensor is shown in Figure 1A.
The rGO was prepared by thermal reduction [36]. The rGO powder was added to ultrapure
water to prepare a 0.5 wt% rGO solution, and then it was sonicated for 2 h through an
ultrasonic machine to uniformly disperse the rGO. The nylon fiber with a diameter of 1 mm
was put into ultrapure water for ultrasonic treatment to remove surface impurities such as
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dust. Then, the dried nylon fiber was put into a 0.5 wt% rGO solution and left to stand for
72 h. Ultrasonic treatment was also carried out in the intermediate process. The rGO nylon
fiber was dried at room temperature (25 ◦C). Finally, a certain length of rGO nylon fiber was
cut, with copper wires being wound around both ends of it, to obtain the rGO nylon fiber
sensor. Different concentrations of ZnO QDs solutions (3 mM/L, 5 mM/L, 7 mM/L, and
9 mM/L) were prepared through zinc acetate dehydrate (Zn(CH3COO)2·2H2O), potassium
hydroxide (KOH), and anhydrous methanol. As an example, the preparation process of the
5 mM/L ZnO QDs solution was as follows: (a) 0.0439 g Zn(CH3COO)2·2H2O was dissolved
in 20 mL of anhydrous methanol and magnetically stirred at 70 ◦C for 20 min (solution A);
(b) 0.0336 g of KOH was dissolved in 20 mL of anhydrous methanol and magnetically
stirred at room temperature for 20 min (solution B); and (c) solution A and solution B were
mixed and magnetically stirred for 2 h in order to produce the full reaction to obtain the
5 Mm/L ZnO QDs solution. Four rGO nylon fibers were put into the 3 Mm/L, 5 Mm/L,
7 Mm/L, and 9 Mm/L ZnO QDs solutions for 2 min to form rGO/ZnO-3, rGO/ZnO-5,
rGO/ZnO-7, and rGO/ZnO-9 nylon fiber, respectively. The rGO/ZnO nylon fibers were
also dried at room temperature. The method for manufacturing the rGO/ZnO nylon fiber
sensors was the same as that for manufacturing the rGO nylon fiber sensor.
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Figure 1. (A) Preparation process of the rGO/ZnO nylon fiber sensor: (a) preparation process of the
rGO nylon fiber sensor; (b) the KOH solution; (c) the Zn(CH3COO)2·2H2O solution; (d) dropping
the KOH solution into the Zn(CH3COO)2·2H2O solution; (e) the ZnO QDs solution. (B) Schematic
diagram of the sensor testing device.

2.2. Characterization

Scanning electron microscopy (SEM, SU-8010, Tokyo, Japan) was used to observe the
surface morphology of the nylon fiber sensor. The crystal structure of the material was
determined by X-ray diffraction (XRD, D8 ADVANCE A25, Berlin, Germany) to analyze the
diffraction pattern. An X-ray photoelectron spectrometer (XPS, Thermo Fisher ESCALAB
Xi+, Waltham, MA, USA) was used to analyze the element composition in the sensor’s
sensitive material. The Raman spectrometer (HORIBA, Shanghai, China) mainly used
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the Raman shift to determine the molecular structure of the substance and can realize
qualitative analysis of samples. The semiconductor device analyzer (B1500A, Keysight,
Petaling Jaya, Malaysia) was a test instrument that integrated a variety of measurement
and analysis functions, and it was used to measure the I–V characteristics of the nylon
fiber sensor.

2.3. Gas Sensor Test and Evaluation Index

The gas testing system is shown in Figure 1B. Two mass flow controllers (CS200,
Sevenstar, Xi’an, China) were used to modulate the target gas with dry air as the carrier
gas. After the target gas passed through the test chamber, it entered a gas bottle containing
NaOH solution to complete the exhaust gas treatment. The resistance signal of the flexible
sensor was collected by a data acquisition system (Keysight 34461A), and the obtained data
were stored on a computer through the corresponding software. The response value (S)
of the sensor was defined as (|R0 − Ra|/R0) × 100%, where Ra and R0 are the sensor’s
resistance in the target gas and air, respectively. After the sensor comes into contact with
the target gas, the time required for the resistance to reach 90% of the maximum resistance
(Rg) is defined as the response time (Tres). The recovery time (Trec) was defined as the
time required for the sensor’s resistance to recover from Rg to R0 + 0.1 × |Rg − R0| after
the target gas is removed. Repeatability refers to the ability of a gas sensor to reproduce
results within a certain period of time. Selectivity is the ability of a gas sensor to selectively
respond to a specific target gas. It is generally measured by the response value of different
gases at the same concentration. Linearity (R2) refers to the degree of linearity between the
gas concentration and the sensor’s response value. Generally, the higher the linearity is, the
better the sensor’s performance will be. The test environment’s temperature was around
25 ◦C.

