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Abstract

Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenera-

tive disease, and is characterised by spinal motor neuron loss, impaired motor function and,

often, premature death. Mutations and deletions in the widely expressed survival motor neu-

ron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of

motor neuron degeneration are not well understood. Although SMA is degenerative in

nature, SMN function during embryonic and early postnatal development appears to be

essential for motor neuron survival in animal models and humans. Notwithstanding, how

developmental defects contribute to the subversion of postnatal and adult motor function

remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental

defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address

the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN

knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neu-

ron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further

restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to

express specifically in the neuronal progenitor cell types that have not formed synapses,

and thus a time that precedes neuromuscular junction formation and maturation. By restor-

ing SMN levels in these distinct neuronal population, we partially rescue the larval locomotor

defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature

neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study

is the first to directly rescue the motor defects of an SMA model by expressing Smn in an

identifiable population of Drosophila neuroblasts and developing neurons, highlighting that

neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell

maturation.

Author summary

Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality

and leads to the degeneration of the nerves that control muscle function. Loss-of-function
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mutations in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA, but

how low levels of SMN protein cause the neuronal dysfunction is not known. Although

SMA is a disease of nerve degeneration, SMN function during nerve cell development

may be important, particularly in severe forms of SMA. Nevertheless, how the defects dur-

ing development and throughout early life contribute to the disease is not well under-

stood. We have previously demonstrated that SMN protein becomes enriched in

neuroblasts, which are the cells that divide to produce neurons. In the present study,

motor defects observed in our fly model for SMA could be rescued by restoring SMN in

neuroblasts alone. In addition, we show that knocking down SMN in healthy flies within

the same cell type causes impaired motor function. The present study shows that the

manipulation of SMN in a developmentally important cell type can cause motor defects,

indicating that a period of abnormal neurodevelopment may contribute to SMA.

Introduction

Survival motor neuron (SMN) is an essential protein that functions in the biogenesis of spli-

ceosomal small nuclear ribonucleoproteins (snRNPs), which subsequently mediate pre-

mRNA splicing [1]. Loss-of-function mutations in the SMN1 gene cause the disease spinal

muscular atrophy (SMA), which is characterised by the selective loss of alpha motor neurons

of the spinal cord, muscle wasting and, in most severe cases, premature death in infancy [2].

Since the identification of the disease-associated gene SMN1 in 1995 [2], the drive to

uncover the mechanisms underlying SMA pathogenesis has been complicated by the pleiotro-

pic nature of the SMN locus [3], coupled with the varied levels of SMN protein in human and

animal models [4–6]. There has been considerable debate about how aberrations in both the

canonical and non-canonical motor neuron-specific functions of SMN may lead to the

observed motor neuron selectivity [7]. SMN has been shown to play a fundamental role in

snRNP and messenger ribonucleoprotein (mRNP) biogenesis [8], whilst also being involved in

mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and ubiquitin

homeostasis (reviewed in [3,9]). In addition, the nature of SMA pathology, and of the animal

models engineered to study the disease, are greatly affected by the systemic, temporal and spa-

tial levels of SMN protein [5,6]. In humans, in addition to SMN1, SMN is also encoded by a

second paralogous gene called SMN2, which, owing to a mutation affecting exon 7 splicing,

generates comparatively low levels of full-length SMN protein [10,11]. Due to the fact that

SMN2 copy number can also vary between individuals, there is a broad spectrum of disease

severity that, at the population level, correlates with the amount of SMN2-derived wild-type

SMN protein [4]. As SMN levels decrease, disease severity increases, the motor defects become

more pronounced, and many more cell and tissue types present with phenotypes caused by

loss of the protein [12,13].

Classed as a ubiquitous protein, SMN localises to the cytoplasm and nucleus, and can be

observed in many RNP-enriched subcellular foci, such as Gems [14], nucleoli [15], U bodies

[16] and Cajal bodies [14]. Cells do not necessarily require organised Gems, U Bodies and

Cajal bodies to survive; however, evidence shows that these celluar foci promote the efficient

clustering of the RNA processing factors required in embryonic, dividing and metabolically

active cells [17]. SMN protein level and associated snRNP assembly are highest during embry-

onic development, and are substantially downregulated postnatally [18] and as cells differenti-

ate and mature [19–21]. Furthermore, severe SMN loss can lead to developmental defects,
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with a hierarchy of cell types, many of which are uncharacterised, having differing sensitivities

to a reduction in the level of the protein [6,12].

Undoubtedly, the alpha motor neurons are particularly sensitive to SMN reduction.

Notwithstanding, it is not known how this selectivity manifests in its entirety (i.e.,

whether it is a result of aberrations in set-up or degeneration, or if it is through a non-cell

autonomous mechanism). Previous research has shown that the selective loss of SMN in

motoneuronal progenitors is sufficient to cause SMA like phenotypes [22]. Furthermore,

restoration of SMN in mature motoneurons only rescued the SMA phenotype partially

[23,24], whereas motor neuron-specific SMN reduction in wild type mice fails to recapitu-

late the entirety of the disease phenotypes, highlighting the importance of neuronal devel-

opment. Motor neuron loss is also a relatively late feature in SMN patients and

mammalian models [25, 26], although patients with type 1 SMA present with neuromus-

cular junction (NMJ) maturation defects during fetal development [27]. Importantly,

when performing rescue studies using mouse and Drosophila SMA models, early stage

ubiquitous restoration of SMN results in the greatest improvement in motor function and

animal survival [26,28,29]. This is supported by evidence from patient clinical trials [30]

and early versus later treatment of SMA mice [6,31–37]. To complement these findings,

SMN reduction in young adult mice caused more modest phenotypes when compared

with mice in which SMN was knocked down at an earlier developmental time point [6,

26,28]. Furthermore, Drosophila studies using Smn mutant models have reported severe

growth defects and considerable developmental retardation, in addition to motor and

NMJ dysfunction [5,21,38–41]. In mouse embryos, although no overt developmental out-

growth defects have been observed [42], defective radial outgrowth and poor Schwann

ensheathment led to some axons degenerating postnatally [43]. Altogether, this research

highlights that the cause of SMA may not be solely through classical neurodegenerative

processes, but via a combinatory multi-cell type mechanism that may be sensitised by neu-

rodevelopmental abnormalities. An understanding of the precise nature of the develop-

mental requirements of SMN, and how perturbations in SMN protein level leads to

defects that manifest in progenitor and non-differentiated neuronal cell types, is impor-

tant for SMA treatment.

