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Abstract

In a collaborative product design project, reasonable resource allocation can shorten the

development cycle and reduce cost. Team capacity evaluation and a task-team scheduling

model are presented. A collaborative team capacity model is constructed, and a 2-tuple lin-

guistic method is used to evaluate the capacity of collaborative teams. Next, the matching

degree between design task and collaborative team is defined. A collaborative product

design scheduling model considering task-team matching is developed. Combined with the

simulated annealing operator, based on the single-coding strategy, self-adaptive multi-point

cross and mutation, an improved genetic algorithm is proposed to solve the model. Finally, a

case study is presented to validate the method.

Introduction

With the increasing global competition and growing complexity of products, the division of

labour is becoming increasingly specialized. As a result, the core firm requires joint develop-

ment involving customers, suppliers and research institutes to overcome these limitations.

Through cross-organizational collaborative product design, it can realize the maximization of

resource integration and knowledge sharing as well as the improvement of design efficiency.

However, in the process of collaborative product design (CPD), the diversity of design agent

and interdependence and mutual restriction between tasks make the collaborative product

design process quite complicated. Therefore, design task and resource should be reasonably

allocated to shorten the development cycle and reduce cost.

There is a great amount of research work on the task and resource allocation of a collabora-

tive design project. Some of these research studies focused on task identification, task relation-

ship analysis and task scheduling based on Petri Nets[1] and Design Structure Matrix (DSM)

[2–3]. Other research studies focused on the establishment of a task and resource dynamic

scheduling optimization model and a model solution based on heuristic algorithm[4] and
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intelligent algorithm, such as the Genetic Algorithm[5], Ant Colony Optimization[6], Particle

Swarm Optimization[7], Artificial Bee Colony[8]. Pang et al. [9] established a design task net

and constructed a task assignment model from tasks to team members based on the principle

of equilibrium-moderation. Li et al. [10] proposed a two-stage multi-agent resource allocation

method, including the arbitration of manager agent and design agent selection according to

task priority function. Regard collaborative production tasks as a directed weighted complex

network, Yu et al. [11] proposed an evolution model for simulating collaborative production

task state to perturbations. In order to deal with the collaboration between task decomposition

and task scheduling, Liu et al. [12] put forward a new method for task granularity quantitative

analysis, which is used to guide the coarse-grained task decomposition and recombine the sub-

tasks with low cohesion coefficient. Currently, in the study of capacity and matching degree

for CPD, Frillman et al. [13] proposed a competency model for engineers functioning in a

PLM environment that emphasized individuals’ competencies. Wu et al. [14] proposed a

resource capability measuring method and resource capability deployment mechanism by

mapping resource task capability item (RTCI) to resource physical capability item (RPCI).

Combined with cost and productivity considerations, Tanuchporn et al. [15] proposed a

multi-objective ergonomic workforce scheduling model to minimize the number of utilized

workers and the total worker-task changeover, maximize the total worker-task fit score. Based

on agent simulation, Zhang and Li [16] simulated the human working behaviours in a collabo-

rative product development process, where the design agent selected her/his partner according

to the ability and character matching degree. Furthermore, Li and Zhang [17] analysed the

static single category resource scheduling problem and the multi-category resource static

scheduling problem. Based on ontology and service capabilities, He and Hu [18] proposed

matching rules and algorithms of manufacturing tasks and services. However, these research

studies did not consider matching between tasks and the collaboration team.

For a collaborative product design project, the project is decomposed into tasks first, and

then, the tasks are allocated to the collaborative team. Next, the tasks are decomposed into

sub-tasks or more detailed tasks; these sub-tasks or detailed tasks are then assigned to individ-

uals. The previous research studies have focused on the matching between a task and an indi-

vidual based on task priority or designer preference. The question arises, taking the design

team as a whole, from the perspective of system engineering, what is the method to realize rea-

sonable task-team matching? Furthermore, partner selection or task assignment requires mea-

surement of the collaborative team comprehensive capacity. This concept refers to not only

individual competency but also members’ cooperation. In addition, for task allocation, it is

necessary to evaluate the capability of collaborative team while considering the cost.

