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Abstract 
Neoantigens are derived from somatic mutations in the tumors but are absent in normal tissues. Emerging evidence suggests that 
neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune responses, and therefore are potential immunothera-
peutic targets. We developed ImmuneMirror as a stand-alone open-source pipeline and a web server incorporating a balanced random 
forest model for neoantigen prediction and prioritization. The prediction model was trained and tested using known immunogenic 
neopeptides collected from 19 published studies. The area under the curve of our trained model was 0.87 based on the testing data. We 
applied ImmuneMirror to the whole-exome sequencing and RNA sequencing data obtained from gastrointestinal tract cancers including 
805 tumors from colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma patients. We 
discovered a subgroup of microsatellite instability-high (MSI-H) CRC patients with a low neoantigen load but a high tumor mutation 
burden (> 10 mutations per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced MSI-H patients, almost 
half of such patients do not respond well. Our study identified a subset of MSI-H patients who may not benefit from this treatment with 
lower neoantigen load for major histocompatibility complex I (P < 0.0001) and II (P = 0.0008) molecules, respectively. Additionally, the 
neopeptide YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was identified as a potential actionable 
target in ESCC. This is so far the largest study to comprehensively evaluate neoantigen prediction models using experimentally validated 
neopeptides. Our results demonstrate the reliability and effectiveness of ImmuneMirror for neoantigen prediction. 

Keywords: neoantigen prediction; machine learning; multiomics; gastrointestinal tract cancer; immunotherapy; computational 
platform 

INTRODUCTION 
Immunotherapy uses the immune system to detect and fight 
against cancer cells. Accumulating evidence shows that the pres-
ence of neoantigens derived from somatic mutations in tumor 
cells elicits a potent immune response as a part of antitumor 
immunity through specific cytotoxic T cells [1, 2]. Previously, var-
ious methods have been proposed for neoantigen identification, 
such as MHCflurry [3], NetMHCpan [4–6] and NN-Align [7], which 
predict the binding affinity between peptides and their corre-
sponding major histocompatibility complex (MHC) alleles. Bind-
ing affinity is a good reference to prioritize neoantigens because 
MHC classes I and II help the immune system bring the bonded 

complex to the surface of cancerous cells for recognition by T 
cells. Therefore, binding to MHC molecules is a prerequisite for 
immunogenicity. However, the actual variant expression, human 
leukocyte antigen (HLA) presentation, peptide processing and 
transportation, as well as the ultimate T-cell response to these 
neoantigens, have not been considered in these existing binding 
affinity-based tools, therefore, these previous methods may fail 
to provide reliable predictions in real-world scenarios. Recently, 
by integrating peptide features, Wells et al. developed a model 
of tumor epitope immunogenicity to filter out nonimmunogenic 
peptides, and the results improved the effectiveness of neoantigen 
prediction [8]. This model is based on stringent cutoffs for sev-
eral selected features, including binding affinity, binding stability,
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tumor abundance, the ratio of binding affinity between mutant 
and wild-type peptides [9], and T-cell receptor recognition prob-
ability (foreignness); the model showed promising results with 
precision (true positive/(true positive + false positive)) above 0.7. 
However, Wells’ study [8] used different criteria during the train-
ing and validation steps to filter neoantigens, making it difficult 
to implement with other data sets. Hence, continuous efforts are 
still needed to further improve the prediction accuracy for clinical 
application by incorporating more relevant biological features 
that are involved in the complicated biological processes. 

In this study, we developed ImmuneMirror, an all-in-one 
bioinformatics pipeline using multiomics sequencing data, to 
access the key genomic and transcriptomic features associated 
with the cancer immunotherapy response. The ImmuneMirror 
pipeline and web server (version 1.0) incorporate a machine 
learning (ML) model to incorporate more predictive biological 
features for neoantigen prediction. With this advanced ML 
model trained by known neopeptides with T-cell immunogenicity, 
ImmuneMirror overcomes the issue of unbalanced neoantigen 
distribution, i.e. immunogenic mutation-derived neoantigens 
are relatively rare compared to the total number of mutations 
detected. We applied ImmuneMirror to real-world data sets to 
systematically investigate neoantigens in gastrointestinal tract 
(GIT) cancers using matched whole-exome sequencing (WES) 
and bulk RNA Sequencing (RNA-Seq) data; furthermore, we 
compared the results with putative neoantigens that are derived 
from hotspot mutations in cancer-related genes restricted by the 
following four common HLA alleles: HLA-A02:07, HLA-A24:02, 
HLA-A02:01 and HLA-A11:01. The top candidate neopeptide, 
YMCNSSCMGV-TP53G245V, derived from a hotspot mutation 
restricted by HLA-A02, was evaluated experimentally. 

MATERIALS AND METHODS 
Selecting ML algorithms for neoantigen 
prediction 
To build a prediction model for identifying neoantigens and incor-
porating more relevant genomic and transcriptomic features, we 
first gathered a list of neopeptides with experimentally confirmed 
T-cell responses as the training data for model construction. 