The aim of the present study was to understand how manipulation of SMN protein

level during specific periods of neurogenesis can cause and modify the phenotypes present

in Drosophila models for SMA. The aim was to restrict SMN manipulation to the neuronal

progenitor cell types that have not yet formed synapses, and to a period that precedes NMJ

maturation. To achieve this, knockdown and rescue studies were used during the waves of

proliferation and differentiation in the larval and pupal central nervous system (CNS).

The classical GAL4 and the more targeted GAL80 repression systems were used to allow

for spatiotemporal transgene expression [44]. The reduction of SMN in neuroblasts and

undifferentiated neurons, but not subsequently in differentiated subpopulations of neu-

rons, caused motor defects. In the reciprocal experiment, neurodevelopmental and motor

phenotypes are partially rescued by expressing SMN in neuroblasts and immature neu-

rons. Finally, combinatorial SMN knockdown was carried out in immature and mature

neurons, which synergistically enhanced the locomotor and survival phenotypes in the

present model. This in-vivo study contributes to the understanding of how developmental

abnormalities can contribute to the motor defects synonymous with the pathology of

SMA. Furthermore, by selectively manipulating SMN in an identifiable population of neu-

roblasts and developing neurons, we highlight the importance of SMN in Drosophila
neurodevelopment.
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Results

Developmental arrest precedes larval locomotion dysfunction in Smn

mutants

During Drosophila embryonic neurogenesis, the nervous system required for larval life is gen-

erated (Fig 1A) [45–47]. Larvae then develop through three instar stages (L1–L3) before they

pupate and become adults. During larval life, a second wave of neurogenesis occurs, and about

90% of adult neurons are created [48]. Loss-of-function and null Drosophila Smn mutants sur-

vive until larval stage on a maternal contribution of SMN protein [40]. This shortened lifespan

is observed in the micro-deletion Smnx7, which removes the Smn coding region and is there-

fore classified as a null [39], and the point mutant SmnA, which acts as a loss-of-function [40].

In the present study, SmnA/Smnx7 trans-heterozygotes (herein referred to as Smn mutants)

were used to reduce the influence of genetic background. Although no embryonic defects have

been described previously [49], significantly fewer Smn mutant larvae hatching than expected

were observed at 25˚C and 20˚C (Fig 1B). Both 25˚C and 20˚C are the commonly used rearing

temperatures that confer approximately an 11-day and 14-day lifecycle in the fly, respectively.

For these experiments, the use of the life cycle lengths allowed the timeline of the developmen-

tal and motor phenotypes observed in the Smn mutants to be plotted more accurately. Homo-

zygotes of both SmnA and Smnx7 can live for several days in a developmentally immature larval

state [5,21,39,40], and die as larvae when maternal SMN becomes depleted. The remaining

hatched Smn mutants were tested and a comparable survival timeline was found, with larvae

dying at a median of 3 and 4 days when kept at 25˚C and 20˚C, respectively (Fig 1C).

At the end of L1 (24 h after hatching, approximately 48 h after egg laying), most neuroblasts

exit quiescence and start to divide [48]. As neuroblasts exit quiescence, they become enriched

with SMN [21], and clonal knockout of Smn in neuroblasts has been shown to limit cell divi-

sion and alter the clonal structure of the daughter cells generated from the SMN-deficient

stem cells [21]. To determine the timing of proliferation defects in relation to Smn mutant lar-

val lifespan, the number of nuclei stained positively for s-phase incorporated 5-ethynyl-2’-

deoxyuridine (EdU) over a 72-h period were scored. Except for a small population of continu-

ally dividing neuroblasts (some lateral and mushroom body neuroblasts bypass quiescence at

the end of embryogenesis), low levels of EdU incorporation were observed in Smn mutants. A

significant difference in EdU foci can be observed from 24 h when reared at both 25˚C and

20˚C (Fig 1D and 1E). This difference widened at 48 and 72 h after hatching (Fig 1E). After 72

h as larvae, the CNS of the remaining Smn mutant larvae remained significantly under-devel-

oped compared with wild-type larvae, when cultured at 25˚C and 20˚C (Fig 1D), highlighting

that neuroblasts fail to significantly proliferate during the attenuated larval survival period.

These data suggest that neuroblasts either fail to reactivate or that they generate only a nominal

number of immature neurons and glia.

As SMA is a disorder of the motor system, larval locomotor dysfunction is often used as a

proxy for motor abnormalities. The number of larval peristaltic muscle contractions that drive

larval movement was next quantified. This is a method that has previously been used in the

analysis of Drosophila models of neuropathy and SMA [50,51]. These contractions involve the

rhythmic and sequential contraction of body-wall muscles, and are controlled by an intricate

circuit of motor neurons and excitatory and inhibitory interneurons [52]. Contractions were

scored at 0, 24 and 48 h after hatching over a 1-min period. Previous studies have identified

that motor function defects become apparent after approximately 3 days in Smn mutant larvae

[39,40]. At time point 0 and 24, both control and Smn mutants undergo a comparable number

of contractions at 25˚C and 20˚C (Fig 1F and 1G). At larval age 48 h, the number of Smn

mutant larvae contractions reduced by approximately 53% at 25˚C (Fig 1F) and 18% at 20˚C
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(Fig 1G), when compared to controls. Additionally, larvae were filmed for 1 min and tracked

the distance travelled on an agar surface. Again, at 48 h, larvae travelled significantly less dis-

tance compared to controls (S1 Fig). At this time point, however, Smn mutant larvae are

Fig 1. Neurodevelopmental defects precede gross locomotor dysfunction in Smn mutants. (A) The Drosophila developmental stages. Drosophila go through

two major rounds of neurogenesis during embryogenesis, in which the larval nervous system is set up, and during the larval stage, in which the adult neurons

and glia are formed (these mature during metamorphosis and early adult life); (B) Smnx7/SmnA embryos were collected and the number of hatched larvae

scored for each genotype and normalised to numbers observed from control Smnx7/+. Fewer Smnx7/SmnA larvae hatched from embryos at 25˚C and 20˚C

