
Review Article
Hormetic Effects of Bioactive Compounds from Foods, Beverages,
and Food Dressing: The Potential Role in Spinal Cord Injury

Anna Lucia Fedullo ,1 Mario Ciccotti ,2 Paolo Giannotta ,2 Federica Alviti ,3

Marco Bernardi ,4 Anna Raguzzini ,1 Elisabetta Toti ,1 Tommaso Sciarra ,5

and Ilaria Peluso 1

1Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
2Military Pharmaceutical Chemical Plant, Florence, Italy
3Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation,
Sapienza University of Rome, Rome, Italy
4Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
5Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy

Correspondence should be addressed to Ilaria Peluso; i.peluso@tiscali.it

Received 10 December 2020; Revised 13 February 2021; Accepted 20 February 2021; Published 27 February 2021

Academic Editor: Silvana Hrelia

Copyright © 2021 Anna Lucia Fedullo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function.
SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences,
causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from
foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and
green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI.
Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra
virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear
factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO
improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion,
Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.

1. Introduction

A spinal cord injury (SCI) is a condition that significantly
impairs an individual’s functional status, quality of life, and
social independence (disability). The SCI can be divided into
two main categories: the more common traumatic SCI typi-
cally caused by external physical impact [1] and nontrau-
matic SCI [2]. The different sites and the size of SCI can
cause variable degrees of impairment from partial loss of
motor or sensory function to complete paralysis below the
injured spinal cord level, loss of bowel and/or bladder con-

trol, autonomic dysfunction (including in high SCI auto-
nomic dysreflexia), and exaggerated reflex activities, as well
as pain [3–8]. Based on these impairments, the interaction
with the environment determines the different degrees of dis-
ability consequent to SCI. Regardless of the cause, the patho-
physiology of SCI is characterized by two stages: an initial
primary injury, defined as the immediate effects of an injury
to the spinal cord, and a secondary progressive and self-
propagating stage, characterized by multiple cascades of bio-
chemical events in which oxidative stress is a critical compo-
nent causing further tissue loss and dysfunction [3, 9–15].
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The second stage is characterized by an increased formation
of reactive oxygen species (ROS) and consequently by oxida-
tive stress [16, 17]. Skeletal muscle atrophy, as well as general
deconditioning, and sedentary lifestyle, commonly observed
in people with SCI, can influence oxidative stress and antiox-
idant capacity [18, 19]. Antioxidant-based interventions have
been suggested to alleviate oxidative stress and therefore to
improve health in individuals with SCI [17, 20, 21].

In this context, bioactive compounds from Mediterra-
nean diet [22, 23], as well as from beverages and food dress-
ing [22, 24], have been proposed as hormetins, improving
antioxidant defences by an hormetic mechanism mediated
by the activation of the nuclear factor erythroid-derived 2
(Nrf2) antioxidant response element (ARE) pathway [22].
Many dietary components of the Mediterranean diet, such
as culinary herbs and spices, as well as extra virgin olive oil
(EVOO) are rich in bioactive phytochemicals [25]. More-
over, epigallocatechin-3-gallate (EGCG) from green tea, acti-
vating the Nrf2-ARE [26], is among the flavonoids suggested
for treatment of SCI [23]. The aim of the present work is to
review the hormetic effects of bioactive compounds from
foods, beverages, and food dressing (olive oil, spices, and
herbs) to reduce oxidative stress in patients with SCI.

2. Oxidative Stress in Spinal Cord Injury

Reactive nitrogen species (RNS) and ROS are produced con-
tinuously in the body, but an augmented production of ROS
could exceed the capacity of the antioxidant defences
(Figure 1), mediating in this way oxidative stress and subse-
quently oxidative damage [27, 28].