In the sections that follow, the capacity model of a collaborative team is presented first.

Next, the 2-tuple linguistic evaluation method is adopted to evaluate the capacity of the collab-

orative team. Subsequently, the matching degree (MD) is defined. Afterwards, a scheduling

model considering matching degree is established, and the improved genetic-annealing

algorithm is designed to solve the scheduling model. An example is solved successfully to illus-

trate the feasibility and validity of the proposed method and model. Finally, conclusions are

presented.

Team capacity evaluation based on the 2-tuple linguistic method

Capacity model of collaborative team

Collaborative product design, as a multi-agent and knowledge-intensive activity, emphasizes

collaborative work between design teams. Moreover, creative customers and suppliers are

involved. These innovative design agents have different background knowledge, experience,
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skill level and interests, i.e., each team has its own special abilities and resources. Therefore,

collaborative product design requires not only reasonable design task decomposition but also

reasonable matching between innovation team and task, such matching has important influ-

ence on the efficiency and cost of product design.

Capacity reflects the skill or ability sets necessary for the relevant tasks. The capacity model

requires a description of the capacity elements for a task. When finding an appropriate team to

conduct a design task, team capacity should be considered. For collaborative work, informa-

tion sharing, goal congruence, decision synchronization, resource sharing, collaborative com-

munication, and joint knowledge creation are significant and interconnecting elements[19–

20]. Moreover, they are the prerequisite elements. Thus, the capacity model of a collaborative

team is constructed as shown in Fig 1.

In the model, the basic resources of a collaborative product design team are information

resources, hardware and software resource, brand resource and social net resource. The infor-

mation resource includes available technical information and industry information. Important

customers, government, and partners in other industries constitute the team’s social net

resource. The comprehensive capacity consists of team learning capability, communication

capability, team executive capability, technical capability, service consciousness, and manage-

ment capability. Learning capability and communication capability are more important than

the others at this level. The core capacities are team innovation capability and collaboration

capability. Team collaboration requires good communication and executive ability as well as

excellent team management. Learning capability and technical capability are important pre-

requisites and serve as the foundation for innovation. Finally, high efficiency and high quality

are the ultimate goals.

Fig 1. Capacity model of collaborative product design.

https://doi.org/10.1371/journal.pone.0200753.g001
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Team capacity evaluation based on the 2-tuple linguistic method

For capacity evaluation, the common methods are based on fuzzy mathematics theory, such as

AHP and triangular fuzzy numbers. However, in these methods, fuzzy operation based on the

extension principle increases the fuzziness of the results and causes information loss or distor-

tion. In addition, evaluation experts often adopt natural language to express their preference,

e.g., they use ‘‘high”, ‘‘average” and ‘‘low” to evaluate the team capacity, or they use ‘‘very

high”, ‘‘high”, ‘‘average”, ‘‘low” and ‘‘very low” to express their evaluation results. In other

words, different experts can express their evaluation information at different levels of granular-

ity. The 2-tuple linguistic method can effectively aggregate natural language evaluation infor-

mation of different levels of granularity to avoid information loss and make the result more

precise[21–22]. Thus, the 2-tuple linguistic method is adopted to evaluate the competencies of

the collaborative team.

The 2-tuple linguistic method represents the linguistic evaluation information by means of a

two-tuple (si, αi), where si is a linguistic label from predefined linguistic term set S = {s0, s1, . . .,

sg}; αi is the value of symbolic translation, αi2[-0.5,0.5); and g+1 is the granularity of the set S.
For example, a set S = {s1, s2, s3, s4, s5} represents the evaluation information set. The meanings

of linguistic terms s1, s2, s3, s4, and s5 are ‘‘very high”, ‘‘high”, ‘‘average”, ‘‘low” and ‘‘very low”,

respectively.

Definition 1. A real number β2[0, g] is a number value representing the aggregation

result of the linguistic symbols. The function Δ used to obtain the 2-tuple linguistic informa-

tion equivalent to β is defined as:

D : ½0; g� ! S� ½� 0:5; 0:5Þ; DðbÞ ¼
sk; k ¼ roundðbÞ

ak ¼ b � k; ak 2 ½� 0:5; 0:5Þ

(

ð1Þ

where round () is the rounding operator, Sk has the closest index label to β, αk is the value of

the symbolic translation.

