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Cardiovascular complications have been frequently reported in cancer patients and sur-
vivors, mainly because of various cardiotoxic cancer treatments. Despite the known car-
diovascular toxic effects of these treatments, they are still clinically used because of their
effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence
suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising
therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovas-
cular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic
enzyme that is expressed in cardiovascular tissues and overexpressed in different types of
cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both
cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds,
production of carcinogenic metabolites, DNA adduct formation, and generation of reac-
tive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce
CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon
Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detri-
mental in many ways. First, it can induce or exacerbate cancer treatment-induced cardio-
vascular complications. Second, it may lead to significant chemo/radio-resistance, under-
mining both the safety and effectiveness of cancer treatments. Therefore, numerous preclin-
ical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced
cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have uti-
lized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future
studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective
and chemo/radio-sensitizing effects of these phytochemicals.

Introduction
Cancer survivorship has significantly increased over the past two decades, thanks to advanced diagnosis
and treatment of different types of cancers. Currently, there are more than 15 million cancer survivors
in the United States and this number is expected to increase due to the continued improvement of diag-
nostics, therapeutics, and care models [1]. Although the increased survivorship is a cause for celebration,
two-thirds of cancer survivors experience at least one late adverse effect [2]. Cardiovascular disease is
the second highest cause of mortality in cancer survivors, after secondary malignancy. The cardiovascu-
lar toxicity of cancer treatments has been increasingly recognized as a critical issue in the care of cancer
survivors. Therefore, cardio-oncology has emerged as a clinical subspecialty with an ultimate goal to mit-
igate cardiovascular complications in cancer patients and survivors [3,4]. Cardiovascular complications
have been reported in cancer patients and survivors who received different types of cancer treatments
including anthracyclines, monoclonal antibodies, alkylating agents, tyrosine kinase inhibitors, immune
checkpoint inhibitors, proteasome inhibitors, and radiation, as reviewed in [5]. Despite the known car-
diovascular toxic effects of these treatments, they are still clinically used because of their effectiveness
as anti-cancer agents. Protection against cancer treatment-induced cardiotoxicity is challenging, because
shared mechanistic pathways may contribute to both the tumor suppressive and the cardiotoxic effects
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of cancer treatments. For instance, anthracycline-induced apoptotic cell death is a shared pathway for the anti-cancer
and cardiotoxic effects of anthracyclines [6]. Cardioprotective agents that have non-selective anti-apoptotic effects
will likely inhibit the anti-cancer effects of anthracyclines. Likewise, novel immune checkpoint inhibitors activate the
immune system to fight the cancer; however, this may lead to immune-mediated myocarditis [7]. In this scenario,
indiscriminate immunosuppression may protect the heart, but will likely undermine the anti-cancer effects of these
agents. Therefore, there is a critical need to identify therapeutic targets that have the potential to prevent cancer
treatment-induced cardiovascular complications without reducing their anti-cancer effects.

Cytochrome P450 1B1 (CYP1B1) is a monooxygenase enzyme involved in the metabolism of a variety of xenobi-
otics and endogenous compounds [8]. In this review, we will discuss the growing body of evidence suggesting that
CYP1B1 can be a promising therapeutic target in cardio-oncology. First, we will give a brief overview of the expression,
regulation, and metabolic activity of CYP1B1. Second, we will briefly discuss the role of CYP1B1 in both cardiovas-
cular diseases and cancer. Then, we will summarize the existing literature showing how CYP1B1 is involved in the
cardiovascular toxicity of different cancer treatments and the potential cardiovascular protective effects of CYP1B1
inhibitors. In parallel, we will also discuss the role of CYP1B1 inhibitors in preventing resistance to cancer treatments
to highlight that CYP1B1 inhibition may not only prevent cardiovascular toxicity, but also augment the anti-cancer
effects of different cancer treatments. Importantly, we will discuss how CYP1B1-mediated signaling pathways may
have divergent effects of the cardiovascular tissues and the cancer. At last, we will comment on the challenges that
face clinically targeting CYP1B1 and highlight future research directions.

CYP1B1
CYP1B1 is a member of the CYP1 gene family which also includes CYP1A1 and CYP1A2. A novel cytochrome P450
enzyme (P450-EF) was first purified from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated mouse embryonic
fibroblasts [9]. In 1994, P450-EF was identified and cloned as the mouse Cyp1b1 [10]. In parallel, human CYP1B1
was first cloned from TCDD-treated human epidermal keratinocytes [11]. CYP1B1 showed approximately 40% ho-
mology with both CYP1A1 and CYP1A2 [12]. The human CYP1B1 gene is located on chromosome 2 and contains
three exons and two introns [13]. Mouse and rat orthologs of CYP1B1 have also been cloned and characterized [12].
Although each of these orthologs has an mRNA of 5.2 kb and a predicted protein of 543 amino acids [12], they show
significant species differences in their regulation, metabolic activity, and tissue-specific distribution [10,12–14].

Expression
Unlike most cytochrome P450 enzymes, CYP1B1 expression has not been detected in the human liver; however, it
is expressed primarily in extrahepatic tissues [8]. Of importance in cardio-oncology, CYP1B1 has been shown to be
expressed in cardiovascular tissues and overexpressed in malignant tumors. Indeed, CYP1B1 has been detected at the
mRNA and protein levels in cardiovascular tissues of human and experimental animals [15]. CYP1B1 mRNA and
protein have been detected in the rat and mouse heart and in the cardiac-derived H9c2 cells [16–19]. In addition
to the myocardial tissues, CYP1B1 has been detected in the vasculature in both vascular smooth muscle cells and
endothelial cells [20–25]. Intriguingly, CYP1B1 has been shown to be overexpressed in malignant tumor tissues [26],
particularly in hormone-responsive tissues such as prostate [27], breast [28], and ovarian cancers [29,30]. Additional
immunohistochemical studies showed that CYP1B1 protein expressions were detected in 53 out of 62 samples of
the extrahepatic tissue. Among these 62 samples include human brain cortex tissues, kidney tissues, and lymphoid,
prostate, cervix, uterus, oocytes, bone marrow, epithelial, smooth muscle cells, and ovary cells [22,31–33].

Regulation
The CYP1B1 gene is transcriptionally induced by polycyclic aromatic hydrocarbons (e.g. TCDD) via the Aryl hy-
drocarbon Receptor (AhR) complex, which is a transcriptional factor that regulates CYP1A1 and CYP1B1 [11,12].
Xenobiotic-responsive elements (XREs) have been identified in the 5′ regulatory region of the CYP1B1 gene [34].
Induction of the human, rat and mouse CYP1B1 gene expression by AhR agonists has been well-documented in a
variety of cell types [35–39]. In addition, the AhR is highly expressed in the heart [40], and activation of the AhR
has been shown to induce CYP1B1 in cardiovascular tissues. For instance, concentrated ambient particles induce
CYP1B1 mRNA in rat hearts [41]. Similarly, benzo(a)pyrene, a component of cigarette smoke, has been shown to
induce CYP1B1 in the rat heart [42]. Conversely, AhR antagonists inhibit constitutive CYP1B1 expression [43]. In-
terestingly, CYP1B1 has been shown to be constitutively expressed in the hearts of both control and AhR-deficient
mice, which implies the involvement of other pathways that regulate cardiac CYP1B1 [44].
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Figure 1. CYP1B1 is a central player in the metabolism of endogenous compounds

CYP1B1 metabolizes estradiol, testosterone, arachidonic acid, retinol, and melatonin to the biologically active metabolites: 2- and

4-hydroxyestradiol, 6β-hydroxytestosterone, mid-chain and terminal hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic

acids (EETs), retinoic acid, and 5-hydroxymelatonin, respectively.