Superoxide (O2
•−), produced by the mitochondrial elec-

tron transport chain, the xanthine oxidase (XO), and the
NADPH oxidase (NOX), reacts with nitric oxide (NO•), pro-
duced by the nitric oxide synthase (NOS), to form peroxyni-
trite (ONOO−) [27, 29]. O2

•− can be converted to hydrogen
peroxide (H2O2) by the superoxide dismutase (SOD). The
isoforms of SOD include the copper(Cu)/zinc(Zn)-SOD
localized in the cytosol and in the extracellular space and
the manganese(Mn)-SOD localized in the mitochondria. In
this context, Zn has an essential role as part of the antioxi-
dant defence system. Little is known about the database on
the Zn status and its time-dependent changes after SCI
[30–33]. A predictive model for a long-term functional out-
come was obtained analyzing Zn dynamics in 38 cervically
injured SCI patients [32]. Heller and colleagues [33] investi-
gated the dynamic alterations in serum Zn concentration
during the first 72 h after injury in short intervals in order
to identify the relationship between the early changes of the
total Zn serum level and neurological impairment and
patients’ outcome. They found that the median Zn concen-
trations in the group with neurological impairment throw
down within the first 9 h after injury stronger than those in
patients with vertebral fractures without neurological impair-
ment. They concluded that the outcome is related to early Zn
concentration dynamics and may be considered a helpful
diagnostic indicator for these patients. In fact, the changes
in serum Zn levels allow an assessment of neurological
impairment risk on the first day after trauma [33]. In this

regard, it was shown that Zn treatment promoted motor
function recovery during the 28 days following SCI and it
seems to be able to reduce ROS and enhance the antioxidant
activity [34].

Despite the antioxidant effect of SOD, in the presence of
iron, H2O2 can generate via Fenton reaction the highly reac-
tive hydroxyl radical (HO•), initiator of the lipid
peroxidation.

Both catalase (CAT) and glutathione peroxidase (GPX)
catalyze the conversion of H2O2 into water and oxygen
[35]. Among endogenous antioxidants, the main enzymes
are SOD, CAT, GPX, and glutathione reductase, while gluta-
thione (GSH) and uric acid (UA) are the major nonenzy-
matic antioxidants [27] (Figure 1).

GSH acts as antioxidant by scavenging ROS through
GPX and by the reversible oxidation to glutathione
disulphide (GSSG). The latter is reduced to GSH by the glu-
tathione reductase. On the other hand, although XO pro-
duces O2

•−, it catalyzes the conversion of xanthine to UA
which can scavenge O2

•− and HO• and is the major antioxi-
dant in body fluids and preserves neuronal viability in pre-
clinical models of SCI [36]. GPX is a selenium- (Se-)
dependent enzyme and it was shown that Se nanoparticles
could reverse oxidative stress-induced SCI in rats [37]. Seelig
et al. [38] recently compared Se, Cu, selenoprotein P, and
ceruloplasmin levels in patients with traumatic SCI versus
individuals with vertebral fractures without neurological
impairment and found that Cu and Se levels at admission
and Se and ceruloplasmin levels after 24 h were predictors
for potential remission of SCI.

Among minerals, magnesium (Mg) is suspected to have a
key role in the secondary injury phase. Low Mg serum levels
within the first 7 days have been described to be correlated
with high probability of neurological remission [39]. In par-
ticular, Mg appears to reduce the production of ROS and
lipid peroxidation [40]. Markers of the lipid product of oxi-
dation include 4-hydroxy-2-nonenal (HNE), alkenals, alka-
dienals, and malondialdehyde (MDA) being the
thiobarbituric acid-reactive substances (TBARS) and F2-
isoprostanes (F2-IsoP) derived by the nonenzymatic oxida-
tion of polyunsaturated fatty acids [27].