3. Results and Discussion
3.1. Characterization of the rGO/ZnO Nylon Fiber Sensor

The relationship between the length and resistance of the rGO nylon fiber is linear, as
shown in Figure 2a. The resistance of the rGO nylon fiber increases as the length increases.
Its length ranges from 1 cm to 5 cm, and its resistance ranges from 641 kΩ to 3172 kΩ.
The linearity is 0.9937, which shows that rGO is evenly distributed on the surface of the
nylon fiber. The I–V characteristic of the rGO nylon fiber sensor is shown in Figure 2b. The
resistance of the rGO nylon fiber sensor is 540 kΩ, and the test results show that it has good
conductivity. rGO is a near-zero bandgap semiconductor with good electrical conductivity.
The higher the degree of reduction, the closer it is to the properties of a metal, and the
better the conductivity [37,38]. Therefore, the I–V test results show that the linearity of I
and V is as high as 0.9999, which also indicates that the degree of reduction of the rGO is
higher. The rGO/ZnO nylon fiber sensors with different ZnO QDs contents were tested
for 50 ppm NO2 gas, as shown in Figure 2c. The response values of the four sensors are
25.4%, 34.4%, 28.2%, and 23.6%, respectively. The response value of the rGO/ZnO nylon
fiber sensor is related to the number of ZnO QDs attached to its surface. The sensor’s
response value first increases and then decreases with the increase in the number of ZnO
QDs. A proper number of ZnO QDs can help improve the adsorption capacity of the
sensitive film to NO2 gas, but an excessive number of ZnO QDs will reduce its adsorption
capacity instead. The rGO/ZnO-5 nylon fiber sensor has the best sensing characteristics for
NO2 gas. The I–V characteristic curve of the rGO/ZnO-5 nylon fiber sensor is shown in
Figure 2d. The resistance of the rGO/ZnO-5 nylon fiber sensor is 1834 kΩ, which is greater
than the resistance value (540 kΩ) of the rGO nylon fiber sensor. Because ZnO is a typical
semiconductor, the conductivity effect is far less than that of rGO, and the surface of the
rGO nylon fiber to which the ZnO is attached will increase the resistance of the sensor.
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The surface morphologies of the nylon fiber are shown in Figure 3a,b. It is a white rope
made of nylon material with flexible characteristics. As shown in Figure 3c,d, compared
with the white nylon fiber, the color of the rGO/ZnO-5 nylon fiber is black because of
the rGO. The ZnO QDs are also white and have a particle size of about 10 nm. They are
evenly distributed on the surface of the rGO/ZnO-5 nylon fiber sensor. The EDS image
of the rGO/ZnO-5 sensitive film is shown in Figure 3e. C, O, and Zn elements can be
clearly observed, which further indicates that the ZnO quantum dots had been successfully
prepared. Among them, the distribution of Zn is relatively sparse and uniform, indicating
that the ZnO quantum dots are relatively uniformly dispersed on the surface of the rGO
nylon fibers. XRD spectra of the rGO/ZnO-5 nylon fiber and the rGO nylon fiber are shown
in Figure 4a,b, respectively. The diffraction peaks at 22.92◦, 26.38◦, 22.74◦, and 26.24◦ are all
caused by the nylon fiber substrate. The rGO/ZnO-5 sample has obvious diffraction peaks
at positions 31.96◦, 34.72◦, 36.46◦, 47.82◦, and 56.93◦, corresponding to the (100), (002), (101),
(102), and (110) crystal planes of the wurtzite ZnO crystal structure, respectively (JCPDS
File No.36-1451) [39], which indicates that ZnO QDs had successfully attached to the sensor
surface. Raman spectra of rGO and rGO/ZnO-5 nylon fibers are shown in Figure 4c. The D
and G peaks of rGO appear around 1343 cm−1 and 1595 cm−1, respectively. D is a defect
peak, which represents the defective and disordered structure of the material, while G is
generated by the vibration of carbon atoms hybridized by the Sp2 orbital [40]. The weak
peak at 437 cm−1 is caused by ZnO [41]. The characteristic peaks of rGO and ZnO can
be seen in the Raman spectrum of the sample, which provides further evidence of the
formation of rGO/ZnO nanocomposites.
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XPS technology was used to qualitatively and quantitatively analyze the chemical
elements of the rGO/ZnO-5 nylon fiber sample. The full spectrum of the rGO/ZnO-5
sample is shown in Figure 5a. The C, O, and Zn peaks can clearly be observed without
other characteristic peaks, indicating that there are no other impurities on the fiber surface.
Figure 5b shows the C 1s spectrum of the sample. Four peaks appear at positions 289.21 eV,
287.46 eV, 285.80 eV, and 284.66 eV, corresponding to COO, C=O, C-O, and C-C [42]. The
peak of C-C is significantly higher than the other peaks, indicating that rGO had been
successfully prepared. The O 1s spectrum is shown in Figure 5c. The three characteristic
peaks of 531.59 eV, 532.07 eV, and 530.8 eV respectively correspond to the area of oxygen
vacancies (OV), the surface-adsorbed oxygen components (OC), and the crystal oxygen
substances (OL) [43–45]. The characteristic peak area of OC is much higher than those of
OV and OL, indicating that the sensitive material has a strong ability to absorb and ionize
oxygen, which is conducive to improving the gas sensing performance. Figure 5d shows
the two characteristic peaks of Zn 2p (1044.60 eV and 1021.56 eV), which correspond to Zn
2p1/2 and Zn 2p3/2, respectively [46]. Taken together, these results prove that the composite
materials that formed on the surface of the nylon fiber are rGO and ZnO, and further
confirm the conclusions drawn from the XRD and Raman spectra.
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3.2. NO2 Gas Sensing Test and Analysis of the rGO/ZnO-5 Nylon Fiber Sensor