AhR-independent up-regulation of CYP1B1 may be mediated by inflammation, estrogen signaling or other en-
dogenous compounds. Inflammation has been shown to down-regulate most cytochrome P450 enzymes of the CYP1,
CYP2, and CYP3 families [45,46]. In contrast, a few isoforms are up-regulated by inflammation such as CYP4F en-
zymes and CYP1B1 [46,47]. Specifically, the inflammatory cytokine interleukin-6 (IL-6) has been shown to induce
CYP1B1 via miR27b in colorectal and breast cancer cells [48,49]. Tumor necrosis factor-α (TNF-α) has also been
shown to up-regulate CYP1B1 via a p38-mediated mechanism in rat liver epithelial cells [32,50]. CYP1B1 is also
up-regulated by 17β-estradiol through Estrogen Receptor α (ERα) [51]. G protein estrogen receptor (GPER) is also
involved in CYP1B1 regulation [52]. Leptin and prostaglandin E2 have also been shown to up-regulate CYP1B1 ex-
pression through ligand-independent activation of the ERα pathway in MCF-7 breast cancer cells [53,54]. Other
pathways that may play a role in CYP1B1 regulation include: the peroxisome proliferator-activated α (PPARα) in
MCF-7 and HCT116 cells [55,56], the Wnt/β-catenin signaling pathway in endothelial cells and adreno-corticotropic
hormone (ACTH) via cAMP in adrenal cells [36,57–59].

Metabolic activity
CYP1B1 has been shown to metabolize both endogenous (Figure 1) and exogenous compounds. CYP1B1 plays an
important role in steroid metabolism, as reviewed in [60]. Estradiol is the preferred substrate for CYP1B1, followed
by progesterone, then testosterone [61]. CYP1B1 metabolizes estradiol and estrone to their respective 4-hydroxy and
2-hydroxy metabolites [62–64]. Although at a lower activity, CYP1B1 has also been found to metabolize estradiol to
15α-, 6α-, 16α-, and 6β-hydroxy metabolites [61]. The 4-hydroxy-estradiol can be transformed to semiquinones and
quinones that can form DNA adducts resulting in oncogenic effects [65,66] and undergo redox cycling to generate
reactive oxygen species (ROS) [67]. Intriguingly, 4-hydroxyestradiol has been shown to up-regulate CYP1B1 in hu-
man mammary epithelial MCF-10A cells in a positive feedback loop [68]. Regarding androgen metabolism, CYP1B1
catalyzes the 6β-hydroxylation and 16α-hydroxylation of testosterone [61,63].

CYP1B1 is also involved in arachidonic acid metabolism. Arachidonic acid is metabolized by cytochrome P450
monooxygenases to different regioisomers of epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids
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(HETEs) [15,69,70]. Human and rat CYP1B1 orthologs have been reported to metabolize arachidonic acid primar-
ily to mid-chain HETEs, while the main metabolites of the mouse ortholog were EETs [71,72]. CYP1B1-mediated
production of mid-chain HETEs have been implicated in the pathogenesis of cardiac hypertrophy [72,73], and in
doxorubicin (DOX)-induced cardiotoxicity [74]. In addition to steroid and arachidonic acid metabolism, both mouse
and human CYP1B1 orthologs have been shown to oxidize retinol to retinal and retinal to retinoic acid [71,75]. Mela-
tonin can also be metabolized to 6-hydroxymelatonin or converted back into N-acetylserotonin by CYP1B1 [76,77].
Regarding xenobiotic metabolism, CYP1B1 binds planar polyaromatic ring systems such as polyaromatic hydrocar-
bons to catalyze a monooxygenation step to produce carcinogenic metabolites [78,79]. CYP1B1 has also been shown
to metabolize clinically relevant drugs such as theophylline, caffeine, and flutamide [80,81].

Role of CYP1B1 in cardiovascular diseases
We and others have demonstrated a significant role of CYP1B1 in the pathogenesis of cardiovascular diseases, most
remarkably in cardiac hypertrophy and hypertension (Table 1). El-Kadi and colleagues demonstrated that cardiac
CYP1B1 expression was up-regulated in different models of cardiac hypertrophy induced by isoproterenol [82–84],
pressure overload [85,86], angiotensin II [73], and polycyclic aromatic hydrocarbons [42,87]. Additionally, heavy
metal-induced cardiotoxicity has been associated with up-regulation of cardiac CYP1B1 [88–90]. The induction of
CYP1B1 in these studies was associated with a perturbation in cardiac arachidonic acid metabolism with generation
of more terminal and mid-chain HETEs. Importantly, inhibition of CYP1B1-mediated mid-chain HETEs produc-
tion has been shown to prevent cardiac hypertrophy in male rats [73,86]. Confirming the causative role of CYP1B1
in developing cardiac hypertrophy, overexpression of CYP1B1 using CRISPR technology has been shown to induce
cellular hypertrophy in the cardiac-derived RL-14 cells [72]. Inhibition of CYP1B1 has also been recently shown
to prevent uremic toxins-induced cardiac hypertrophy [91]. Additionally, 2-methoxyestradiol, a specific CYP1B1
inhibitor, protected against pressure overload-induced cardiac hypertrophy via antioxidant and anti-inflammatory
properties [86]. Similarly, Malik and colleagues have demonstrated an important role of CYP1B1 in hyperten-
sion and hypertension-associated pathophysiology [92]. Intriguingly, they have shown a sexually dimorphic role of
CYP1B1 where CYP1B1 played a detrimental role in male rodents [93–95], while it had a protective effect in females
[96,97]. The detrimental effects of CYP1B1 in male rodents have been attributed to CYP1B1-mediated production
of 6β-hydroxytestosterone which was shown to exacerbate angiotensin II-induced hypertension [93], renal dysfunc-
tion [94], and vascular changes [95]. On the other hand, the protective effects of CYP1B1 in female rodents have
been attributed to CYP1B1-mediated metabolism of estrogen to 2-methoxyestradiol [96,97]. Furthermore, CYP1B1
has been shown to contribute to the development of atherosclerosis, hypertension, and angiotensin II-induced aor-
tic aneurysm in male apolipoprotein E-deficient mice [98,99]. In vitro studies have suggested the contribution of
CYP1B1-mediated formation of genotoxic metabolites and DNA adducts in the development of atherosclerosis by
polyaromatic hydrocarbons [100,101].

Several studies have reported the expression of other cytochrome P450 enzymes in cardiovascular tissues includ-
ing human heart, aorta, and coronary arteries [16,102,103], as previously reviewed [15,104]. CYP2J2 is the most
highly expressed cytochrome P450 enzyme in human cardiovascular tissues [103]. CYP2J2 metabolizes arachi-
donic acid to EETs which exhibit cardioprotective and anti-inflammatory properties [105,106]. Although overex-
pression of CYP2J2 has been shown to protect against anthracycline-induced cardiotoxicity in transgenic mice [107],
CYP2J2-mediated EETs may promote tumor progression and metastasis [108,109]. Therefore, CYP2J2 may not be a
reasonable therapeutic target in cardio-oncology. On the other hand, CYP1A1 has been shown to contribute to both
anthracycline-induced cardiotoxicity [110–113] and tumor progression and survival of cancer cells [114,115]. There-
fore, similar to CYP1B1, CYP1A1 may also be a reasonable therapeutic target in cardio-oncology. Taken together,
isoform-specific targeting of cytochrome P450 enzymes is critical in cardio-oncology, since different isoforms may
have opposing effects on the cancer or the cardiovascular system.

Role of CYP1B1 in cancer
The human CYP1B1 enzyme is overexpressed in numerous tumors compared with normal tissues [124]. For instance,
immunohistochemistry reports showed high CYP1B1 mRNA and protein levels in prostate tumors, mammary tumors
and peritumor benign tissues, and ovarian cancer tissues [30]. Similarly, CYP1B1 was shown to be expressed in eight
different cell lines that represent four tumor tissues, with the highest expression levels manifested in HeLa, SKOV-3,
and MDA-MB-231 cells, respectively [124]. CYP1B1 overexpression has been associated with the increase in cancer
risk via pro-inflammatory cytokines, metastasis, and disturbance in the regulation of cell proliferation, migration, and
differentiation [125–128]. Additionally, CYP1B1 overexpression is also associated with increased tumor size, a higher
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Table 1 Role of CYP1B1 in cardiovascular diseases

Cardiovascular
pathology Model

Effect on CYP1B1
expression Effect of CYP1B1 inhibition References

Cardiac
hypertrophy

Isoproterenol-induced cardiac
hypertrophy in male SD rats

Up-regulation of CYP1B1 gene and
protein expression in the heart

Not reported [72,83]

Isoproterenol-induced cellular
hypertrophy in RL-14 cells

Induction of CYP1B1 gene
expression

Inhibition of CYP1B1 by TMS or siRNA
ameliorated isoproterenol-induced cellular

hypertrophy

[72]