Acrolein, an aldehyde produced endogenously through
lipid peroxidation implicated in SCI, is more reactive than
the other HNE and induces glutathione depletion [41]. On
the other hand, Bastani et al. [42] analyzed a wide panel of
antioxidant and oxidative stress biomarkers to define the
antioxidant status in patients with SCI. They found that the
urinary F2-IsoP and some enzymes (NOX and XO) in the
vastus lateralis biopsies increased in the subjects with SCI
compared with the controls, whereas SOD decreased.
Besides, ROS production and apoptotic signals increased 1
and 3 months after SCI, while mitochondrial complexes
and the SOD-2 protein content decreased 12 months after
SCI [43].

On the other hand, advanced oxidation protein products
(AOPP) in plasma, cerebrospinal fluid, and the spinal cord of
rats increased after SCI and triggered generation of ROS (by
activating NOX), with consequent induction of the p38
mitogen-activated protein kinase (p38MAPK) and the
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downstream regulated pathway nuclear translocation of
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and proinflammatory cytokines [44]. AOPP
include protein aggregates by disulphide bridges, as well as
advanced peroxidation end products and advanced glycation
end products. Other markers of protein oxidation include
carbonyls [45] and the derivative of tyrosine from the reac-
tion with the hypochlorous acid (HClO), generated by the
H2O2-dependent reaction catalyzed by the myeloperoxidase
(MPO) or with ONOO− being 3-nitro-tyrosine as the main
product of tyrosine oxidation [27]. Cysteine is particularly
sensitive to oxidation and the reaction with NO• produces
S-nitrosylated cysteine, whereas in the presence of a proximal
thiol group, ROS damage results in the formation of a disul-
fide bond [27]. Oxidation of cysteine residues could be an
essential feature for signaling pathways, including Nrf2/ARE.

3. Dietary Antioxidants in Spinal Cord Injury

The dietary advice for individuals with SCI included Medi-
terranean diet [46] and an anti-inflammatory diet [47]. The
latter was able to increase (after 3 months) the intake of vita-
mins C (ascorbic acid) and E (alpha-tocopherol) in individ-
uals with SCI, where proinflammatory markers were
negatively correlated with carotenoids [47]. Patients with this
condition (from at least 2 years) showed lower serum levels of
these vitamins [48] and of vitamin E and beta-carotene [49],
compared with healthy controls. Vitamins (C and E) and sev-
eral bioactive compounds (such as carotenoids, phenolic
compounds, and glucosinolates) are exogenous antioxidants
that account for the antioxidant capacity of dietary sources
(Table 1).

In 1991, an innovative study, subsequently confirmed in
[54, 55], proved for the first time that rats treated with vita-
min E were protected against induced muscle atrophy [56].
Nevertheless, this protection seemed to be due to the down-
regulation of genes involved in the proteolysis of muscles,
rather than by the antioxidant properties of vitamin E [57].
It has been reported that an improved bladder recovery and
locomotor function in rats is associated with vitamin E-
enriched diet. In fact, in order to improve sensory and auto-

nomic dysfunctions associated with SCI, the potential use of
vitamin E was suggested [58]. Moreover, vitamin E treatment
markedly enhanced the hind limb locomotor function,
reduced the histopathological alterations and the morpho-
logical damage in the spinal cord, and the lowered MDA level
and GPX activity in SCI [59]. On the contrary, combined
treatment of vitamins C and E significantly contrasted the
effects of spinal cord contusion on oxidative stress, increasing
SOD and GPX [60]. Recently, synergistic effects of vitamin C
and taurine against SCI in rats have been investigated and the
combined treatment decreased mRNA expression of inter-
leukin- (IL-) 6, cyclooxygenase- (COX-) 2, tumor necrosis
factor- (TNF-) α, and inducible NOS (iNOS) compared to
the single treatments and recovered altered antioxidant
markers [61]. Moreover, vitamin C treatment alone sup-
pressed NF-κB, COX-2, and iNOS expressions in renal tissue,
reduced the inflammatory responses (TNF-α and IL-1β) and
oxidative stress (TBARS, protein carbonyl, and MPO), and
enhanced the antioxidant status (GSH, SOD, CAT, and
GPX) after SCI-induced kidney damage [62]. On the other
hand, the lipid-soluble plant pigments carotenoids, having
antioxidant activity, have been suggested as neuroprotective
nutraceuticals [63, 64]. The carotenoid lycopene found richly
in red fruits and vegetables, due to its lipophilic structure, can
pass through the blood-brain barrier and reach the brain
[63]. It was demonstrated that lycopene treatment in SCI rats
significantly improved oxidative stress, by reversing SOD,
GPX, and MDA alterations [65]. Lycopene reduced lipid per-
oxidation in murine models [65, 66] and NF-κB activation in
a mouse model of SCI [66]. Similar inhibition of NF-κB has
been reported for beta-carotene in a rat model of SCI [67].
In particular, astaxanthin, crocetin, and lycopene decreased
pain [68–72]. Moreover, astaxanthin [71], crocetin [73] and
crocin improved locomotor function [74].