In contrast, the 2-tuple linguistic variable can be converted into the crisp value β by the

inverse function Δ-1:

D
� 1

: S� ½� 0:5; 0:5Þ ! ½0; g�; D
� 1
ðsk; akÞ ¼ kþ ak ¼ b ð2Þ

Definition 2. Let S = {(s1, α1), (s2, α2), . . ., (sm,αm)} be a 2-tuple linguistic variable set at a

given granularity, the arithmetic average operator of the set is computed as follows:

ð�s; �aÞ ¼ D
1

m

Xm

j¼1

D
� 1
ðsj; ajÞ

" #

; �s 2 S; �a 2 ½� 0:5; 0:5Þ ð3Þ

Definition 3. Let S = {(s1, α1), (s2, α2), . . ., (st,αt)} be a set of 2-tuples and C = {(c1,ß1),

(c2,ß2),. . ., (ct,ßt)} be the linguistic weighting vector of 2-tuple (sk, αk)(k = 1,2,. . .,t). The

extended 2-tuple weighted geometric (ET-WG) operator is defined as follows[23–24]:

ð~s; ~aÞ ¼ ET WGCððs1; a1Þ; ðs2; a2Þ; . . . ; ðst; atÞÞ ¼ Dð
Yt

k¼1

ðD
� 1
ðsk; akÞÞ

D� 1ðck ;bkÞPt

k¼1
D� 1ðck ;bkÞ

Þ ð4Þ

Definition 4. Let ð~s1; ~a1Þ, ð~s2; ~a2Þ, . . ., ð~su; ~auÞ be the two-tuple linguistic information

with different granularities that will be aggregated. u is the number of groups. The improved
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EOWA operator is defined as:

ðs�; a�Þ ¼ IEOWAðð~s1; ~a1Þ; ð~s2; ~a2Þ; . . . ; ð~su ; ~auÞÞ ¼ Dðl
0

iðD
� 1
ð~si; ~a iÞÞÞ ð5Þ

where ð~si; ~a iÞ is the evaluation information with the ith maximum granularity, and l
0

i is the ith
maximum number in array λ. λ = (λ1, λ2, . . ., λu) is the weight of EOWA operator that is quan-

tified by the fuzzy operator E(r):

li ¼ Eði=uÞ � Eðði � 1Þ=uÞ; i ¼ 1; 2; . . . ; u

EðrÞ ¼

0 r < a

ðr � aÞ=ðb � aÞ a � r � b

1 r > b

8
><

>:
ð6Þ

where a, b, and r2[0, 1] correspond to the fuzzy linguistic quantitative principle of “half”,

“most” and “as much as possible”, respectively, with the parameters (a, b) taking on values of

(0, 0.5), (0.3, 0.8), and (0.5, 1), respectively.

The specific evaluation steps are as follows:

Step 1. The experts with the same granularity are divided into a group. The weight evaluation

result of expert k(k = 1, 2,. . .,t) for capacity is denoted as (cyk, b
y
k). The evaluation result of

team j for task i in capacity given by expert k is denoted as (cykij, b
y
kij). According to Eq (4),

the integrated information of group with the same granularity, denoted as ð~sy
ij; ~a

y
ijÞ, is

obtained.

Step 2. Obtain the weight vector l ¼ ðl
0

1
; l
0

2
; . . . ; l

0

uÞ according to the improved EOWA

operator, and then, aggregate the integrated information ð~sy
ij; ~a

y
ijÞ according to Eq (5) to

obtain the comprehensive evaluation information of team j for task i in capacity y, denoted

as (syij, a
y
ij). Next, the weight vector is converted into a crisp value gyij .

Scheduling model for CPD

Matching degree between task and team

The matching degree refers to measure of fitness between elements. For example, when match-

ing a project task with the collaborative team, if the matching degree is too low, then the col-

laborative team’s capabilities and resources are not adequate to allow them to complete the

task. A higher matching degree ensures that the team can accomplish the tasks high-efficiency

and high-quality, but it also means higher cost. To address this trade-off, this paper constructs

a task-team matching degree model of collaborative product design project.