Abdominal aortic constriction in
male SD rats

Increase in the protein expression of
CYP1B1

2-ME inhibited left ventricular hypertrophy via
antioxidant and anti-inflammatory mechanisms

[85,86]

Angiotensin II-induced cellular
hypertrophy in RL-14 and H9c2

cells

Induction of the protein expression
of CYP1B1 and increased formation
of its associated mid-chain HETEs

Inhibition of CYP1B1 by TMS, resveratrol,
fluconazole or 19-HETE attenuated angiotensin

II-induced cellular hypertrophy
[73,116–118]

Angiotensin II-induced cardiac
hypertrophy in male SD rats

Induction of CYP1B1 protein
expression, but no effect on
CYP1B1 gene expression

Inhibition of CYP1B1 by TMS or 19-HETE
ameliorated angiotensin II-induced cardiac

hypertrophy

[73,118]

Hypertension DOCA salt-induced hypertension
in male Sprague–Dawley rats

No significant effect on CYP1B1
expression or activity

Inhibition of CYP1B1 by TMS reduced blood
pressure, ameliorated cardiovascular and renal
hypertrophy, and prevented vascular reactivity

and endothelial dysfunction

[119]

Male SHR rats Higher CYP1B1 activity in the aorta,
heart and kidney of SHRs as

compared with control WKY rats

Inhibition of CYP1B1 by TMS reduced blood
pressure, decreased vascular reactivity,

cardiovascular hypertrophy, endothelial and renal
dysfunction, and cardiac and renal fibrosis

[120]

Angiotensin II-induced
hypertension in intact male and

OVX female mice

Not reported Inhibition of CYP1b1 with 2-ME reduced blood
pressure in ovariectomized female and intact male

mice

[121]

Angiotensin II-induced
hypertension in male mice

Increased renal Cyp1b1 activity,
increased 12-HETE and 20-HETE

metabolites

Cyp1b1 gene disruption reduced blood pressure
and renal damage

[122]

Angiotensin II-induced
hypertension in female mice

Increased cardiac Cyp1b1 protein
expression and catalytic activity

Cyp1b1 gene disruption exacerbated
hypertension and renal damage

[97,123]

Angiotensin II-induced
hypertension in male mice

Increased cardiac cytochrome P450
1B1 activity and plasma levels of

6β-hydroxytestosterone

Cyp1b1 gene disruption mitigated angiotensin
II-induced increase in systolic blood pressure and

associated cardiac hypertrophy and fibrosis

[93]

Atherosclerosis ApoE-deficient male mice on
atherogenic diet

Increased cardiac Cyp1b1 activity Cyp1b1 inhibition by TMS or gene disruption
ameliorated atherosclerosis, and reduced blood

pressure, endothelial dysfunction, oxidative stress
and plasma lipids

[99]

Aortic aneurysm Angiotensin II-induced aortic
aneurysm in male ApoE-deficient

mice

Not reported Cyp1b1 inhibition by TMS or Cyp1b1 gene
disruption minimized aortic aneurysms via

reduction in oxidative stress and inflammation

[98]

Heavy
metal-induced
cardiotoxicity

Acute arsenic toxicity in male
C57Bl/6 mice

Induction of CYP1B1 gene
expression

Not reported [90]

Acute mercury toxicity in male
C57Bl/6 mice

Induction of cardiac CYP1b1 gene
expression

Not reported [89]

Cadmium-induced toxicity in
newborn chicks

Increase in total CYP1B1 expression Not reported [88]

Abbreviations: ApoE, apolipoprotein E; DOCA, deoxycorticosterone acetate; SHR, spontaneously hypertensive rat; TMS,
2,4,3′,5′-tetramethoxystilbene; WKY, Wistar–Kyoto rat; 2-ME, 2-methoxyestradiol.

tumor grade, frequent lymph node metastasis, and lymphovascular invasion [125]. In cancer cells, CYP1B1 is thought
to play a role in the bioactivation of xenobiotics, metabolism of steroid hormones, and the production of multiple
pro-inflammatory and pro-angiogenic factors [26]. The detrimental effects of CYP1B1 have been demonstrated not
only in cancer cells, but also in other cell types, including fibroblasts, endothelial cells, pericytes, and immune cells
which constitute the tumor micro-environment, as reviewed in [26]. This is especially important, considering the
crucial role of the tumor micro-environment in cancer progression and metastasis [26]. For instance, in endothelial
cells, CYP1B1 was observed to promote endothelial nitric oxide synthase (eNOS) expression as well as nitric oxide
levels, responsible for the many inflammatory and angiogenesis effects important for cancer progression [129,130].

The exact mechanisms of CYP1B1 overexpression in cancer cells and tumors are not fully elucidated. However,
CYP1B1 is particularly overexpressed in hormone-related or estrogen-dependent cancers, such as breast, ovarian,
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and prostate cancers [126,131]. This can be attributed to CYP1B1 involvement in the metabolism of estrogen, proges-
terone, testosterone, and other steroid-related hormones. CYP1B1-mediated metabolism of these hormones can result
in the generation of genotoxic metabolites and oxidative damage [30,132]. Additionally, pro-inflammatory cytokines
such as TNF-α and IL-6 have been especially known to induce the expression of CYP1B1 [49,133]. The mRNA and
protein levels of the AhR and CYP1B1 are higher in inflammatory breast cancer tissues [126]. CYP1B1 role in carcino-
genesis may be attributed to its ability to metabolize polycyclic aromatic hydrocarbons and activate pro-carcinogens
into DNA-reactive metabolites [134]. Additionally, CYP1B1 converts melatonin into N-acetylserotonin which then
activates tyrosine receptor kinase B (TrkB), eventually leading to breast cancer cell survival and migration [77].
WY-14643, a PPARα agonist, has been shown to increase the protein and mRNA levels of CYP1B1 in MCF-7 cells
via PPARα-dependent mechanism, playing a critical role in the progression of human breast cancer [55]. Another
way in which CYP1B1 has been shown to play a role in cancer development is by enhancing the invasion of MCF-7
and MCF-10A cells. CYP1B1 has been shown to induce epithelial–mesenchymal transition (EMT) and up-regulates
several transcription factors involved in cell growth and metastasis via Sp1 induction [126]. A major metabolite gener-
ated by CYP1B1, 4-hydroxyestradiol, also mediates many oncogenic events in cells via the formation of DNA adducts
[126,128]. Intriguingly, overexpression of CYP1B1 in tumors can also be attributed to its induction by chemothera-
peutic agents and radiation therapy, as summarized in Table 2 and discussed in more detail in subsequent sections of
the review.

The association between CYP1B1 polymorphisms and increased cancer risk has been extensively studied [30]. For
instance, in 2015, Li and colleagues conducted a meta-analysis to carry a comprehensive and quantitative analysis on
the role of CYP1B1 in cancer [127]. This analysis specifically focused on A453G and G119T, which are two critical
polymorphisms that have been associated with the replacement of important amino acids that play a crucial role in
catalytic activity. This extensive analysis found a significant association between G119T and A453G with prostate,
lung, colorectal, endometrial, breast, bladder, and several other cancer risks [127]. Its polymorphisms, Val432Leu,
Arg48Gly, Ala119Ser, and Asn453Ser specifically, have been linked to increasing estrogen metabolism responsible for
genotoxic metabolites that eventually result in hormone-induced cancers [30]. Additionally, a different meta-analysis
focused on several other CYP1B1 polymorphisms. The analysis found that Leu432Val polymorphism is associated with
ovarian, lung, and endometrial cancer risks. It also found that Asn453Ser and Arg48Gly are associated with endome-
trial cancer risks, and Ala119Ser is associated with breast cancer risk [135]. In contrast, another analysis found that
the CYP1B1 polymorphisms Arg48Gly, Ala119Ser, and Asn453Ser are not associated with breast cancer risk [136]. The
mechanisms by which CYP1B1 polymorphisms increase cancer risk include enhanced estrogen and progesterone re-
ceptor signaling, also known to influence cancer treatment response [30]. When studying the effect of polymorphisms
on chemotherapeutic drug treatments, it was found that polymorphisms induce a slower response to anthracycline
agents, whereas low polymorphism levels were shown to improve chemotherapy response [128]. Therefore, the pres-
ence of homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism of CYP1B1
was associated with lower response rates, shorter progression-free survival, and an overall decrease in patient survival
among patients with triple-negative breast cancer [128]. This study shows the ability of CYP1B1 to interfere with can-
cer treatments. In an era of precision medicine, cancers with high-activity CYP1B1 variants may better respond to
the beneficial effects of CYP1B1 inhibitors.