Among flavonoids, a study conducted in mice by Borghi
et al. [75] showed that quercetin could be useful to treat mus-
cle pain conditions linked to unaccustomed exercise due to
its capacity to inhibit spinal cord cytokine production, oxida-
tive stress, and glial cell activation. Furthermore, an experi-
mental study conducted in rats by Ocal et al. [76] suggested
that quercetin can be thought as an option of treatment in
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Figure 1: Representation of molecules involved in oxidative stress and inflammation after spinal cord injury (SCI). On the left are depicted as
the antioxidants that are present in low concentrations, while on the right are molecules that are present at higher levels causing oxidative
stress. SOD: superoxide dismutase; CAT: catalase; GPX: glutathione peroxidase; GSH: glutathione; UA: uric acid; Nrf2: nuclear factor
erythroid-derived 2; O2•−: superoxide; H2O2: hydrogen peroxide; HO•: hydroxyl radical; NO•: nitric oxide; ONOO−: peroxynitrite;
p38MAPK: p38 mitogen-activated protein kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; TNF: tumor
necrosis factor; IL: interleukin.
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SCI. Quercetin [77] and the citrus flavonoid hesperidin [78]
exerted an anti-inflammatory effect. Several studies showed
that the administration of the stilbene resveratrol after SCI
could provide a beneficial impact on the neurological recov-
ery and the antioxidant activity in rats [79–83], and a recent
meta-analysis of studies in rat models of SCI revealed that it
increased SOD and decreased MDA levels, compared to the
control group [84].

The food dressing-derived bioactive compound rosmari-
nic acid, identified in rosemary (987mg/100 g) from which
its name derives [25], has been suggested for SCI in a recent
review [85], whereas antioxidant and/or anti-inflammatory
activities in murine models of SCI have been reported for
curcumin [86–88] and oleanolic acid [89].

4. The Nuclear Erythroid 2-Related Factor 2 as
the Target for Spinal Cord Injury Treatment

Nrf2 is a transcription factor that regulates the antioxidant
response system and inhibits oxidative stress-mediated NF-
κB activation by decreasing the intracellular ROS levels [90,
91]. Normally, Nrf-2 is localized into the cytoplasm bound
to the Kelch-like ECH-associating protein 1 (Keap1) that
contains cysteine residues sensitive to oxidants or electro-
philes [27]. Upon oxidation, Keap1 forms a disulfide bond
and the conformational change results in the release of Nrf-
2, allowing its translocation into the nucleus. Nrf-2 promotes
the transcription of target genes containing the ARE in their
promoter regions, including antioxidant enzymes and heme
oxygenase 1 (HO-1). HO-1 is among the Nrf2-induced genes
that inhibit NF-κB activation [90, 91]. NF-κB is normally
sequestered inactive in the cytoplasm of resting cells by the
inhibitor κB (IκB). The phosphorylation of two serines of
IκB, by the IκB kinase (IKK), and its subsequent degradation
by proteasome allow the activation of NF-κB and its translo-
cation to the nucleus [90, 91]. After nuclear translocation,
NF-κB induces the expression of proinflammatory cytokines,