(error bars [SEM] represent three experiments, each with n> 90; ���P< 0.001; Kruskal–Wallis test with Dunn’s multiple comparisons); (C) Smnx7/SmnA

larvae survived for a median of 3 and 4 days in a developmentally immature state when kept at 25˚C and 20˚C, respectively (error bars [SEM] represent three

experiments, each with n> 60, �P< 0.05 Mantel-Cox). (D) confocal images of 5-ethynyl-2’-deoxyuridine (EdU) incorporation in Smnx7/+ and smnx7/smnA

trans-heterozygous larvae aged 5 days; (E) counts of EdU-containing foci in the thoracic ganglion over 72 h for larvae kept at 25˚C and 20˚C. At both

temperatures, Smnx7/SmnA failed to show an increase in EdU incorporation. (��P< 0.01; ���P< 0.001, n = 15 per genotype; Kruskal–Wallis test with Dunn’s

multiple comparisons); (F and G) body wall contractions were scored at 0, 24 and 48 h after hatching over a 1-min period at (F) 25˚C and (G) 20˚C. Smnx7/

SmnA larvae underwent significant contraction defects at 48 h at both 25˚C (���P< 0.001; Kruskal–Wallis test n = 36) and 20˚C (��P< 0.01; Kruskal–Wallis

test n = 36). All error bars [SEM]Scale bar = 20 μm.

https://doi.org/10.1371/journal.pgen.1010325.g001
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significantly smaller than wildtypes and do not represent the same instar based on size or mor-

phology. In summary, gross developmental defects, which include the pausing of neurogenesis,

precede movement dysfunction in the larval SMA model.

SMN knockdown in neurogenic cell types cause larval and adult locomotor

dysfunction

The coincidence of locomotor and developmental defects, and the ever-depleting SMN levels

in Drosophila Smn mutants, make it difficult to identify the cellular mechanisms leading to the

deterioration of neuronal function. With our interest in immature neuronal identities, the aim

was to knockdown SMN by limiting Smn RNAi expression to neuroblasts and their daughter

cells and to compare the results with pan-neuronal, neuronal subtype, glial cell and fat body

Smn RNAi expression. Specifically, Smn knockdown was carried out using a RNAi hairpin

construct SMN-RNAiN4. When expressed ubiquitously, SMN-RNAiN4 presents as a hypo-

morph, with most flies dying at early pupal stage [39]. For expression in neuroblasts, the previ-

ously reported Inscutable-GAL4 (Insc-GAL4) driver was used [53,54]. Insc-GAL4 is expressed

in most embryonic and larval neuroblasts and their immature progeny [53], with a pattern of

expression (S2A and S2B Fig) analogous to the enrichment of SMN observed in the post-

embryonic neuroblasts [21] (S2C Fig). Expression of SMN-RNAiN4 removes the enrichment of

SMN in these cells, although SMN is still present at low levels (S2D Fig). In addition, a driver

containing a Prospero (Pros) regulatory sequence (P[pros-GAL4.U]) (Pros-GAL4) was

acquired. Prospero protein drives the expression of neural differentiation genes and represses

neuroblast stem cell identity and cell cycle proliferation genes. Prospero mRNA is expressed in

the neuroblast, and the protein is asymmetrically localized to the neuroblast basal cortex dur-

ing division, resulting in its partitioning into the daughter cells [55,56]. It was, therefore, spec-

ulated that the driver would express in neuroblasts and their daughter cells and, thus, provide

an intermediary between Insc-Gal4 and drivers expressing pan-neuronally in differentiated

neurons. To characterise the pattern of Prospero-GAL4 expression, UAS-CD8-GFP was

driven using Pros-GAL4 and green fluorescent protein (GFP) localisation was noted. GFP was

expressed in neuroblasts and daughter cells in the larval CNS (Fig 2A) and was restricted to

only a few neurons in the adult thoracic ganglion (Fig 2B). To benchmark Insc-GAL4 and

Pros-GAL4, two independent pan-neuronal drivers were used, namely elav-GAL4 and nSyb-
GAL4. elav-GAL4 is expressed in all neurons, from newly born to mature, whereas nSyb-GAL4
expression is confined to mature neurons in which synapse formation has begun, or where

synapses have been established. In addition, motor neuron (D42-GAL4 and OK371-GAL4),

cholinergic neuron (Cha-GAL4), pan-glial (Repo-GAL4) and fat body (CG-GAL4) GAL4 driv-

ers were used to manipulate SMN levels. The gross expression patterns of each driver are pre-

sented in Fig 2C. The number of larval body wall contractions was again scored when SMN

was knocked down using the set of diverse neuronal drivers. As previously described, reduced

body wall contraction defects were observed in pan-neuronal elav-GAL4; SMN-RNAi (Fig 2D),

with an approximate 20% reduction in peristatic movements. No contraction defects were

observed for nSyb-GAL4 or the motor neuron, cholinergic neuron, glial or fat-body drivers.

Contraction defects were observed when SMN-RNAi was expressed in neurogenic cell types.

A reduction in contractions was seen with both Insc-GAL4 and Pros-GAL4 expressed

SMN-RNAi (15% and 14%, respectively (Fig 2D)). In addition, the effect of cell-type-specific

Smn knockdown on survival to the adult stage was assessed. This was achieved by scoring the

number of pupated larvae that emerged as adults (Fig 2E). As previously described, a reduction

in eclosion rate was observed in pan-neuronally (elav-GAL4) driven SMN-RNAi (Fig 2E), with

around 6% fewer flies eclosing in each case, compared with the two control groups.
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Fig 2. Survival motor neuron (Smn) knockdown in neurogenic cell types leads to larval developmental defects and locomotor dysfunction. (A) Pros-GAL4
driven expression of membrane-bound CD8-green fluorescent protein (GFP) in the larval central nervous system. GFP expression is observed in the post-

embryonic neuroblasts and their immature daughter cells; (B) Pros-GAL4 expression in the adult ventral nerve cord. No neurons within the thoracic ganglion

show visible expression. Only a small number of neurons, which reside in the abdominal ganglion within the ventral nerve cord of the adult, expressed Pros-
GAL4; (C) GAL4 nervous system expression patterns detailing the neuronal and glial cell type expression patterns; (D–E) SMN was knocked-down

(UAS-SMN-RNAiN4) pan neuronally (Elav-GAL4 and nSyb-GAL4) predominantly in motor neurons (D42-GAL4 and OK371-GAL4), cholinergic neurons

(Cha-GAL4), neuroblasts and undifferentiated daughter cells (Pros-GAL4 and Insc-GAL4), pan-glia (Repo-GAL4) and in the larval fat body (CG-GAL4); (D)

body wall contractions were scored at 48 h, with significant differences observed with Elav-GAL4, Pros-GAL4 and Insc-GAL4 driven UAS-SMN-RNAiN4

(��P< 0.01, ���P< 0.00, Kruskal–Wallis test with Dunn’s multiple Comparisons; n> 20); (E) day of pupariation formation (three experiments each with

n> 50; Kruskal–Wallis test with Dunn’s multiple comparisons) data showing that Insc-GAL4 and Pros-GAL4 SMN knockdown leads to a delay in time to

pupariation; All error bars [SEM]. Scale bar = 10 μm.

https://doi.org/10.1371/journal.pgen.1010325.g002
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Furthermore, Insc-GAL4 and Pros-GAL4 expressed SMN-RNAi also decreased fly eclosion

number, with around 7% and 8% less flies hatching, respectively.