CYP1B1 inhibitors
The detrimental role of CYP1B1 in the pathogenesis of cancer and cardiovascular diseases, among other patholo-
gies, has stimulated active research programs to identify and synthesize potent and selective CYP1B1 inhibitors. The
medicinal chemistry, classification, and relative potency and selectivity of these inhibitors have been discussed in
previously published excellent review articles [137–140]. Phytochemicals, which are chemicals derived from natu-
ral plants, have gained great popularity in the pharmaceutical and medicinal applications as potential cardioprotec-
tive and chemopreventive compounds due to their anti-inflammatory, antioxidant, anti-angiogenic, anti-mutagenic,
and anti-proliferative properties [141–145]. Although not highly selective, phytochemicals have been the most com-
mon source for CYP1B1 inhibitors. Phytochemical groups that show strong inhibitory activity and relative selectiv-
ity toward CYP1B1 include stilbenes, flavonoids, coumarins, anthraquinones, and alkaloids [26,137]. More selective
CYP1B1 inhibitors have been developed, including: 2,4,3′,5′-tetramethoxystilbene which is a highly potent and se-
lective competitive inhibitor of CYP1B1 [146].

Phytochemicals are also of great interest as chemopreventive compounds due to their low toxicity, no apparent side
effects, their regulatory role in cell signaling and gene expression, and high tolerance demonstrated in both in vivo
and in vitro studies [142,147]. Flavonoids are among the most common phytochemicals, approximately 6000 different
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Table 2 Effect of cancer treatments on CYP1B1 expression

Agent Model Dose/concentration Effect on CYP1B1 References

Cyclophosphamide
HL-60S and HL-60R

human promyelocytic leukemia
sensitive (S) and resistant (R) cell lines

100 and 500 μg/ml
1, 2, 3 days

Concentration-dependent inhibition of
gene expression

[175]

Doxorubicin
(DOX)

Zebrafish 100 μM
40 h

Induction of gene and protein
expression

[113]

C57Bl/6 male and female mice 20 mg/kg single dose
1 day, 6 day

Induction of gene expression in the
heart of male mice only

[19]

Sprague–Dawley male rats 3 mg/kg × 5 doses (over
2-week-period)

1 day post

Induction of gene expression in the
heart Increased mid-chain HETEs

[74]

Sprague–Dawley male rats 2.5 mg/kg × 6 doses (over
2-week-period)
14 days post

Induction of gene expression in the liver
and kidney

[168]

Sprague–Dawley male rats 15 mg/kg single dose
1 day post

Induction of gene expression in the liver
and kidney

[167]

Sprague–Dawley male rats 15 mg/kg single dose
1 day post

Induction of gene and protein
expression in the heart

[110]

RL-14 human cardiac-derived cells 10 μM
12 h

Induction of gene and protein
expression and catalytic activity

[74]

RL-14 human cardiac-derived cells 10 μM
24 h

Induction gene and protein expression
and catalytic activity

[176]

H9c2 rat cardiac-derived cells 1–10 μM
2 h

Concentration-dependent induction of
CYP1B1 gene expression

[111]

Daunorubicin Sprague–Dawley male rats 5 mg/kg single dose
1 day post

No change in gene or protein
expression in the heart

[169]

Dasatinib H9c2 rat cardiac-derived cells 0–160 μM for
24 h

Induction of gene expression [177]

Docetaxel MDA 453
BT-20
MCF-7

(breast carcinoma)

8 ng/ml
4 h

Induction of gene expression in
MDA-453 and BT-20 cells, No change

in MCF-7

[178]

Sunitinib Wistar albino male rats 25, 50, and 100 mg/kg daily for 4
weeks

1 day post

Dose-dependent induction of gene and
protein expression in the liver and

kidney

[179]

Radiation Human skin Ultraviolet B
0–4 minimal erythema doses for 0–48 h

Induction of gene and protein
expression in skin biopsies

[180]

Peripheral blood mononuclear cells Solar radiation
Measured in (W/m2) 1 m above the
ground for 24 h and given as daily

duration (minutes) of the radiation effect
exceeding 120 W/m2

Significant correlation between solar
radiation and CYP1B1 mRNA levels

[181]

Zebrafish embryos Ultraviolet B
8.9, 17.9, and 26.8 kJ/m2 for 2, 4, and

6 h daily for two consecutive days

Induction of gene expression [182]

HaCaT human keratinocytes Ultraviolet B
Dose 20 mJ/cm2 for 0–24 h

Induction of CYP1B1 gene transcript [183]

HaCaT human keratinocytes Ultraviolet
0–6.6 mJ/cm2 and cultured for 6 h

before cell harvest

Induction of protein expression and
DNA adduct formation

[184]

types existing today, found in fruits, vegetables, grains, teas, and wine as well as other beverages [142]. Flavonoids
have been suggested for chemoprevention, which may be attributed to their ability to inhibit CYP1B1 expression
and activity [26,142,148]. Aside from their potential chemopreventive role in cancer, flavonoids and polyphenolic
compounds have also been shown to prevent various other diseases such as obesity, hypertension, and atherosclerosis,
possibly via CYP1B1 inhibition [143,144,149]. For instance, a previous study focused on coronary heart disease found
that flavonoids provide protective effects such as anti-inflammatory, antithrombotic, anti-ischemic, antioxidant, and
vasorelaxant [150]. Moreover, flavonoids have been shown to decrease the risk of coronary heart disease through an
improvement of coronary vasodilatation, a decrease in blood clotting in platelets, and a prevention of low-density
lipoprotein (LDLs) oxidation [150,151].
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Recent efforts have been exerted to discover the CYP1B1 inhibitory activity of commonly used drugs. Intrigu-
ingly, the anti-fungal drug fluconazole has been shown to inhibit CYP1B1 and protect against angiotensin II-induced
cardiac hypertrophy [152]. Similarly, the clinically relevant β-blocker carvedilol has been found to inhibit CYP1B1
through a systematic drug repurposing approach [153]. Metformin, a medication usually given to treat diabetes, has
also been shown to inhibit CYP1B1 expression, specifically in breast cancer cells [154]. Nevertheless, the mechanistic
role of CYP1B1 inhibition in mediating the pharmacological effects of these agents is still poorly understood. In addi-
tion, almost all inhibitors of CYP1B1 have inhibitory activity toward other members of the CYP1 family, particularly
CYP1A1 [155]. Although this lack of selectivity toward CYP1B1 may be undesirable from a mechanistic point of view,
it may offer a therapeutic advantage since CYP1A1 is also a reasonable target in cardio-oncology as discussed earlier.
Indeed, a number of studies have reported a protective effect of CYP1 inhibitors without discerning the protective ef-
fects to either CYP1A1 or CYP1B1 [112,113]. That being said, 2,4,3′,5′-tetramethoxystilbene (TMS) exhibited 50-fold
selectivity for CYP1B1 over CYP1A1 and 500-fold selectivity for CYP1B1 over CYP1A2 [146]. Therefore, selective
pharmacological inhibition of CYP1B1 can be achieved by using TMS in mechanistic studies. Genetic approaches
using Cyp1b1 knockout mice may also be employed to mechanistically discern the exact role of Cyp1b1 [156].

Anthracycline-induced cardiotoxicity
Anthracyclines (e.g. DOX) are a group of chemotherapeutic agents used to treat hematologic malignancies and solid
tumors in both pediatric and adult cancer patients. However, the clinical utility of anthracyclines is limited by a
significant anthracycline-induced cardiotoxicity which may progress to end-stage heart failure [157,158]. Indeed, the
cardiotoxic effects of anthracyclines were reported in cancer patients as early as the 1970s [159,160]. Anthracyclines
have both acute and chronic cardiovascular toxic effects. Acute cardiotoxicity occurs in up to 11% of patients during
or soon after the administration of anthracyclines and include various arrhythmias, hypotension, and acute heart
failure [161,162]. On the other hand, chronic anthracycline-induced cardiotoxicity is dose-dependent and results
in irreversible cardiomyopathic changes that affect approximately 2% of anthracycline-treated patients [163]. The
precise mechanism of anthracycline-induced cardiotoxicity has not been fully elucidated yet, despite more than 40
years of research. There are different proposed mechanisms including: increased ROS, mitochondrial dysfunction,
apoptotic cell death, altered molecular signaling, and perturbed myocardial energy metabolism [161,164–166].