as well as of ROS-producing enzymes, including COX-2 and
iNOS [91]. Increasing levels of TNF-α, IL-6, COX-2, and
iNOS activate the Nrf2/HO-1 axis that subsequently
decreases their own expressions [91]. In addition, upregula-
tion of Nrf2 reduces the IκB-α proteasomal degradation
and inhibits nuclear translocation of NF-κB [91]. NF-κB
decreases the free CREB-binding protein (CBP also known
as CREBBP), which is a transcriptional coactivator of Nrf2
by competing with CBP [91].

On the other hand, antioxidants with electrophilic moie-
ties induce the Nrf2-mediated gene expression of antioxidant
enzymes acting as prooxidants rather than antioxidants [26,
27, 92]. Besides, electrophilic modifications of cysteine 179
of IKK inhibit NF-κB activation and have been suggested as
one of the mechanisms involved in the anti-inflammatory
effects of nutraceuticals [27, 92]. Therefore, Nrf2 has a funda-
mental role in the hormetic effect of natural bioactive com-
pounds (Figure 2) and its signal pathway crosstalk with the
NF-κB pathway in animal models of SCI [93].

Hormetins typical of Mediterranean diet include mole-
cules that interact with these transcription factors, such as
vitamin E and many phytochemicals (terpenoids, phenolic
antioxidants, allium-derived sulfur compounds, carotenoids,
and resveratrol) from grapes, fruits, tomatoes, leafy green
vegetables, legumes, onion, garlic, olives [22], and EVOO
[94]. On the other hand, nonnutrient phytochemicals from
spices often used for culinary purposes, namely, curcumin
and ginger, as well as herb extracts (green tea extract,
ginseng-based steroids, and ginsenosides) showed the capa-
bility to improve both oxidative stress and the inflammatory
status in humans [92]. Some of these have been studied as
bioactive molecules potentially useful against neurodegener-
ative diseases such as SCI [95].

Curcumin increased SOD levels [96] and decreased
MDA [96] and proinflammatory cytokines, like TNF-α and
IL-1 [97], and exerted its neuroprotective effect through the
crosstalk between NF-κB and Nrf2 signaling pathways [97].

Table 1: Some common sources of antioxidants of the Mediterranean diet.

Glucosinolates
(mg/100 g)

Vitamin C
(mg/100 g)

Vitamin E
(mg/100 g)

Retinol equivalents
(μg/100 g)

Beta-carotene
(μg/100 g)

Total phenolics∗

(mg/100 g)

Broccoli 61.7 77 1.3 123 738 89

Brussels
sprouts

236.6 81 1.0 220 1320 221

Cabbage 58.9 47 0.18 19 738 81.73

Cauliflower 43.2 59 0.15 50 114 88.63

EVOO — 22.4 36 — 55.14

Garlic 9 — 1 6.9 87.04

Kale 100.7 110 2.24 225 1350 176.67

Onion 5 0.22 3 0 69.49

Parsley 162 1.29 943 5658 836.9

Radish 92.5 18 0 0 0 44.3

Rosemary 29 1.5 92 550 1212.3

Sage leaves 0 9.15 215 3540 1049.3

Turnip 93.0 23 2.44 0 1794 93.5
∗Folin assay. Data from [50–53].
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Similar effects on the NF-κB/Nrf2 pathway have been reported
for sulforaphane, an isothiocyanate derived from broccoli, that
is a potent naturally occurring inducer of the Keap1/Nr-
f2/ARE pathway and could mitigate inflammation through
the inhibition of the NF-κB pathway [98]. Also, EGCG from
green tea induces the Keap1/Nrf2/ARE pathway [26]. To
investigate neuroprotective potential of green tea polyphenols,
Zhao et al. [99] induced oxidative damage in spinal cord neu-
rons using H2O2 and applied different concentrations of green
tea polyphenols to the cell medium for 24 hours. Measure-
ments of SOD activity and MDA content revealed that green
tea polyphenols reduced oxidative stress [99].