Adult motor defects in the SMN knockdown lines were then assessed. Two phenotypes

were selected to assess the effect on locomotion: adult activity and flight performance (Fig 3).

Drosophila behaviour was analysed using adult flies over two 1-day periods using an environ-

mentally controlled digital activity monitor (Chiu et al., 2010) and by flight testing using the

Seymour Benzer method [57]. For the full panel of drivers, activity and flight response was

scored at 2 and 8 days after eclosion. As previously reported, flight and adult activity defects

Fig 3. Survival motor neuron (Smn) knockdown in neurogenic cell types leads to adult motor dysfunction. Flies were tested for motor activity, (A)

and (B), and flight ability (C) and (D) at 2 days (A) and (C), and 8 Days (B) and (D). Drosophila activity was detected in adult flies over 1 day using the

Trikinetics activity monitors in controlled conditions; (A and B) only Pros-GAL4/UAS-SMN-RNAiN4 and Insc-GAL4/UAS-SMN-RNAiN4 progressively

declined in activity over 2 (F; ��P< 0.01, n = 20; Kruskal–Wallis test with Dunn’s multiple comparisons) and 8 days (G; ���P< 0.001; n = 20; Kruskal–

Wallis test with Dunn’s multiple comparisons); (C and D) Pros-GAL4; UAS-SMN-RNAiN4 and Insc-GAL4/UAS-SMN-RNAiN4 flies showed a significant

reduction in flight ability, with more flies residing at the bottom of the chamber, over 2 (F; �P< 0.05; ��P< 0.01; n = 40; Kruskal–Wallis test with

Dunn’s multiple comparisons) and 8 days (G; ���P< 0.001; n = 40; Kruskal–Wallis test with Dunn’s multiple comparisons). All error bars [SEM].

https://doi.org/10.1371/journal.pgen.1010325.g003
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were observed when SMN-RNAiN4 was expressed using both pan neuronal drivers, nSyb-
GAL4 and Elav-GAL4. No significant activity or flight defects, however, were observed when

SMN-RNAiN4 was expressed in motor neurons, interneurons or sensory neurons at 2 or 8

days. In contrast, Pros-GAL4 and Insc-GAL4 driven SMN knockdown displayed a reduction in

activity at 2 (Fig 3A) and 8 days (Fig 3B), and a progressive deterioration of flight ability at 2

(Fig 3C) and 8 days (Fig 3D). In summary, SMN reduction in neuronal progenitor cells, and

with early to mature pan-neuronal expression, causes both larval and adult locomotor defects.

Motor defects persist with developmentally targeted spatiotemporal SMN

knock down

Although GAL4 drivers generally express in defined cell types, transient or background

expression may occur in other tissues or developmental stages. To limit this problem, and con-

firm the importance of the link between neuroblast and neuronal progenitor specific abnor-

malities and the motor dysfunction observed in the SMA model, SMN was knocked down

with SMN-RNAi constructs using the GAL80TS (TARGET) system [44]. The GAL80TS system

further refines transgene expression by targeting spatially confined GAL4 drivers to a specific

developmental time period. In addition to the neuroblast-constrained driver (Insc-GAL4), the

GAL80TS system uses a temperature-sensitive GAL80 transgene (GAL80TS) that represses

GAL4 at low temperatures (e.g. 19˚C), but becomes inactive when the temperature is shifted to

29˚C, allowing GAL4 to be expressed [44]. This system was used to initially rear TubGAL80
and Insc-GAL4/UAS-SMN-RNAi larvae at 29˚C (GAL80TS is inactive; GAL4 and SMN RNAi is

expressed). Larvae were then switched to 19˚C (GAL80TS is active; the GAL4 gene is repressed;

SMN RNAi is not expressed) at the start of pupation, to remove background SMN knockdown

in differentiated adult neurons (Fig 3A). qRT-PCR control experiments, using a GFP reporter,

highlighted that Insc-Gal4 did not drive GFP expression after switching to 19˚C (S3 Fig). Dro-
sophila motor behaviour was again analysed using activity monitoring and flight testing, and

an additional SMN RNAi construct was used (SMN-RNAiC25). The use of SMN-RNAiC25,

which behaves as a hypermorph weaker than N4, enabled the comparison of two non-overlap-

ping SMN RNAi constructs that have previously been shown to drive mild phenotypes [39].

Eight days after eclosing, both activity (Fig 4B) (SMN-RNAiN4
,; SMN-RNAiC25) and flight

defects (Fig 4C) (SMN-RNAiN4; SMN-RNAiC25) were detected using this method. Therefore,

it was confirmed that locomotor defects persist when SMN knockdown using neuroblast driv-

ers is combined with the temporally restricted GAL80TS TARGET system.

Smn expression in neuroblasts partially rescues survival and motor defects

Whether expression of SMN in the developing nervous system can rescue the larval locomotor

function and survival defects observed in mutant Smn flies was next explored (Fig 5). The classic

UAS-GAL4 system and the GAL80TS (TARGET) system was used to drive full length SMN pro-

tein in the Smn mutants [58]. When using the GAL80TS (TARGET) system, embryos were reared

at 29˚C for the first 24 h, and then switched to 19˚C during larval life to restrict SMN expression

to a period of embryonic neurogenesis (Fig 5A). qRT-PCR control experiments, using a GFP

reporter, highlighted that Insc-Gal4 did not drive GFP expression after switching to 19˚C (S3 Fig).