The task-team matching degree model is constructed in two ways: one is based on the per-

sonnel capability matching degree of collaborative team (the comprehensive capacity and core

capacities in the capacity model), and the other is based on the available resources matching

degree (the basic resources in the capacity model).

The matching degree between task i and team j at the dimension of personnel capabilities,

denoted as TCij, is defined as follows:

TCij ¼
X8

p¼1

a
p
i ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgpijÞ

2
� ðepi Þ

2
�
�

�
�

ðepi Þ
2

s

Þ ð7Þ

where p denotes the pth personnel capability, αi
p is the weight of the pth personnel capability
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for task i, gpij is the evaluation value of the pth personnel capability of team j for task i, and epi is

the required value of the pth personnel capability for task i. In Eq (7), if gpij>e
p
i , then take “+”;

otherwise, take “-”.

Some available resources can be quantified, such as hardware and software. Thus, the

matching degree calculation model between project task i and collaborative team j at the

dimension of available resource, denoted as TRij, is defined as follows:

TRij ¼
X4

r¼1

b
r
i �
grij
eri

ð8Þ

where r denotes the rth resource, b
r
i is the weight of the rth resource for taski, grij is the available

amount of the rth resource of team j for task i, and eri is the required amount of the rth resource

for task i.
Furthermore, the matching degree (MDij) between task i and team j is defined as:

MDij ¼ oi1 � TCij þ oi2 � TRij

¼ oi1ð
X8

p¼1

a
p
i ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgpijÞ

2
� ðepi Þ

2
�
�

�
�

ðepi Þ
2

s

ÞÞ þ oi2ð
X4

r¼1

b
r
i �
grij
eri
Þ

ð9Þ

where wi1 and wi2 are the weights of the personnel capability and the available resource for

task i, respectively.

Scheduling model

In a collaborative innovation project, through rational resource selection and configuration

according to the project tasks’ requirement, optimal duration and cost are achieved.

Parameters:

PT: the project duration;

C: the project cost;

T: the set of project tasks, T = {T1, T2,. . .,Tm};

G: the set of collaborative teams, G = {G1, G2,. . .,Gn}, where n is the number of collaborative

teams;

S = {st1, st2,. . .,sti. . .,stm, stm+1}, where sti denotes the start time of task i, and taskm+1 is a virtual

task;

MDij: the matching degree between task i and team j;

tNi: the standard expected execution time of task i;

Δti: the maximum shortened amplitude of execution time for task i;

tij: the expected time of collaborative team j to execute task i.

For collaborative product design, the shortened duration often leads to increased costs.

Chen et al. [25] proposed a linear relationship between the activity time reduction and the cost

increases to transfer the time-cost trade-off problem into a linear programming problem.

Thus, the optimization objective is as follows:

minf ðxÞ ¼ a1 � PT þ a2 � C ¼ a1 � Stmþ1
þ a2 � C ð10Þ
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Constraints:

xij ¼
1; team j complete task i

0 else

(

ð11Þ

Xn

j¼1

xij ¼ 1 ð12Þ

X

i2At
xij
ijij ¼ 1 ð13Þ

eirmin � e
i
r � e

i
rmax ð14Þ

Stq ¼ max minðSti þ tijÞ;Ti 2 BðqÞ ð15Þ

tij ¼

tNi
MDij

; MDij � 1:0

Maxf
tNi

MDij
; ðtNi � DtiÞg; MDij > 1:0

8
>>><

>>>:

ð16Þ

In the objective function f(x), a1 and a2 are the weights of project duration and cost, respec-

tively. Constraint (12) expresses the resource constraint. Constraint (13) ensures that task i is
only performed by one collaborative team. Constraint (14) ensures that one collaborative team

can only perform one task at a period, At denotes the collection of tasks that are conducted at

time t. Constraint (15) is the time constraint, and B (q) is the precedence activities setoff task q.
Eq (16) is the time taken for collaborative team j to finish task i while considering the matching

degree.