Ginseng treatment significantly downregulated inflam-
matory markers and oxidative stress by enhancing the anti-
oxidant status in SCI rats [100]. In particular, ginsenoside R
(GR) b1 attenuates SCI-associated oxidative stress in rats by
regulating the endothelial NOS/Nrf2/HO-1 signaling path-
way and increased SOD, CAT, and GSH [101], whereas GR
g3 show anti-inflammatory, antioxidant, and neuroprotec-
tive effects, suppressing mRNA expression of proinflamma-
tory cytokines (TNF-α, IL-1β, and IL-6) and the
overproduction of COX-2 and iNOS after SCI [102]. Reduc-
tions of COX-2 and NF-κB expression have been observed
also with gallic acid [103], a phenolic acid contained in vari-
ous plant-food sources [53]. Hesperidin, a representative fla-
vonoid in citrus fruits, reduced proinflammatory cytokines
including TNF-α and IL-1β, whereas it increased SOD,
CAT, Nfr2, and HO-1 [104].

It was shown that resveratrol treatment suppressed the
activation of the iNOS/p38MAPK pathway and reduced oxi-
dative stress by enhancing enzymatic and nonenzymatic
antioxidant levels such as those of GSH, SOD, and CAT in
spinal cord ischemia-reperfusion injury-induced rats [105].
Furthermore, resveratrol showed a neuroprotective effect by
increasing the activation of Nrf2 [106]. Preclinical studies

showed that the administration of resveratrol in the acute
phase or prior to experimental injury to the central nervous
system could have a neuroprotective [107]. Similar results
were demonstrated for quercetin. In fact, in SCI rats, querce-
tin has protective effects on the spinal cord by the potential
mechanism of inhibiting the activation of the iNOS/p38-
MAPK signaling pathway and thus regulating secondary oxi-
dative stress [108]. Quercetin treatment reversed MDA, NO,
MPO, and cytokine levels and banned the exhaustion of tis-
sue GSH levels and SOD [109]. Also, the quercetin-3-O-ruti-
noside (rutin) exerts neuroprotective effects through anti-
inflammatory inhibition of the p38MAPK pathway [110]. A
good source of quercetin is onion [53], and among bioactive
compounds fromMediterranean food dressing, there are also
rosmarinic acid, allicin, and 3,4-dihydroxyphenylethanol
(DOPET).

Rosmarinic acid is a water-soluble polyphenolic phyto-
chemical that could enhance the antioxidant status and con-
sequently decrease the oxidative stress in Wistar rats post-
SCI by targeting Nrf2/HO-1 and NF-κB pathways, downreg-
ulating proinflammatory cytokines (TNF-α, IL-6, and IL-1β),
and acting as neuroprotective agent [111, 112].

Garlic and onion are rich in organosulfur compounds,
including allium and allicin, that induce the Nrf2 pathway
[22]. Allicin, the main biologically active compound derived
from garlic, seems to have neuroprotective effects in animal
models, being able to increase the activities of antioxidant
enzymes, including CAT, SOD, GPX, and glutathione S-
transferase [113]. In addition, it was shown that allicin
enhanced the motor functional recovery and increased Nrf2
nuclear expression [114], while it decreased the expression
of inducible NOS but had no effects on the expression of neu-
ronal NOS following glutamate exposure [115].