Effect of anthracyclines on CYP1B1 expression
In vitro and in vivo studies have demonstrated the induction of CYP1B1 by DOX (Table 2). We first reported that
DOX induced CYP1B1 gene expression in H9c2 cardiomyoblasts [111], an effect that was confirmed in RL-15 human
cardiomyocytes at the gene, protein, and catalytic activity levels [74]. We were also the first to report that acute DOX
administration induced CYP1B1 in the heart, liver, and kidney of male Sprague–Dawley rats [110,167]. Chronic DOX
toxicity has also been shown to induce CYP1B1 in the heart, liver, and kidney [74,168]. Importantly, DOX-mediated
induction of CYP1B1 was associated with a significant increase in mid-chain HETEs metabolites in the heart of male
rats [74]. Intriguingly, we have recently demonstrated a sex-dependent induction of Cyp1b1 gene expression by acute
DOX administration in male C57Bl/6 mice, but not in female mice [19]. This male-specific induction of Cyp1b1 was
associated with a significant sexual dimorphism with male-specific cardiotoxicity [19]. While DOX has been shown
to induce CYP1B1 expression in vivo and in vitro, a study using another anthracycline, daunorubicin, showed no
changes in CYP1B1 gene or protein expression in the heart of male Sprague–Dawley rats [169].

Nevertheless, the aforementioned studies have not precisely defined the mechanism of CYP1B1 induction by DOX.
Studying the general mechanisms of CYP1B1 induction, we can speculate that DOX may induce CYP1B1 via AhR
activation, ROS generation, and/or inflammatory cytokines production (Figure 2). DOX has been shown to activate
the AhR in hearts of C57Bl/6 mice, leading to an induction of Cyp1a1 [170]. Although the effect of DOX-induced
AhR activation on Cyp1b1 expression was not reported in that study, it is inferred that DOX induced CYP1b1 since
it is an AhR-dependent gene, similar to Cyp1a1. The authors have attributed the DOX-induced AhR activation to
binding of DOX to the AhR due to its planar structure that resembles polyaromatic hydrocarbon receptors [170].
Counterintuitively, DOX-induced cardiotoxicity was exacerbated in AhR knock-out mice [170]. The cytoprotective
effect of the AhR may be attributed to its intricate interplay with other signaling pathways in the heart, rather than
its role in cytochrome P450 regulation. In contrast, DOX-induced apoptosis in H9c2 cardiomyoblasts was amelio-
rated by ginsenoside Rb1 via inhibition of the AhR pathway [171]. DOX has also been shown to generate a copious
amount of ROS, particularly in the heart [172]. These ROS have been shown to induce CYP1B1 as well [173]. At last,
DOX has been shown to provoke a strong inflammatory response which may lead to CYP1B1 induction, particu-
larly through IL-6 and TNFα-mediated signaling [167,174]. Intriguingly, DOX-induced inflammation in the heart

2904 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Clinical Science (2020) 134 2897–2927
https://doi.org/10.1042/CS20200310

Figure 2. Possible mechanisms of DOX-mediated induction of CYP1B1

DOX may induce CYP1B1 via different mechanisms. First, DOX may directly or indirectly activate the AhR. Upon its nuclear translo-

cation and binding to the AhR Nuclear Translocator (ARNT), the AhR–ARNT heterodimer activates the XRE to induce CYP1B1 gene

transcription. DOX may also induce CYP1B1 by generating ROS and eliciting an inflammatory response via IL-6 and TNF-α. Es-

trogen can also induce CYP1B1 gene expression via ERα; however, the role of DOX in this pathway is not known. Induction of

CYP1B1 leads to both cardiovascular toxicity and increased chemoresistance.

of C57Bl/6 mice was sexually dimorphic with stronger inflammatory response in hearts of male mice [19]. This was
associated with male-specific induction of Cyp1b1 gene expression, strongly suggesting an important role of inflam-
mation in DOX-mediated up-regulation of CYP1B1 [19].

Cardioprotective effects of CYP1B1 inhibitors
Protection from anthracycline-induced cardiotoxicity has been provided by several natural compounds with CYP1B1
inhibitory activity both in vitro and in vivo (Table 3). It is important to mention that these compounds are not se-
lective inhibitors to CYP1B1 and they have multiple other targets that may mediate their cardioprotective effects.
Nevertheless, the CYP1B1 selective inhibitor TMS has been shown to protect from chronic DOX-induced cardiotox-
icity in male Sprague–Dawley rats in vivo and in RL-1 cardiomyocyte-like cells in vitro [74]. As summarized in
Table 3, the cardioprotective effects of CYP1B1 inhibitors have been shown to be mediated by reduction in oxidative
stress and apoptosis [185–188], improving mitochondrial function [189], reversing altered energy metabolism [190],
protection from DOX-induced senescence in vascular smooth muscle cells [191], and reducing mid-chain HETEs
concentration [74].

Chemosensitizing effects of CYP1B1 inhibitors
CYP1B1 inhibitors have also been shown to enhance the chemotherapeutic effects of DOX in several cancer cell lines
including lung cancer [192–194], breast cancer [195–201], liver cancer [201–204], glioblastoma [205], prostate can-
cer [206], colorectal cancer [207,208], gastric cancer [209], and leukemia [210,211]. Importantly, several inhibitors
have also been shown to overcome DOX resistance in DOX-resistant cancer cell lines [209,210,212–217]. Although
all these compounds (Table 3) are known inhibitors of CYP1B1, the role of CYP1B1 in mediating the chemosensitiz-
ing effects of these compounds have not been determined in the summarized studies. The chemosensitizing effects
of these compounds have been attributed to other mechanisms including: AMPK activation to promote cell apop-
tosis [192], regulating miR-520b/ATG7 axis [204], miR-101/Nrf2 pathway [218], FZD7/β-catenin pathway [202],
down-regulating P-glycoprotein (P-gp) expression [200], and the PTEN/Akt pathway [197]. Inhibition of CYP1B1
may interplay with these pathways leading to the chemo-sensitizing effects.
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Table 3 Cardioprotective and chemosensitizing effects of CYP1B1 inhibitors toward anthracyclines

Inhibitor
Inhibition IC50

(nM) Cardioprotective effects Chemosensitizing effects

Acacetin 7–14 [219–221] Not reported Enhances the chemotherapeutic effect of DOX in non-small-cell
lung carcinoma cells [194]

Isorhamnetin 17 [219] Protection from chronic DOX-induced
cardiotoxicity in vivo in rats and in vitro in H9c2

cells [201]

Potentiates DOX-induced toxicity in MCF-7, HepG2, and Hep2
cancer cells [201]

Chrysin 24–270 [219,220] Protection from acute and chronic
DOX-induced cardiotoxicity in vivo in rats

[222,223]

Enhanced cytotoxicity of DOX in a spheroid culture model of
human lung squamous cell carcinoma [224], BEL-7402/ADM
[225], lung cancer A549 cells [192], and human non-small-cell

lung cancer cell lines [193]

Apigenin 25 [219] Attenuated chronic DOX-induced
cardiotoxicity in in vivo in rats and in vitro in rat

cardiomyocytes [186–188]

Augmented the cytotoxic effect of DOX against HepG2 cells
[203], and DOX-resistant hepatocellular carcinoma cell line

BEL-7402/ADM [204,218,226]
Reverse chemo-resistance to DOX in DOX–resistant breast

cancer cells (MCF–7/ADR) [198]

Kaempferol 47 [219] Protected from chronic DOX-induced
cardiotoxicity in vivo in rats and in vitro in H9c2

cells [227]

Potentiated the cytotoxic effect of DOX in glioblastoma cells
[205]

Quercetin 77 [219] Protected rat and human cardiomyocytes and
H9c2 cells from DOX-induced toxicity in vitro

[176,188,189,199,228].
Protected from chronic DOX in rats [190,229]

and mice [185] in vivo.
Augmented the cardioprotective effect of

losartan against chronic DOX cardiotoxicity
[230]