The improved GA

The issue proposed in this paper is a combinatorial optimization problem. However, it is dif-

ferent from traditional combinatorial optimization problems because the encoding cannot be

repeated. A collaborative team can execute several tasks as long as the tasks do not overlap in

one period. To solve the problem, the genetic algorithm is improved, where genetic operators

are used to represent the individual of feasible solution in the encoding process. Single-coding

in the solution space not only eliminates the decoding process between gene space and solu-

tion space but also can enhance the accuracy and reduce the complexity of computation

process.

The steps of improved genetic algorithm are as follows:

1. Coding

Adopting decimal single coding, each gene locus represents the task code, and the number on

the gene locus represents the corresponding matching collaborative team, as shown in Fig 2.

2. Fitness function

The fitness function of GA is known as the evaluation function; it is used to determine the

quality of individual. In this paper, the objective function is set as fitness function F(x).

FðxÞ ¼ f ðxÞ

An empirical study of collaborative capacity evaluation and scheduling optimization for a CPD project
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3. Selecting the initial population

Randomly generate a certain number of individuals. Next, remove the repeated individuals

and the individuals who do not meet the constraints, choose the best individual into the ini-

tial population and select a-1 individual from the remaining individuals randomly. These

individuals compose an initial population with number of a. The probability (pi) that can

be selected is set as follows:

pi ¼
FiX
Fi

ð17Þ

4. Crossover operator

Multi-point crossover is adopted. In the process of evolution, if the current individual fit-

ness is lower than the average fitness, then the individual evolution is invalid. To improve

the search speed, it is necessary to improve individual crossover probability. Therefore, the

adaptive crossover probability strategy is adopted. The crossover probability(pc) is defined

as

pc ¼
pc1 �

ðpc1 � pc2ÞðFi � FavÞ
ðFmax � FavÞ

Fi � Fav

pc1 Fi < Fav

8
<

:
ð18Þ

where Fav and Fmax are the average fitness and the largest fitness, respectively.

5. Mutation operator

Execute mutation operation for each individual, the gene changes at a certain probability

and varies from 1 to n (n is the total number of collaborative team). In the process of muta-

tion, single point mutation is used the first half of the individual, and multi-point mutation

is adopted in the second part.

6. Selection operator

The previous generation population, the population after crossover and the population

after mutation constitute the selection set. Remove the individuals of the population that do

not meet the constraints. Next, the best individuals of the preceding generation population,

crossover population and mutation population are retained. For the remaining individuals,

two individuals are selected randomly, and one of them is chosen using the simulated

annealing operator with probability exp (-Δc/θ) to bring into the next generation, and the

other is taken back.

Fig 2. Coding.

https://doi.org/10.1371/journal.pone.0200753.g002
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Fig 3. The procedure of the improved genetic algorithm.

https://doi.org/10.1371/journal.pone.0200753.g003
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Repeat the above procedure until the number of the next generation reaches a, and then go

to the next round.

7. Termination condition, output the optimal

When meet one of the conditions, the iteration is stopped:

1. Fitness of the best individual and the group are no longer rising;

2. The number of iterations reaches the preset number.

The procedure of improved genetic algorithm is shown in Fig 3.

Case study

First, we conducted an experiment on our scheduling optimization algorithm of mobile phone

collaborative product design. The relationship of design task is shown in Fig 4. A total of 15

tasks were included in the project, and 20 collaborative teams were available.

Standard time and the maximum shorten time of the tasks are shown in Table 1.

Fig 4. Task relationship.

https://doi.org/10.1371/journal.pone.0200753.g004

Table 1. Standard execution time and the maximum shorten time of the design tasks.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15(Days)

tNi 4 5 5 6 30 30 25 7 5 15 5 1 1 1 4

Δti 1 2 3 2 2 3 2 1 2 3 2 0.5 0.2 0.5 2

https://doi.org/10.1371/journal.pone.0200753.t001
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The matching degrees between the collaborative teams and the tasks are shown in Tables 2

and 3.

The task costs are listed in Tables 4 and 5.