DOPET is a potent antioxidant polyphenolic compound
from EVOO targeting multiple signaling pathways to reduce

Resveratrol
Lycopene

Rosmarinic acid
Allicin

Curcumin

Hesperidin

DOPET

G-Rb1

Quercetin/rutin

Ginseng

Gallic acid

EGCG

Sulforaphane

GRg3

Antioxidant enzymes
Reduced inflammation 

Inflammation
Poor outcome a�er SCI 

SCI

Nrf2
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NF-κB
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Oxidative
stressHormesis
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degradation

IκB
degradation

Figure 2: Bioactive compounds that act on the Nrf2/NF-κB pathway. DOPET: 3,4-dihydroxyphenylethanol; EGCG: epigallocatechin-3-
gallate; GR: ginsenoside R; IκB: inhibitor κB; Keap1: Kelch-like ECH-associating protein 1; NF-κB: nuclear factor kappa-light-chain-
enhancer of activated B cells; Nrf2: nuclear factor erythroid-derived 2; SCI: spinal cord injury.
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SCI effects, including reduction of MPO and downregulation
of proinflammatory cytokines [116]. Moreover, it has been
previously reviewed that other bioactive compounds of
EVOO, such as hydroxytyrosol [22, 94] and oleuropein
[22], can activate the Nrf2 pathway, but specific studies are
needed on SCI. Transcription of antioxidant genes mediated
by Nrf2 could be also enhanced by ferulic acid (present in
fruit, tomatoes, and rice), luteolin (present in carrots, pep-
pers, and celery), phenethyl isothiocyanate (present in cruci-
fer vegetables), and carnosic acid (abundant in rosemary)
[22]. Therefore, many bioactive compounds should be tested
in SCI in future studies.

5. Conclusion

SCI results, since the early stages, in an imbalance between
the ROS production and antioxidant defences (Figure 1).
Low levels of some micronutrients, including antioxidant
vitamins and minerals involved in antioxidant enzymes’
activity, have been reported in individuals with SCI. ESPEN
guidelines suggested supplementation with antioxidant
micronutrients for patients in the intensive care unit [117]
and with neurological diseases [118] and reported in an
observational study that this is practiced also in individuals
with cervical SCI [119].

Dietary advice and supplements have been proposed in
order to reduce oxidative stress, and in some cases, synergis-
tic effects have been reported. Although curcumin, ginseng,
and green tea have been proposed for SCI management,
low levels of antioxidant vitamins have been reported in indi-
viduals with SCI. Mediterranean diet that includes food,
spices, and herbs contains multiple components with antiox-
idant properties (Table 1), such as vitamins, phenolic com-
pounds, and glucosinolates. The latter are known to
activate Nrf2 by an electrophilic interaction with
sulfhydryl-groups on Keap1, therefore in a hormetic manner.
Oxidation of cysteine residue of Keap1 is involved in the
EGCG induction of Nrf2. On the other hand, nonnutrient
bioactive compounds from food, spices, and herbs typical
of the Mediterranean diet could reduce oxidative stress by
activating the Nrf2 pathway, acting as hormetins. Although
many of these compounds have low bioavailability, hormetic
effects typically occur at low concentration. Moreover,
nanoparticle-based formulations have been suggested to
improve bioavailability of flavonoids [120] and carotenoids
[121] and resveratrol efficacy in SCI [122]. In particular, rats
with SCI treated with resveratrol- and puerarin-loaded nano-
particles showed a decrease of GSH, SOD, and CAT antioxi-
dant levels [122]. On the other hand, squalene from EVOO
has been suggested as natural delivery system for bioactive
compounds [123]. It was observed that carotenoids’ absorp-
tion was higher in people that consumed salads with full-fat
dressing [124]. Furthermore, EVOO is a source of vitamin
E and contains many bioactive compounds [22]. From that,
Mediterranean dressing in addition to plant foods can have
an important effect on the redox balance in individuals with
SCI. From a clinical point of view, this evidence could sup-
port the patients during both the early rehabilitation phases
and the chronic management. In conclusion, the previously

suggested hormetic effects of Mediterranean diet [22] that
can be considered a natural multicomponent supplement
[125] could be useful for the long-term management of SCI.
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XO: Xanthine oxidase
Zn: Zinc.
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