Neuroblast expression of SMN (Insc-GAL4/UAS-dSMN; Smnx7/SmnA) in Smn mutant lar-

vae resulted in a marked improvement in embryo hatching defects, with 81% of expected

observed compared with 59% observed in mutants alone (Insu-Gal4; Smnx7/SmnA). This result

was consistent with the GAL80TS (TARGET) system in which SMN replacement led to an

improvement from 53% (TubGAL80TS, Insc-GAL4/UAS-dSMN; Smnx7/SmnA) of expected to

79% of expected (TubGAL80TS, Insc-GAL4/UAS-dSMN; Smnx7/SmnA) larval hatching
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(Fig 5C). In both cases, the compared control was formulated by normalising to the hatching

number observed from a Insc-GAL4/UAS-GFP cross. Tests were then conducted to see if neu-

rodevelopmental restoration of SMN protein could also rescue larval locomotion and longevity

defects. For locomotion, the peristatic contractions in 72 h-old larvae, the time-point at which

we see motor defects in Smn mutants, were counted. Control larvae (Insu-Gal4; UAS-GFP),

which express GFP in neuroblasts in a wild-type background, underwent an average of 33 con-

tractions per minute (Fig 5D). This contrasted with Smn mutant larvae, which underwent an

average of 16 peristaltic contractions (Fig 5D) (Insc-GAL4; Smnx7/SmnA). When SMN was

restored in Smn mutant neuroblasts (Insc-Gal4, UAS-SMN; Smnx7/SmnA), larval movement

Fig 4. Adult motor defects persist with developmentally targeted spatiotemporal survival motor neuron (SMN)

knockdown. (A) The GAL80TS system was used to eliminate any adult GAL4 expression. Larvae were reared at 29˚C

(GAL80TS is inactive; GAL4 is active) and then switched to 19˚C (GAL80TS is active; GAL4 is repressed) during

pupation; (B and C) two non-overlapping RNAi constructs were used (SMN-RNAiN4 and SMN-RNAiC25) for flight

and activity defects. Both (B) activity (SMN-RNAiN4
,
���P< 0.001; SMN-RNAiC25, ��P< 0.01, n = 20, Kruskal–Wallis

test with Dunn’s multiple comparisons) and (C) flight defects (SMN-RNAiN4, ���P< 0.001; SMN-RNAiC25,
��P< 0.01, n = 40; Kruskal–Wallis test with Dunn’s multiple comparisons) were detected using this method.

https://doi.org/10.1371/journal.pgen.1010325.g004
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Fig 5. Restoration of survival motor neuron (SMN) in neurogenic cell types rescues the motor phenotypes in Smn mutant larvae. For rescue studies,

both the classical binary GAL4 system (A) and the GAL80TS system (A’) were used. For targeting, a temperature sensitive GAL80 (GAL80TS) represses

GAL4 at 19˚C but becomes inactive at 29˚C. Embryos were reared for 24 h at 29˚C, during which GAL4 is expressed, then switched to 19˚C to eliminate

expression. Expression of SMN using Insc-GAL4 rescue the embryonic attrition seen in SMN mutants with both the (B) binary and (C) TARGET GAL80TS

GAL4 systems (���P< 0.001, three experiments for each genotype, each with n = 60; Kruskal–Wallis test with Dunn’s multiple comparisons); (D) Insc-
GAL4/UAS-SMN; SmnA/Smnx7 larvae show significant rescue of locomotor activity at 72 h compared with mutant Insc-GAL4; SmnA/Smnx7 (���P< 0.001,

n = 15, Kruskal–Wallis test with Dunn’s multiple comparisons); (E) larval survival was extended from a median of 3 days to a median of 7 days (three

experiments for each genotype, each with n> 30; ���P< 0.001; Mantel-Cox); (F) Tub-GAL80TS; Insc-GAL4/UAS-SMN; SmnA/Smnx7 larvae display a

significant rescue of motor function at 72 h, compared with controls (���P< 0.001, n = 20, Kruskal–Wallis test with Dunn’s multiple comparisons); (G)

larval survival was extended from a median of 4 days to a median of 8 days (three experiments for each genotype, each with n> 30; ���P< 0.001; Mantel-

Cox). All error bars [SEM].

https://doi.org/10.1371/journal.pgen.1010325.g005
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was significantly rescued, with 28 peristaltic contractions occurring on average (Fig 5D). An

assessment of whether neuroblast expression of SMN in the Smn mutant background

extended larval life was then made. The Smn mutant control larvae (Insc-GAL4; Smnx7/SmnA)

lived for an average of 3.5 days (Fig 5E). When SMN was restored in Smn mutant using the

neuroblasts driver (Insc-Gal4, UAS-SMN; Smnx7/SmnA), average larval life was extended to 7.5

days. These larvae, however, did not pupate, and all died as larvae after 23 days.

To further validate these results, the GAL80TS system was again used to further refine the

spatiotemporal window of UAS/GAL4 gene expression (Fig 5A). Smn mutant larvae with tar-

geted Insc-GAL4 SMN expression (TubGAL80TS, Insc-GAL4/UAS-dSMN; Smnx7/SmnA) dis-

played significantly rescued peristaltic motor function (27 peristaltic contractions in 1 minute)

compared with Smn mutants alone (TubGAL80TS; Insc-GAL4/+; Smnx7/SmnA), which had

averaged 16 peristaltic contractions per minute. The larval longevity analysis was then repeated

using the GAL80TS protocol (Fig 5A). When SMN was restored in Smn mutants using the neu-

roblasts driver (TubGAL80TS, Insc-GAL4/UAS-dSMN; Smnx7/SmnA), average larval life was

extended to 7.5 days, when compared with Smn mutants alone, which only survived on aver-

age 4 days (TubGAL80TS; Insc-GAL4/+; Smnx7/SmnA). These results show that targeted addi-

tion of SMN protein to neuroblast cell populations can partially rescue motor function and

longevity defects in the Drosophila SMA model.

Combinatorial immature–mature neuron SMN knockdown synergistically

enhances the locomotor and survival phenotypes

Irrespective of the effect of depleting SMN in neuroblasts and their immature daughter cells, loss

of SMN in the mature motor system affects survivability and motor function [28,59,60]. The aim

was to determine how depletion of SMN in the neuronal progenitor cell types and the mature

nervous system enhances the motor and survival phenotypes. Dual SMN RNAi knockdowns

were carried out using two combinations: 1) with Elav-GAL4, which expresses in both newly

born and mature neurons, in conjunction with the neuroblast driver (Insc-GAL4); and 2) nSyb-
GAL4, which expresses in maturing and mature neurons that have undergone synapse formation,

in conjunction with the neuroblast driver (Insc-GAL4) (Fig 6A). To test these compound knock-

downs, larval movement (Fig 6B) and the number of flies that survived to adulthood were ana-

lysed (Fig 6C). As previously described, Elav-GAL4 and Insc-GAL4 reduced peristaltic

contractions, whereas nSyb-GAL4 SMN knockdown only led to adult movement phenotypes.