Enhanced DOX anti-cancer effects in xenografts of leukemia
P388 cells [185], liver cancer cells [231], 4T1 breast cancer

cells [232,233]
Reversed chemoresistance to DOX in hepatocellular carcinoma
cells [202], breast cancer cells [200,212], prostate cancer cells

[206], multidrug-resistant leukemia K562 cells [210]
Enhanced chemotherapeutic effect of DOX against human

breast cancer cells [195–197,199,234], human colorectal HT29
cancer cell line [208], neuroblastoma cells [235]

Luteolin 79 [219] Protected against DOX-induced
cardiomyocyte toxicity in vitro [188]

Attenuated acute DOX-induced myocardial
lipid peroxidation in vivo [236]

Luteolin (10 μM) attenuated the cytotoxic effects of DOX in
breast cancer cells MCF-7 cells [237]

Luteolin (5 μM) sensitized oxaliplatin-resistant colorectal cancer
cell lines HCT116 and SW620 [207] and human lung

carcinoma A549 cells [238] to DOX

Genistein IC50 = 2100 nm
[239]

Ki = 1900 nm [240]
Induced CYP1B1
gene expression

[241,242]

Protected from chronic DOX-induced
cardiotoxicity in vivo [243,244]

Protected from DOX-induced senescence in
vascular smooth muscle cells [191]

Potentiated the cytotoxic effect of DOX in MCF-7, MCF-7/ADR
cells, MDA-MB-231 (breast), PC-3 (prostate), H460 (lung), and

BxPC-3 (pancreas) cancer cells [213,245–247]
Attenuated DOX-induced cytotoxicity in MCF-7 breast cancer

cells in one study [248]
Sensitized diffuse large cell lymphoma to CHOP

(cyclophosphamide, DOX, vincristine, prednisone)
chemotherapy in SCID tumor-bearing mice in vivo [249]

Resveratrol,
reviewed in [250]

1400–40000
[251,252]

Protection from DOX-induced cardiomyocyte
toxicity in H9c2 cells [253–258], rat primary

cardiomyocytes [259–261], and human
cardiac progenitor cells [262] in vitro.
Protection from acute DOX-induced

cardiotoxicity [255,263–267] and chronic
DOX-induced cardiotoxicity in vivo

[258,259,262,268–276]

Potentiated DOX-induced cytotoxicity in U373MG
glioblastoma, MCF-7 breast cancer cells, LNCaP prostate

carcinoma, Reh B-cell leukemia cells, Human ovarian cancer
cells OVCAR-3 and uterine (Ishikawa) cells, Human

hepatocellular carcinoma cell line (HepG2), Cervical cancer cell
line (HeLa), MDA-MB-231 cells, HT-29 human colon carcinoma
cells, Hela and Caski cells, HCT 116 and HT-29, Lymphoblastic
leukemia cell line (MOLT-4), Human multiple myeloma cell line

(U266B1), Burkitt’s lymphoma cell line (Raji cell), canine
hemangiosarcoma cells [259,277–286]

Reversed chemoresistance in DOX-resistant MCF-7 [214–217],
DOX-resistant gastric cancer cells (SGC7901/DOX) [209]

Augmented the chemotherapeutic effect of DOX tumor-bearing
mice in vivo [209,215,217,285,287].

Berberine Ki = 44, IC50 =
90–190 [288,289]
Induced CYP1B1
gene expression

[290]

Protection from acute DOX-induced
cardiotoxicity [291–294] and chronic

DOX-induced cardiotoxicity [295] in vivo
Protection from DOX-induced toxicity in H9c2

cells [291,296] and primary rat
cardiomyocytes [294] in vitro

Enhanced sensitivity to DOX in Jurkat, HeLa, and lung cancer
cells in vitro and in leukemia mouse model in vivo

[211,297,298]. Reversed DOX resistance in resistant human
breast cancer MCF-7/MDR cell in vitro and in vivo [299].

Berberine in combination with DOX suppresses growth of
murine melanoma B16F10 cells in culture and xenograft [300]

2,4,3′,5′-tetramethoxy-stilbene
IC50 = 6 [146] Protection from chronic DOX-induced

cardiotoxicity in rats in vivo and in RL-14
cardiomyocyte-like cells in vitro via decreasing
the formation of cardiac mid-chain HETEs [74]

Not reported
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Radiation therapy
Radiation therapy is a highly effective treatment for many types of cancers including lymphoma, breast, lung, neck,
and head cancers [5,301]. However, radiation-based cancer treatments can also result in serious cardiotoxic side ef-
fects, including pericardial fibrosis, pericardial effusion, and diffuse myocardial fibrosis, all of which can lead to heart
failure [302]. Restrictive cardiomyopathy, valvular abnormalities, coronary disease, peripheral vascular disease, and
arrhythmias can also occur following radiation therapy [303]. It has been clearly shown that the risk of heart failure
following radiation therapy for various cancers is dose-dependent [304]. In fact, several studies showed a correla-
tion between an increase in radiation dose with an increase in incidence of major coronary events, associating these
with cardiac mortality [305,306]. The cardiotoxic effects of radiation therapy may be exhibited 5–30 years follow-
ing treatment [5,302]. These late-onset cardiac effects are especially observed in patients that have been treated for
breast carcinoma, Hodgkin’s lymphoma, lung carcinoma, and other thoracic malignancies, likely due to the incidental
irradiation of the heart [304].

Effect of radiation on CYP1B1 expression
Although there is limited evidence regarding the effect of radiation therapy on CYP1B1 expression, exposure to ul-
traviolet (UV) and solar radiation have been shown to induce CYP1B1 (Table 2). In a longitudinal study, levels of
CYP1B1 mRNA isolated from human peripheral blood mononuclear cells were compared with yearly solar radiation
records, and a significant correlation was found [181]. However, this study had several limitations including small
sample size and lack of individual radiation exposure levels. Exposure to UV and UV-B radiation induces CYP1B1
mRNA in human keratinocytes, HaCaT cells, zebrafish, and human skin biopsies (Table 2).

Protective effects of CYP1B1 inhibitors against radiation-induced toxicity
There is a paucity of research showing the protective effects of CYP1B1 inhibitors against radiation therapy-induced
cardiovascular toxicity. However, inhibition of CYP1B1 has been shown to protect from other radiation-induced tox-
icities in non-cardiovascular tissues and organs, including: protection from macromolecular damage, hemorrhage,
and fibrosis in HaCaT cells and ovarian tissues by isorhamnetin [219,307], protection against follicular loss and
destruction of ovarian histoarchitecture in ovarian tissues by chrysin [308], protection against nuclear DNA dam-
age in HaCaT cells by apigenin [309]. Similarly, resveratrol has been shown to protect experimental animals from
radiation-induced erectile dysfunction, immune-suppression, intestinal injury, hepatotoxicity, and ovarian toxicity
[310–312]. Berberine has also been shown to reduce the incidence and severity of acute intestinal symptoms in pa-
tients receiving pelvic radiation [313]. In vivo studies in mice showed the protective effects of berberine against
radiation-induced intestinal injury by decreasing inflammation markers, lipid peroxidation, and mucosal injury in
the intestinal tissue [314,315]. Moreover, berberine decreased markers of endothelial dysfunction and reduced the
incidence of lung injury induced by radiation therapy in patients with non-small cell lung cancer [316]. Several phy-
tochemicals, such as isorhamnetin, chrysin, apigenin, luteolin, berberine, and luteolin have all been shown to protect
human keratinocytes from radiation-induced damage through reduction in ROS production [309,317–319].