The parameter configurations of the improved GA were as follows: the initial population

size was 20, Pc1 was 0.85, Pc2 was 0.65, the mutation probability was 0.9, the maximum number

of iteration was 800,a1 was 0.6, and a2 was 0.4. Based on the data above, the procedures of the

improved genetic algorithm were written in Matlab and run on a PC with an Intel Core 2.4

GHz CPU, 4GB RAM, the optimal programme is shown in Table 6.

Under this matching programme, the objective optimal value is 74.10, the duration is

45.7days and the cost is 1,180,000 RMB. The solution obtained by GA is {1 19 4 1 7 8 12 2 19

13 2 1 5 12 2}. The fitness curve of the improved GA and that of the traditional GA are shown

Table 2. Matching degree between collaborative teams (G1-G10) and tasks(T1- T15).

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

T1 1.859 0.514 1.358 1.608 1.149 1.446 0.468 1.465 1.022 1.259

T2 1.604 0.911 0.725 1.422 1.719 1.209 0.665 0.570 0.541 1.131

T3 1.054 1.698 0.902 0.774 0.780 1.563 0.522 0.819 1.178 0.758

T4 1.595 0.918 0.490 1.173 1.905 1.128 1.469 1.667 1.202 0.677

T5 1.469 1.224 0.612 1.688 1.891 1.605 1.168 1.230 0.730 0.790

T6 0.862 0.630 1.155 0.680 1.472 1.150 0.920 1.589 1.688 0.829

T7 0.957 1.701 1.953 0.714 1.477 1.743 1.722 1.870 1.298 0.915

T8 1.371 0.289 0.709 1.401 1.476 0.798 1.322 0.798 0.609 0.513

T9 1.139 1.245 0.863 1.858 1.892 0.946 0.708 0.848 0.951 0.540

T10 1.822 1.995 0.660 0.860 1.039 0.918 0.694 0.980 1.501 1.213

T11 1.589 1.035 1.780 0.860 1.393 1.608 1.062 1.495 1.060 0.895

T12 0.358 0.913 0.660 0.977 0.796 0.654 1.912 0.641 1.910 0.833

T13 1.845 0.743 1.063 1.892 1.254 1.076 1.083 1.301 1.437 1.492

T14 1.049 1.282 1.588 1.251 0.759 1.644 0.556 0.411 1.160 0.919

T15 0.483 1.864 1.982 1.816 1.561 1.409 0.960 0.747 1.176 0.922

https://doi.org/10.1371/journal.pone.0200753.t002

Table 3. Matching degree between collaborative teams (G11-G20) and tasks(T1- T15).

G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

T1 1.427 2.267 1.906 1.487 1.039 1.300 1.973 1.814 0.502 2.296

T2 2.244 1.852 1.338 2.211 1.360 1.882 1.902 0.879 0.852 1.745

T3 1.743 1.511 1.229 1.784 0.608 1.020 1.623 1.853 1.492 1.370

T4 1.638 1.467 0.590 1.364 0.860 2.319 1.666 1.882 0.933 1.378

T5 1.594 1.311 0.813 2.023 0.569 1.442 2.475 1.980 1.362 1.490

T6 1.291 1.004 0.930 1.351 0.555 2.383 1.208 0.748 0.644 1.674

T7 1.112 1.824 1.710 1.151 0.962 2.191 1.374 0.536 1.259 1.864

T8 2.366 1.244 0.786 1.924 0.906 1.454 1.231 1.169 1.150 1.673

T9 2.486 1.448 1.475 1.023 1.540 1.340 1.066 1.543 1.074 1.419

T10 1.499 1.385 1.805 1.150 1.168 1.919 2.175 1.746 1.387 1.364

T11 1.076 2.077 1.149 1.065 1.102 2.326 1.166 1.861 0.583 1.203

T12 1.561 1.803 1.531 1.336 1.377 1.456 2.295 1.004 0.974 1.868

T13 2.346 1.815 1.227 2.234 0.933 1.945 2.286 1.117 0.534 1.125

T14 1.568 1.638 1.658 1.367 0.644 2.193 1.052 1.502 1.528 1.285

T15 2.017 2.001 0.582 1.534 0.972 1.219 2.128 1.346 0.775 1.129

https://doi.org/10.1371/journal.pone.0200753.t003
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in Fig 5. The optimal was achieved at the 458th and the 622nd iteration by the improved and

the traditional genetic algorithm, respectively. The result of the comparison revealed the

advantage of the improved algorithm in finding the optimal and convergence speed, as shown

in Table 7.