The test curve of the rGO/ZnO-5 nylon fiber sensor to NO2 gas at room temperature
is shown in Figure 6a. From 20 ppm to 100 ppm NO2, the sensor’s response time and
recovery time are similar. The response value of the sensor is able to recover to within
10% of the total response value when the NO2 concentration is as high as 100 ppm. For
100 ppm NO2 gas, the response time and recovery time are 216 s and 668 s, respectively.
As shown in Figure 6b, the sensor’s response values increase linearly with the increase
in the NO2 gas concentration and are 26.7% (20 ppm), 31.7% (40 ppm), 38.5% (60 ppm),
43.6% (80 ppm), and 49.6% (100 ppm). The linearity is as high as 0.998, indicating that the
sensor has high practical value. Figure 6c shows the five-cycle test results of the sensor
for 100 ppm NO2. The response value does not change significantly, which shows that
the sensor has good repeatability. In addition, a gas selectivity test of the sensor was also
performed, as shown in Figure 6d. The concentration of all the different gases was 100 ppm.
Compared with ammonia (NH3), ethanol vapor (CH3CH2OH), sulfur dioxide (SO2), and
carbon monoxide (CO), the response value of the sensor to NO2 gas is significantly higher
than that of the other gases, indicating that the sensor has high selectivity to NO2 gas. In
addition, humidity can affect the performance of flexible gas sensors. For NO2 gas sensors
based on an rGO/metal oxide composite, in general, the sensor’s response will decrease as
the humidity increases [47,48].

A flexibility test of the rGO/ZnO-5 nylon fiber sensor was also performed. Figure 7a
shows the flexibility test device. The sensor’s I–V characteristic test results after 500, 1000,
and 1500 bending cycles are shown in Figure 7b. The good linear relationship shows
that the conductivity of the sensor is still very good after many bending cycles, and the
resistance remained basically unchanged. For 100 ppm NO2, the response values of the
sensor after 500, 1000, and 1500 bending cycles are 47.2%, 48.7%, and 45.9%, respectively.
As shown in Figure 7c, compared with the response value (49.6%) without bending, they
exhibited no significant changes, which shows that the sensor has good flexibility.
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Table 1 shows a comparison between the sensing performance of our NO2 sensor and
that of other reported gas sensors. Generally speaking, metal oxide gas sensors have short
response and recovery times to gas at high temperatures [49], but the high-temperature
heating condition also has obvious disadvantages, such as high power consumption, a lack
of flexibility, and a limited application range. Guo et al. used laser micro-nanofabrication
technology to fabricate a graphene-based NO2 sensor with short response and recovery
times, but the sensor exhibited an obvious baseline drift phenomenon. Moreover, the
sensor substrate is a rigid ceramic structure, which is not flexible and cannot be applied
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in the wearable field [50]. Moreover, compared with other flexible gas sensors that work
at room temperature [51–53], the gas sensor has great advantages in terms of response
value, response time, and recovery time. In particular, on the premise of better response
and recovery times, the sensor has a high response value and no baseline drift, which are
of great value to the practical application of the sensor.