Controls performed around 33 peristaltic contractions per minute, whereas SMN knockdown

independently using Elav-GAL4, nSyb-GAL4 and Insc-GAL4 underwent approximately 26, 32

(non-significant) and 28 peristaltic contractions per minute, respectively (Fig 6B). When Elav-

GAL4 and Insc-GAL4 were combined to drive SMN knockdown, larvae underwent 16 peristaltic

contractions per minute on average, whereas compound nSyb-GAL4 plus Insc-GAL4 SMN

knockdown larvae underwent 17 peristaltic contractions per minute on average (Fig 6B).

A similar trend was seen with eclosion (hatching from the pupal case; Fig 6C). Subtle but

significant defects were observed in flies that underwent SMN knockdown with independent

Elav-GAL4 and Insc-GAL4 expression, with flies hatching at 83% and 80%, respectively, and

controls hatching at 90% (Elav-GAL4 + Insc-GAL4, 90%; and nSyb-GAL4 + Insc-GAL4, 90%)

(Fig 6C). When Elav-GAL4 and Insc-GAL4, and independently nSyb-GAL4 and Insc-GAL4,

were combined to drive SMN knockdown, hatching defects were enhanced (Elav-GAL4 +

Insc-GAL4 driven UAS-SMN-RNAiN, 62% hatched; nSyb-GAL4 + Insc-GAL4 driven

UAS-SMN-RNAiN4, 60% hatched) (Fig 6C). These data demonstrate that the combinatorial

knockdown of SMN in neuroblasts, immature neurons and mature neurons synergistically

enhances the motor and survival phenotypes of the Drosophila SMA model.
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Discussion

In this study, we show that depleting SMN in neuroblasts and their immature daughter cells

can predispose larval and adult Drosophila to locomotor dysfunction. In addition, we can par-

tially rescue the larval motor defects of Smn mutants by restoring SMN in the neuroblasts and

immature developing neurons using targeted expression systems. Finally, we highlight that the

Fig 6. Dual knockdown of survival motor neuron (SMN) in neuroblasts and differentiated neurons synergistically

enhances the SMA model phenotypes. (A) GAL4 nervous system expression patterns detailing the driver type and

single and double-driver combinations used to knock down Smn. For negative controls Elav-GAL4 + Insc-GAL4 and

nSyb-GAL4 + Insc-GAL4 were used. Elav-GAL4, Pros-GAL4 and Insc-GAL4 driven UAS-SMN-RNAiN4 were used as

positive controls and compared with Elav-GAL4 + Insc-GAL4 and nSyb-GAL4 + Insc-GAL4 driven UAS-SMN-RNAiN4;

(B) the genotypes were assessed for locomotor dysfunction at 72 h after hatching. Elav-GAL4 + Insc-GAL4 and nSyb-
GAL4 + Insc-GAL4 driven UAS-SMN-RNAiN4 underwent reduced peristaltic contractions compared with negative and

positive controls (���P< 0.001, n>20, Kruskal–Wallis test with Dunn’s multiple comparisons); (C) fly hatching

number was then assessed to analyse survival to adulthood. Elav-GAL4 + Insc-GAL4 and nSyb-GAL4 + Insc-GAL4
driven UAS-SMN-RNAiN4 survived compared with negative and positive controls (���P< 0.001; three experiments,

each with n> 50; Kruskal–Wallis test with Dunn’s multiple comparisons). All error bars [SEM].

https://doi.org/10.1371/journal.pgen.1010325.g006
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combination of presumptive and mature nervous system SMN reduction increases the severity

of SMA model phenotypes. We show that the reduction of SMN in cells that are not synapse

forming, and thus precede NMJ and sensory-motor network maturation, cause SMA-like phe-

notypes in the fly.

Although motor neuron loss is also a relatively late feature in SMA patients and mammalian

models [25], it is believed that defects in synapse formation and maintenance may be central

to the neurological phenotypes observed in SMA patients [59]. Mouse model rescue studies

highlight that the therapeutic success of administered rescue constructs generally become pro-

gressively diminished only a few days after birth [31–36]. This pre- and peri-natal period coin-

cides with a higher requirement of SMN level in the CNS, a phenomenon also observed in

Drosophila [5,39,40]. It is difficult to compare the Drosophila life cycle with the vertebrate pro-

gression of disease; however, the mechanistic and cellular readouts from invertebrate models

can offer some degree of translation. Our knockdowns and rescues are limited to neuronal

stem cells and their immature progeny. Drosophila neuronal stem cells progress through a cas-

cade of transcriptionally distinct identities before permanently differentiating or dying

[45,46,61]. During division, this developmental cascade leads to a diversity of developmentally

plastic immature daughter cells that undergo further pre- and post-transcriptionally regulated

maturation steps, which precede the formation of synapses and ultimately action potentials.

Although SMA was classically thought to be a disease of aberrant splicing, the broad require-

ment for SMN in the regulation of post-transcriptional gene expression is compelling, with

roles encompassing snRNP biogenesis [1], mRNP biogenesis [62], mRNA transport [63], ribo-

somal dynamics [64], chromatin dynamics [65] and translational control [66]. It is probable

that deficits in any one of these pathways could lead to stem cell or daughter cell sensitivity to

conditions of low SMN. As a stem cell divides and creates a differentiating daughter cell, large

changes in alternative splicing drive identity from one of pluripotency to that of an identifiable

neuronal lineage with a defined cell biology and physiology [67,68]. It may be that higher

SMN levels are required for the temporal–spatial regulation of the alternative splicing events

that occur during this switch. Provisional data has shown that both adult flies and larvae dis-

play fewer synapses and synaptic boutons respectively, when SMN is knocked down in neuro-

blasts and the corresponding immature progeny. However, the relevance of bouton number

changes has been partly called into question, and these alterations may only be casually linked

to the movement defects physiological alterations, and death, observed in Drosophila SMA

models [49,69]. It may be that upstream functional changes in motor neurons, interneurons,

or other neuronal cell types may ultimately lead to the degeneration of the motor neuron or

the neuromuscular junction. To this end, the temporal transcription factor cascades that gen-

erate the molecular and physiological diversity of the neurons in the developing CNS may be

of interest [46, 61]. In future work, we would like to see, when SMN levels are low, if molecular

changes in the developing neurons lead to defects in motor neuron physiology, or alterations

in the different neuronal classes. We can speculate that changes at this level could alter, in a

subtle manner, their molecular identity sensitising neurons to degeneration in certain condi-

tions, or over time.