Radiosensitizing effects of CYP1B1 inhibitors
While there is limited evidence of the cardiovascular protective effects of CYP1B1 inhibitor against radiation-induced
cardiovascular toxicity, there is a plethora of preclinical studies showing the radiosensitizing effects of phytochemi-
cals with CYP1B1 inhibitory activity. While these phytochemicals have been shown to target multiple pathways, they
exhibit strong inhibitory activity toward CYP1B1, with IC50 values in the nanomolar to micromolar range (Table
3). When combined with radiation therapy, resveratrol has been shown to augment the anti-cancer effects of radi-
ation in both in vitro and in vivo studies [320–324], as reviewed in [250]. For instance, resveratrol has proven in
the past to offer radiosensitizing effects in nasopharyngeal cancer cells via inhibition of E2F transcription factor,
colony-forming activities, and the induction of G1 phase cell cycle arrest [325]. Apigenin has been shown to en-
hance the apoptotic effects of radiation in SQ-5 human lung carcinoma cells by increasing the protein expression
of WAF1/p21 while decreasing protein levels of Bcl-2 [326]. Moreover, apigenin alongside genistein and quercetin
enhanced radiation-induced cell death by decreasing DNA damage renewal and cell repopulation, demonstrating
higher antitumor activities [327]. Additional in vivo studies also demonstrated the radiosensitizing effects of api-
genin in Ehrlich carcinoma-bearing mice exposed to whole body γ irradiation via the down-regulation of angiogenic
regulators such as vascular endothelial growth factor-C (VEGF-C), down-regulation of matrix metalloproteinase-2
(MMP2), and the enhancement of apoptosis [328]. The radiosensitizing effects of quercetin have also been demon-
strated in DLD-1 human colorectal cancer xenograft model in vivo and in HeLa and MCF-7 cells in vitro [329,330].
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Similarly, berberine has been shown to radiosensitize human esophageal cancer cells (ESCC) at doses lower that 15
μM [331] through down-regulation of RAD51, an important factor whose down-regulation is crucial, as it is found in
excessive amounts in ESCCs [331]. Berberine has also been demonstrated to radiosensitize human colon cancer cells
via induction of AMPK activation, a protein responsible for the regulation of tumor progression and metastasis and
also via decreasing migration of SW480 and HCT 116 cells [332]. Berberine has been shown to radiosensitize human
liver cancer cell lines SMMC-7221 exposed to radiation, in which decreased cell viability and tumor growth inhi-
bition were observed in nude mice xenograft [315]. At last, nasopharyngeal carcinoma cells CNE-2, hepatocellular
HCC cells, and non-small cell lung cancer cell LLC and A549 are some other cell lines in which berberine has shown
to enhance radiosensitivity effects through reduction in proliferation and viability, induction of apoptosis and cell
cycle arrest in G0 and G1 phases, decrease in protein expressions of Sp1, and inhibition of growth factor transforming
growth factor-beta (TGF-B) and vimentin proteins [333–335].

Other cardiotoxic cancer treatments
Cisplatin
Cisplatin is a chemotherapeutic alkylating agent mostly used to treat ovarian, testicular, lung, and bladder cancers
[336,337]. The two most common adverse effects of cisplatin are nephrotoxicity and ototoxicity; nevertheless, cis-
platin treatment may also result in severe cardiotoxicic effects including electrocardiographic changes in the heart,
acute coronary ischemia [338], arrythmias, myocarditis, cardiomyopathy, and congestive heart failure [339]. The
protective effects of CYP1B1 inhibitors against cisplatin-induced cardiovascular damage are not well-studied. How-
ever, protection from other cisplatin-induced toxicities have been reported. For instance, chrysin offers protection
against cisplatin-induced hepatotoxicity and colon toxicity [340]. Luteolin, kaempferol, chrysin, and quercetin also
prevent ototoxicity and nephrotoxicity damage induced by cisplatin [340–345]. Resveratrol offered protection against
cisplatin-induced epididymal toxicity, testicular toxicity, and toxicity in ovarian and cavity cancer cells [346,347]. At
last, berberine has been shown to reverse the nephrotoxic and hepatotoxic effects caused by cisplatin [348].

Not only do these phytochemicals offer protection against cisplatin-induced toxicity, but they also augment
the chemotherapeutic effects of cisplatin by enhancing cell death via induction of apoptosis and/or necroptosis
[340,348–356]. For instance, apigenin, specifically targets mTOR/PI3K/Akt signaling pathways to promote the cy-
totoxic effect of cisplatin by increasing the inhibitory effects on cell migration [354]. Berberine also has the poten-
tial to down-regulate the overexpressed genes in squamous cell carcinoma [357]. Isorhamnetin has been shown to
trigger microtubule distortion and depolymerization and inhibit cancer cell migration [349]. Since these phytochem-
icals have multiple molecular targets, the evidence of CYP1B1 involvement in these effects is anecdotal. However,
other studies have offered more direct evidence of CYP1B1 in chemoresistance to cisplatin therapy. Immunohisto-
chemistry showed CYP1B1 to be up-regulated in non-small cell lung cancer tissues of cisplatin-resistant patients,
and CYP1B1 silencing significantly decreased CXCR4 expression levels and overall cisplatin resistance [358]. To fur-
ther support these findings, a study using human HEK293 kidney cells found that two potent CYP1B1 inhibitors,
7k (DMU2105) and 6j (DMU2139) with IC50 values of 10 and 9 nM, were shown to overcome cisplatin resistance
in CYP1B1-overexpressing lines [359]. A third study using Glycyrrhiza glabra extract and quercetin, both show-
ing CYP1B1 inhibitory activity, reversed cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via
inhibition of cytochrome P450 1B1 enzyme (CYP1B1) [358,360].

Cyclophosphamide
Cyclophosphamide is another alkylating chemotherapeutic agent used to treat a variety of cancers. At high doses, cy-
clophosphamide has been reported to cause cardiotoxic effects [361] that are usually manifested in the forms of my-
ocyte damage, edema, and hemorrhagic necrotic perimyocarditis [362,363]. In contrast with other chemotherapeutic
agents, cyclophosphamide has been shown to inhibit CYP1B1 gene expression in HL-6 human acute promyelocytic
leukemia cell line [175]. Studies using the flavonoids chrysin and resveratrol proved their ability to exhibit ameliora-
tive effects against brain, heart, liver, testis, kidney, and hepatorenal toxicities induced by cyclophospamide [364,365].
Similarly, apigenin exhibits great inhibitory effects on genotoxicity of antitumor agents. Moreover, cardiotoxicity, hep-
atotoxicity, gentotoxicity, urotoxicity, and ovarian toxicity effects all seemed to be reduced by quercetin, berberine,
and genestein treatment, generally through antioxidant and anti-inflammatory activities [366–368].

Carfilzomib
Carfilzomib is a chemotherapeutic agent used primarily for the treatment of multiple myeloma [369]. Carfilzomib
has been shown to cause cardiotoxic effects such as congestive heart failure, hypertension, coronary artery disease,
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ischemic heart disease, arrhythmia, and cardiorespiratory arrest [370–372]. Currently, there is no published research
that shows the effect of carfilzomib on CYP1B1 expression. There is also a paucity of research describing the cardio-
protective effects by CYP1B1 inhibitors. However, there is one study that reported the anti-cancer effect of carfilzomib
when used in combination with resveratrol. Resveratrol enhanced the effects of carfilzomib in multiple myeloma cell
lines showing higher anti-proliferative and apoptotic effects in a dose-dependent manner [373].

Dasatinib
Dasatinib, an orally administered chemotherapeutic drug, is an inhibitor of many tyrosine kinases, and is an effective
agent for treating chronic myeloid leukaemia [374]. Dasatinib has been shown to induce several adverse effects in-
cluding pulmonary and cardiovascular toxicities. Dasatinib-induced cardiovascular toxicity may lead to heart failure,
pericardial effusion, left ventricular dysfunction, pulmonary artery disease, myocardial ishcemia–reperfusion injury,
and pulmonary artery disease [375,376]. Intriguingly, dasatinib has been shown to induce CYP1B1 expression in
H9c2 cells, an effect that was associated with an induction of cardiac hypertrophy markers such as B-type natriuretic
peptide (BNP) and β-MHC [177]. However, co-treatment with resveratrol did not ameliorate dasatinib-induced ex-
pression of these hypertrophic markers [177].

Sunitinib
Sunitinib is a tyrosine kinase inhibitor commonly used to treat stromal tumors, renal carcinoma, and pancreatic neu-
roendocrine tumors [377]. Sunitinib-induced cardiotoxic effects have been reported in patients including hyperten-
sion, left ventricular systolic dysfunction, and congestive heart failure [378,379]. The mRNA and protein expression
levels of CYP1B1 in rat renal and hepatic tissues were induced by sunitinib [179]. Sunitinib has also been shown to ac-
tivate the AhR/CYP1A1 pathway in rat heart and the cardiac-derived H9c2 cells [380]. Similar to CYP1A1, CYP1B1
is an AhR-regulated gene, so it is expected that CYP1B1 is also induced by sunitinib, although the effect of suni-
tinib on CYP1B1 was not reported in this particular study. Importantly, resveratrol has been shown to protect from
sunitinib-induced cardiac hypertrophy in rats [380]. In contrast with the presumably protective effect of phytochem-
ical inhibitors of CYP1B1, genistein, the most prevalent phytoestrogen in soy, increased sunitinib-induced apoptosis
in neonatal rat ventricular myocytes and exacerbated sunitinib-induced lethality in mice [381]. The detrimental ef-
fect of phystoestrogens in sunitinib-induced cardiotoxicity can be attributed to the fact that estrogen exacerbates
sunitnib-induced cardiotoxicity in female mice [382], in contrast with DOX-induced cardiotoxicity which preferen-
tially affect male mice, as reviewed in [383].