Table 1. Comparison between the sensing performance of our NO2 sensor and that of other reported
gas sensors.

Sensor Structure NO2 (ppm) Temp (◦C) Response (S) Tres/Trec (s) Baseline Drift Ref.

Zn2SnO4 film 40 200
29.3

Rg/R0
8/58 No Patil et al. [49]

RGO (two-beam laser interference) 20 RT
27%
4R/R0

10/7 Yes Guo et al. [51]

ZnO/graphene aerogel 100 RT
8.9%
4R/R0

~500/~500 Yes Liu et al. [29]

rGO/ZnO flowers and
nanoparticles 1.5 RT

1.4%
4R/R0

405/760 No Adu et al. [51]

rGO/ZnO nanorods 100 RT
17.4%

(4R/R0) 780/1980 Yes Jing et al. [52]

rGO/ZnO QDs 100 RT
49.6%
4R/R0

216/668 No This work

The gas sensing mechanism of the rGO/ZnO-5 nylon fiber sensor should follow the
surface charge model shown in Figure 8. The rGO has a high electron migration rate at
room temperature, and the rGO prepared in the experiment has a multilayer structure [53],
which further promotes the transmission of electrons. On the surface of the rGO/ZnO
nylon fiber, free electrons in ZnO will flow to the rGO, causing the composite’s resistance to
increase [54]. This is the reason why the resistance of the rGO/ZnO-5 nylon fiber sensor is
higher than that of the rGO nylon fiber sensor. When the sensor is exposed to NO2 gas with
strong oxidizing characteristics, the free electrons in the ZnO will be taken away by NO2
gas molecules to create a ZnO electron depletion layer, which causes electrons to return
from the rGO to the ZnO. The concentration of holes in the rGO will increase, thereby
increasing the electrical conductivity of the sensor. In addition, NO2 gas molecules will also
directly take away free electrons from the rGO, which further increases the concentration
of holes in the rGO [55]. This will also improve the electrical conductivity of the sensor.
Moreover, ZnO QDs are uniformly and densely distributed on the rGO layer, providing
more reactive sites for the adsorption of NO2 gas molecules. This will further accelerate the
rate of electron transfer, thereby improving the sensor’s response to NO2 gas.
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3.3. Over-Limit Warning Module and Wearable Application

The over-limit warning module is shown in Figure 9A. The overall size of the node
module is 2.4 cm × 2 cm. The small size facilitates its application in the field of wearable
electronics. The warning module has seven main parts, namely an ADC detection module,
a power switch, a warning indicator, an STC chip, a debug interface module, a power
indicator, and a power supply module. The power module includes two power supply
forms: battery and USB, which can be flexibly selected according to actual application
scenarios. The power indicator is yellow, and the warning indicator is red. The nylon fiber
sensor can be embedded in a mask because of its flexibility, which greatly promotes its
application in the field of wearable electronics. Figure 9B shows the test experiment on the
wearable sensor’s over-limit warning system. The alarm concentration of the over-limit
warning module for NO2 gas was set to 20 ppm. In a normal environment, the power
indicator is yellow but the warning indicator is not bright, indicating that the sensor’s
power supply and NO2 concentration are normal. When 20 ppm NO2 gas is input into
the environment, the warning indicator turns red, which shows that the sensor system can
perform the warning function.
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4. Conclusions

In summary, a flexible NO2 gas sensor (rGO/ZnO-5 nylon fiber sensor) that can
work at room temperature was designed and fabricated with the advantages of a high
response value, a high response speed, and good recoverability. Nylon fiber was used as
the substrate, which greatly improved the flexibility of the sensor. rGO and ZnO QDs were
used as sensitive materials to obtain high selectivity and good repeatability to NO2 gas.
The gas sensing mechanism of rGO and ZnO QDs composites was also revealed. There
is a highly linear relationship between the rGO/ZnO-5 nylon fiber sensor’s response and
the NO2 gas concentration in the range of 20–100 ppm. In addition, an over-limit warning
module was also designed and fabricated. The nylon fiber sensor was embedded in a mask,
and its application in the field of wearable electronics was preliminarily tested.
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