We have previously reported that SMN overexpression affects developmental timing in

Drosophila [21] and protects embryonic stem cells from retinol-induced differentiation [19].

In in-vivo SMN mutant neuroblast clones, the levels of both major and minor spliceosome

snRNPs (U5 and U2) are reduced in the nucleus of the neuroblast. We have also shown that

SMN loss in neuroblasts perturbs cell division and alters the topology of the daughter cell clus-

ter. Furthermore, gene expression analysis conducted on the spinal cord from SMN deficient

mice detected changes in proliferative pathways, and identified morphological changes in the

dividing cells in the ventral horn [70]. In both mouse and Drosophila models, SMN reduction
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promotes the untimely differentiation of neurons and spermatogonia [19–21], suggesting that

high SMN is required for the fidelity of the developmental processes key to cellular differentia-

tion and maturation.

Alternatively, or in-combination, SMN loss may affect downstream translational control.

We have previously shown that SMN-deficient neuroblasts display a mislocalisation of a corti-

cal scaffolding protein that binds asymmetrically localised RNP complexes. Drosophila neuro-

nal stem cells and neurons alike are energetically demanding, polarised and metabolically

distinct [71]; therefore, the presence of highly clustered sites for RNP maturation and process-

ing may be necessary for the correct function of metabolically active and dividing cell types

[17]. Nevertheless, it is important to note that cell types and tissue beyond the nervous system

are affected by SMN loss [72]. Within our model, although we rescue motor phenotypes and

expand lifespan, neuroblast SMN rescue cannot support full larval development, pupariation

and pupation to adulthood. In addition, SMN depletion in mature neurons also leads to loco-

motor dysfunction. Mutations in many widely expressed genes cause selective neuropathies

and motor neuron diseases [73]. How we come to think about the nature of these disease

genes, particularly their pleiotropy and spatial and temporal requirements, will be key to the

eventual revealing of the mechanisms that lead to the selectivity of cell type degeneration.

It seems that, at least in the Drosophila model, SMN reduction in many presumptive and

mature neuronal cell types can cause locomotor defects and reduce lifespan. To understand

the temporal and spatial requirement of SMN during nervous system development, we used

Drosophila cell and time-specific GAL4 drivers. To date, a large number of UAS/GAL4 studies

have investigated how to identify the fly tissue and cell types sensitive of SMN loss [5]. Consis-

tent with other models, ubiquitous SMN knockdown is the most severe, leading to larval

lethality, whereas ubiquitous rescue using high level expression drivers confers adult survival

[39,40]. Second to this, combinatorial experiments expressing SMN, both early stage pan-neu-

ronal and mesoderm drivers, partially rescues at the adult stage, whereas knockdown using the

same driver combination causes larval–pupal lethality [40]. In comparison, pan-neuronal

knockdown alone leads to modest adult lethality, neurophysiological and behavioural defects

[39,40,74], whereas a subset of other drivers, including those expressed in cholinergic neurons

and glutamatergic neurons, have shown specific neuromuscular phenotypes or rescue profiles

[41,74]. It is important to highlight that GAL4 drivers will vary in temporal specificity and

level. Due to the non-synchronous correlation between transcriptome and proteome [75],

enhancer drivers derived from known neuronally expressed genes may generally express ear-

lier or more broadly (at least at lower levels) than expected. These issues highlight the impor-

tance of the GAL80TS system used in this study to confine transgene expression to the cell type

and time period. However, it is important to note that although the target system offers a high

degree of temporal and special control, our study does not fully eliminate the role of low level

SMN knockdown and expression in other tissues enhancing the phenotypes and rescues

observed, during the period of GAL4 expression.

To summarise, the present research supports that the idea that SMA is caused by a combi-

nation of defects that impact motor neuron development, maturation, and maintenance.

Moreover, although motor neurons seem to be particularly sensitive to SMN loss, the complex

background of multiple tissue defects makes it difficult to unveil the precise timing and nature

of the causative defects. The present study directly shows that SMN is required during a win-

dow of neurogenesis that precedes synapse formation and neuromuscular junction matura-

tion, and that the motor defects observed in Drosophila SMA models can be, in part, be caused

by SMN reduction in these cell types. To this end, further study should address how an

improper set-up of neuronal networks may compound any motor neuron cell autonomous

defects that may arise in SMN-deficient motor neurons.
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Materials and methods

Drosophila husbandry and stocks

Smnx7 null, SmnA, P[UAS-Smn-RNAi]N4, P[UAS-Smn-RNAi]C25 line have been previously

described [39, 40]. All stock were backcrossed onto w1118 wild type background. Larvae were

grown on apple juice plates with yeast and rich food added. Low population density was main-

tained for all crosses prior to experimentation. For classical UAS/GAL4 experiments, all

crosses were carried out at 25˚C to generate extensive but not complete knock-down. GAL4

drivers 1032-GAL, D42-GAL4, OK371-GAL4, Cha-GAL4, Repo-GAL4, and CG-GAL4 drivers,

were obtained from Bloomington (Indiana). Pros-GAL4 was obtained from the putative-

enhancer collection (Bloomington Drosophila Stock Centre [BDSC] at Indiana University,

USA). Insu-GAL4; Tub84B-GAL4TS was a gift from Jürgen Knoblich. Drivers were character-

ised using UAS-CD8-GFP, UAS-H2B-YFP (Andrea Brand).

EdU staining

Dissected CNS were incubated for 1.5 h in 10 μM EdU/Grace’s medium, fixed for 10 min in

4% paraformaldehyde, followed by detection of Alexa Fluor azide according to the Click-iT

EdU Imaging Kit (Invitrogen, Waltham, MA, USA) and washing in 0.2% Triton X-100 in

phosphate buffered saline. Immunofluorescence was carried out as previously described [21].

Larval hatching assays

A 2-h lay was carried out on apple juice plates and embryos were lined up in sets of 10. The

number of embryos that hatched into larvae was scored for each genotype and was expressed

as a percentage of that expected from the lay. Smnx7/TM6B-GFP and SmnA/TM6B-GFP were

crossed and the number of embryos and larvae with Smn heterozygotes) and without GFP

expression (homozygous smn mutants) were scored as a percentage.