Immunotherapy
Cancer immunotherapy has emerged as a novel and effective approach to combat incurable cancers by activating the
host’s immune system to recognize and destroy the tumor cells [384,385]. Expectedly, activation of the immune system
leads to several immune-related adverse effects, including cardiovascular toxicity [386]. Immunotherapy-induced
cardiovascular toxicity is mostly inflammatory in nature and includes myocarditis, pericarditis, and vasculitis [387].
Although there are no published reports describing the effect of cancer immunotherapy on CYP1B1 expression,
immunotherapy-induced inflammatory reaction is expected to up-regulate CYP1B1. Likewise, there are no published
studies reporting the potential protective effects of CYP1B1 inhibitors on immunotherapy-induced cardiovascular
toxicity. Nevetheless, natural comounds with CYP1B1 inhibitory activity have demonstrated immunomodulatory
functions in vitro and in vivo, which may contribute to their anti-cancer effects, as recently reviewed [388,389].
Therefore, more research is needed to understand the potential interplay between CYP1B1 inhibitors and cancer
immunotherapy in the context of cardio-oncology.

Conclusions
CYP1B1 has been described as ”a unique gene with unique characteristics” because it is implicated in a wide variety
of pathological conditions [390]. CYP1B1 plays a central role in the metabolism of several biologically active en-
dogenous compounds (Figure 1). It is also capable of generating carcinogenic metabolites leading to DNA adduct
formation, in addition to its role in generating ROS. Therefore, the biological significance of CYP1B1 has been the
focus of scientific research of several research groups all over the world. The detrimental role of CYP1B1 in the four
phases of carcinogenesis, the initiation, promotion, progression, and metastasis, has been recognized for almost two
decades [391,392]. More recently, the contribution of CYP1B1 to the pathogenesis of cardiometabolic diseases has
also been increasingly appreciated [8,92,393]. Since we first reported the induction of CYP1B1 by DOX, the most
cardiotoxic chemotherapeutic drug [111], a growing body of evidence has strongly suggested the contribution of
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Figure 3. The potential role of CYP1B1 in cardio-oncology

Chemo- and radiation therapy induce CYP1B1, leading to perturbation in the metabolism of arachidonic acid (ARA), steroids,

melatonin, and retinol, and activation of pro-carcinogens, production of oxidative stress, and DNA adduct formation. Induction of

CYP1B1 induces and/or exacerbates therapy-induced cardiovascular toxicity and increases resistance to chemo- and radiation

therapy. These detrimental effects can be potentially mitigated by phytochemical and synthetic CYP1B1 inhibitors.

CYP1B1 to chemotherapy-induced cardiovascular toxicity. All the studied cardiotoxic chemotherapies, with the no-
table exception of cyclophosphamide, have been shown to induce CYP1B1 in different experimental conditions (Table
2). Induction of CYP1B1 can be detrimental in many ways. First, it can induce or exacerbate therapy-induced car-
diovascular complications. Second, it can also lead to significant chemo- and radio-resistance, undermining both the
safety and effectiveness of cancer treatment.

It is intriguing that the same enzyme may have divergent effects on the cardiovascular system and the malig-
nant tumors (Figure 3). Several CYP1B1-mediated signaling pathways may lead to these divergent effects. For in-
stance, while mid-chain and terminal HETEs are detrimental to the cardiovascular system [72,73], they enhance
survival, proliferation, and metastasis of cancer cells [394–398]. Likewise, CYP1B1-mediated formation of genotoxic
metabolites and DNA adducts lead to atherosclerosis and cardiovascular disease [100,101], and may also contribute
to CYP1B1-mediated carcinogenesis [134]. CYP1B1 has also been shown to induce EMT which is involved in cardiac
fibrosis [399,400] and in cancer progression [126,401]. CYP1B1-mediated inflammation, which has deleterious ef-
fects on the cardiovascular system [19,85,86], can also contribute to carcinogenesis and tumor progression [126,402].
Therefore, inhibitors of CYP1B1 are poised to optimize the benefit and reduce the cardiovascular risk of cancer treat-
ments by interfering with these divergent signaling pathways. Nevertheless, there are no studies that systemically com-
pare these divergent effects within the same model. Indeed, the use of tumor-bearing animal models is strongly needed
to discern these divergent signaling pathways underpinning the cardioprotective and the chemo/radio-sensitizing ef-
fects of CYP1B1 inhibitors in the same animal model. A plethora of phytochemicals have demonstrated significant
CYP1B1 inhibitory activity with varying degrees of potency and selectivity. Although these phytochemicals have
shown promising cardioprotective, chemosensitizing, and radiosensitizing properties in preclinical studies, as re-
viewed in [250,403,404]; the specific role of CYP1B1 inhibition in these effects has been rarely investigated. Since
phytochemicals have multiple targets, the identification of a specific molecular mechanism that mediate their effects
is very challenging. Therefore, future studies need to discern the role of CYP1B1 by using more selective inhibitors,
such as 2,4,3′,5′-tetramethoxystilbene, in addition to CYP1b1 knockout mouse models.
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The translation of these promising preclinical findings to the care of cardio-oncology patients is another challenge.
A large number of phytochemicals with CYP1B1 inhibitory activity have been tested in clinical trials in healthy in-
dividuals, cancer patients, and patients with cardiovascular diseases. The results of these clinical trials are generally
mixed and do not provide a strong evidence of a clear clinical benefit. A clinical trial of resveratrol in 20 patients
with colorectal cancer has shown a promising anti-cancer effect. Eight doses of 0.5 or 1.0 gram of resveratrol given
before surgical resection was well-tolerated and resulted in 5% reduction in tumor proliferation [405]. Likewise, the
recurrence rate of neoplasia after colon cancer resection was 7% in patients treated with a flavonoid mixture and 47%
in the control [406]. Oral genistein given 14–21 days before urothelial bladder cancer surgery was well-tolerated and
reduced bladder cancer tissue phosphorylated-epidermal growth factor receptor (EGFR), which contributes to the
proliferation and survival of cancer cells [407]. Although these studies, among others, have shown that these phy-
tochemicals are well-tolerated by cancer patients, a Phase II clinical trial of bortezomib with and without high-dose
resveratrol (5 grams daily) in multiple myeloma patients was terminated early due to unexpected renal toxicity in
the resveratrol arm [408]. Although this safety concern may be specific to multiple myeloma patients who are at an
increased risk for renal failure, these results hindered the advancement of resveratrol and probably other phytochem-
icals to more clinical trials in cancer patients.

In addition, since several agents which had shown promising cardioprotective effects in preclinical studies failed
in subsequent clinical trials (e.g. vitamin E and N-acetyl cysteine [409,410]), the clinical community has become
more critical of translating preclinical findings to patient care. Indeed, oncologists are usually very concerned about
the possibility that cardioprotective agents may undermine the anti-cancer effects of chemotherapy and/or lead to
increased incidence of secondary malignancy. This concern is heightened in case of phytochemicals which have mul-
tiple targets and exhibit a high probability of significant drug interactions [411–413]. In addition, there has been
a concern that phytochemicals with antioxidant properties may scavenge ROS and negatively impact the outcome
of ROS-dependent cancer treatments, as reviewed in [414]. Therefore, elucidating the molecular mechanism of the
cardioprotective and chemo/radio-sensitizing properties of phytochemicals is pivotal to the design of specific thera-
peutic agents that are both safe and effective. As discussed in this review, there is growing evidence that CYP1B1 is an
attractive target wherein its inhibition may offer protection against cancer treatment-induced cardiovascular toxicity
and prevent chemo/radio-resistance at the same time.
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