The project task allocation and schedule plan is shown in Fig 6.

Table 4. The cost that the collaborative teams (G1- G10) require to complete the task.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10(104)

T1 6 8 7 8 7 10 7 7 8 8

T2 8 6 7 6 9 9 6 5 8 7

T3 6 7 7 5 7 6 7 5 6 6

T4 8 9 10 9 11 11 10 8 10 9

T5 18 19 17 17 20 18 16 23 21 17

T6 23 26 27 27 24 25 22 20 25 24

T7 15 18 16 16 18 17 18 19 16 18

T8 12 10 10 13 13 11 14 15 14 12

T9 6 7 8 7 7 5 7 9 9 7

T10 18 17 16 21 19 18 20 19 18 17

T11 5 4 5 4 6 7 5 5 7 6

T12 2 3 4 5 2 3 5 6 4 3

T13 7 4 5 7 4 4 5 7 6 5

T14 3 5 3 4 5 6 5 6 5 4

T15 10 7 10 9 8 9 8 12 9 9

https://doi.org/10.1371/journal.pone.0200753.t004

Table 5. The cost that the collaborative teams (G11- G20) require to complete the task.

G11 G12 G13 G14 G15 G16 G17 G18 G19 G20(104)

T1 10 7 10 8 9 10 10 8 6 10

T2 10 8 6 9 6 9 10 6 5 8

T3 9 5 6 5 7 7 9 7 5 8

T4 11 10 11 12 9 11 11 9 7 12

T5 30 18 21 19 23 24 35 20 16 24

T6 35 27 22 25 22 26 32 23 20 26

T7 16 10 16 15 18 16 16 17 19 17

T8 15 15 13 14 11 15 13 13 11 13

T9 10 8 8 9 8 6 10 8 5 7

T10 26 19 15 20 18 19 27 15 14 17

T11 6 6 5 7 5 7 6 5 4 5

T12 5 3 4 6 5 5 5 3 2 7

T13 5 7 7 4 7 7 6 7 5 6

T14 8 3 5 5 3 4 7 3 3 7

T15 15 11 11 9 10 12 17 10 8 9

https://doi.org/10.1371/journal.pone.0200753.t005

Table 6. Tasks—Team matching programme.

Task Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Collaborative team 1 19 14 19 7 8 12 3 19 19 2 5 5 12 2

https://doi.org/10.1371/journal.pone.0200753.t006
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Conclusions

In this paper, a competence evaluation and a scheduling model of collaborative product design

were studied based on matching degree. In the competence model, the collaborative team

capacity is composed of core competency, basic competency and basic resource. Variable com-

petencies or resources have different effects on the matching degree. The 2-tuple linguistic

method was used to avoid information loss and make the evaluation result more precise. The

scheduling model considering matching degree was established considering matching degree,

project duration and cost. In the improved algorithm, single-coding strategy, multi-point

mutation and crossover are adopted.

Although the case study demonstrated that the proposed approach is a useful tool to obtain

the reasonable programme, there are still limitations in the approach, such as the subjectivity

of evaluation and the precision of resource quantization. Furthermore, during the process of

Fig 5. Fitness curves of the improved GA and the GA.

https://doi.org/10.1371/journal.pone.0200753.g005

Table 7. Comparison of theimproved GA and the GA.

Algorithm Fitness Run time(s) Iteration

GA 75.45 32.6 622

Improved GA 74.65 20.4 458

https://doi.org/10.1371/journal.pone.0200753.t007
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collaborative product design, there may be resource conflicts and partner selection conflicts.

In the future, more work on the encouragement and collaboration mechanism for collabora-

tive design should be performed.
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