Larval locomotion assays

Measurement of motor function involved placing individual age-matched third instar larvae at

the centre of a 0.7% (weight by volume) agar plate and counting the forward body wall con-

tractions exhibited over 1 min. Larvae were left to acclimatise for 30 s before analysis.

Larval survival assay

Flies performed a 2hr lay on apple juice plates for 2-h with minimal yeast. Embryos were

counted, additional yeast was added, and larval development and death was recorded every 24

h.

Adult locomotor function assay

Age-matched (1- and 7-day old) male flies were placed individually in a 5-mm glass activity

tube containing a food source (5% sucrose [Sigma-Aldrich, St Luis, MO, USA] and 2% Bacto

agar [BD Diagnostics, Franklin Lakes, NJ, USA] in distilled water) at one side and a plastic

cover with an air hole at the other. The individual glass tubes were placed into the activity

monitor (Trikinetics monitors DAM2) (Trikinetics Inc., Waltham, MA, USA) and supported

with rubber bands to hold them in place. Locomotor activity was recorded when the flies

crossed the infrared light beam at the middle of the glass tubes. Thirty flies were used per geno-

type and kept under controlled conditions (12-h light–dark cycle at 25˚C) for 2 days, day 1

being excluded for habituation. The DAM System collection software was used for collecting

PLOS GENETICS Neuroblast SMN reduction drives locomotor dysfuction

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010325 July 25, 2022 16 / 23

https://doi.org/10.1371/journal.pgen.1010325


data. The raw binary data were processed using DAM Filescan102X (Trikinetics Inc., Wal-

tham, MA, USA) and summed into 1-h bins.

Adult flight assay

The flight assay was carried out in accordance with a modified protocol originally designed by

Benzer [57]. A total of 1000-ml graduated cylinder divided into five sectors was coated inter-

nally with mineral oil. Flies were introduced into the top of the cylinder through a funnel and

the flies stuck in each sector were counted. The height that flies stick in the cylinder is indica-

tive of their flight capabilities.

TubGAL80TS TARGET analysis

For larval rescue analysis, GAL80TS analysis, embryos were reared at 29˚C (GAL80TS inactive;

GAL4 active) and after 24 h (GAL80TS active; GAL4 repressed) and then switched to 19˚C dur-

ing larval life. TubGAL80TS, Insc-GAL4/UAS-dSMN; Smnx7/SmnA stock was used and com-

pared with the mutant TubGAL80TS, Insc-GAL4/+; Smnx7/SmnA and control TubGAL80TS,
Insc-GAL4/UAS-GFP backgrounds. For adult analysis, Drosophila larvae were reared at 29˚C

(GAL80TS inactive; GAL4 active) and then switched to 19˚C (GAL80TS active; GAL4

repressed) after pupariation formation. Two non-overlapping RNAi construct was used

(SMN-RNAiN4 and SMN-RNAiC25) and expressed using a TubGAL80TS, Insc-GAL4 stock line.

Drosophila motor behaviour was analysed using activity monitoring, which was carried out at

19˚C at days 1 and 7 after hatching. Flight testing was carried out at 8 days.

qRT-PCR

We determined the levels of GFP mRNA using qPCR methods as described previously [76],

using Fast SYBR Green Master Mix (Applied Biosystems Cat. no. 4385612) and the 500 Fast

Real-Time PCR System (Applied Biosystems).

Statistical analysis

A Kruskal–Wallis test and subsequent Dunn’s multiple comparison testing were carried out

unless otherwise stated. GraphPad Prism software was used for all data analysis.

Supporting information

S1 Fig. Movement defects present at late larval stages. (A) Control (w1118) and Smnx7/SmnA

larvae were monitored at approximately 24, 48, and 72 ± 1 h after egg laying. Acclimatised lar-

vae were filmed for 1 min, and the distance travelled was traced and measured in cm. Smnx7/

SmnA larvae displayed significant movement defects at 72 h (���P< 0.001, n = 20); (B) exam-

ple superimposed larval locomotion path traces from control and Smnx7/SmnA mutants for

each time point.

(TIF)

S2 Fig. Characterisation of Insc-Gal4 expression and targeted SMN knockdown. (A) Dur-

ing larval life, a second wave of larval neuroblast division occurs. The majority of neuroblasts

in the ventral ganglion reside at the surface of the larval CNS. (B) Representative Inscu-GAL4
expression is seen exclusively in neuroblasts and immature neurones in the ventral ganglion

and brain lobes. Insc-Gal4 expression was examined using UAS-mCherry. The ventral and

medial regions of a third instar larval central nervous system is shown. (C) The larval CNS

were co-stained with SMN. The zoom (Box in B) shows SMN staining overlaps with UAS-

mCherry immunofluorescence. (D) Expressing UAS-SMN-RNAiN4 exclusively in neuroblasts
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and immature neurones significantly reduces, but does not eliminate, SMN levels. Edu stain-

ing highlights a population of dividing neuroblasts and ganglion mother cells that no longer

show SMN enrichment.

(TIF)

S3 Fig. Relative expression of GFP mRNA normalised to rp49 in Tub-GAL80TS; Insc-
GAL4/UAS-GFP during the larval and adults experimental time courses. (A) The GAL80TS

system was used to eliminate any adult GAL4 expression. For larval experiments, a tempera-

ture sensitive GAL80 (GAL80TS) represses GAL4 at 19˚C but becomes inactive at 29˚C was

used. Embryos were reared for 24 h at 29˚C, during which GAL4 is expressed, then switched

to 19˚C to eliminate expression. (B) GFP RNA was measured in whole embryos and larval

CNS over the time course analogous to that used in the locomotor and pupation assays. GFP

expression was seen to diminish by 0 hrs. We detected no further GFP expression throughout

the course of the experimental period. (C) For adult studies, larvae were reared at 29˚C

(GAL80TS is inactive; GAL4 is active) and then switched to 19˚C (GAL80TS is active; GAL4 is

repressed) at the start of pupation. (D) Relative expression of GFP mRNA normalised to rp49

in Tub-GAL80TS; Insc-GAL4/UAS-GFP larvae, pupae and adults. GFP RNA was measured in

larval, pupae and adults over the time course analogous to that used in the adult activity and

flight assays. The Larvae were switched from 29 to 19˚C at the late L3 stage. GFP expression

was seen to diminished during larval growth and maturation. We detected no GFP expression

throughout the pupal and adult periods studied. (L2, 2nd Instar Larvae; L3, 3rd Instar Larvae).

(TIF)
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