The binding affinities of peptide amino acids were a key fea-
ture to be included and were predicted through pVACtools [10], 
which is a comprehensive tool to provide binding affinity scores 
calculated by various prediction algorithms for MHC class I. Addi-
tionally, considering that binding affinity is not the only feature 
governing tumor epitope immunogenicity, we added the following 
relevant features to improve prediction accuracy: ‘agretopicity’ [9, 
11], ‘foreignness’ [12–14], hydrophobicity, binding stability, peptide 
processing and transportation scores. The final training data set 
included a total of 1199 peptides that were tested in vitro, 93  of  
which had positive T-cell responses. Of the 211 tested peptides, 
10 were immunogenic. These neopeptides were identified from 19 
published studies (Supplementary Tables S1 and S2). 

The class distribution of the response variable is unbalanced 
due to the low proportion (about 7%) of neoantigens that activate 
T cells. Consequently, conventional ML classification algorithms 
are largely affected by the majority class (negative T cell response) 
and thus may give biased attention to the minority class (positive 
T cell response), leading to relatively poor prediction performance. 
To address this critical issue, we adapted the balanced random 
forest learning algorithm [15] to improve prediction accuracy 
that is evaluated using the area under the receiver operating 
characteristic curve (AUC) metric. 

Random forests are ensemble ML algorithms that construct 
multiple base decision trees during the training process. More 
specifically, given a training dataset

(
xi, yi

) ∈ X × Y, i = 1, . . . , n, 
where Y is the binary response variable with value 1 representing 
activation of T-cell response and 0 otherwise, and X represents 
all the predictive features (Supplementary Table S2). The random 
forests algorithm repeatedly selects a bootstrap random sample 
(B times) with replacement and a random subset of features from 
the training dataset, and then fits base decision trees fb to each 
of those bootstrap random samples Xb, Yb,. When building each 
base decision tree, a random number of m predictors are selected 
from the entire p predictor pool; typically, we set m ≈ √

p. The  
Gini index, defined as G = ∑K 

k=1 p̂mk
(
1 − p̂mk

)
, where  ̂pmk is the 

proportion of training observations in the mth region belonging 
to the kth class; the Gini index is used as a criterion to make the 
binary split when growing a tree. The final binary classification 
output is based on majority voting from all the base decision 
trees [16]. 

Random forests with the synthetic minority 
over-sampling technique 
Conventional random forest uses the standard bootstrap re-
sampling strategy with equal sample probability for each 
observation, and this strategy may not perform well for an 
imbalanced dataset. Therefore, we proposed to modify the 
random forest algorithm using a more advanced resampling 
technique that over-samples observations from the minority 
class and under-samples observations from the majority class 
to increase the minority-majority ratio from approximately 1:12 
to 1:3. This under-sampling step can be achieved using the 
smote_and_undersample function in the R package hyperSMURF 
[17]. This function first generates synthetic examples based on 
the synthetic minority over-sampling technique (SMOTE), which 
retains each minority class sample and introduces synthetic 
examples along the line segments joining some of the k minority 
class nearest neighbors [18]. In our case, we set the multiplicative 
factor fp to 2 and k to 5, so two neighbors from the five nearest 
neighbors were selected. Then, observations from the majority 
class were under-sampled to reach the preset class ratio. We then 
fit the conventional random forest on the resampled data. These 
processes were repeated 200 times to ensure that most of the data 
points are involved in the training process. To decide the optimal 
values of hyperparameter: ‘number of tree’ and ‘tunelength’, 
we used the 5-fold cross-validation. We tested the range of 
‘number of tree’ from 60, 65, 70 to 100. And for ‘tunelength’, 
we set from 5, 10 to 15. We also tried different combinations, 
and for each iteration we evaluated the model’s performance on 
the validation fold. Finally, we selected the model (‘number of 
tree’=95, ‘tunelength’ = 5) with the best AUC (0.8294) based on the 
testing data (Figure 1). 

Balanced random forest 
To address the imbalanced data issue, Chen and Breiman 
[19] developed the balanced random forest algorithm, which 
substantially improved the performance of the random forest 
algorithm by replacing the equal-weight sampling strategy with 
random under-sampling of majority class for decision tree 
formation. More specifically, for each iteration in a random 
forest, we randomly drew a bootstrap sample from the minority 
class and obtained the same number of neoantigen candidates 
with negative T cell response from the majority class with 
replacement. Then, we formed a classification tree based on the 
resampled balanced data. We repeated the above steps 500 times
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Figure 1. Evaluation of different random forest algorithms used for neoantigen prediction with AUC performance: Left panel: balanced random forest; 
right panel: random forest with under sampling. 

and then determined the final prediction via majority voting 
[ 19]. The balanced random forest algorithm was implemented 
in the train function in the R package caret [20], and the optimal 
value of parameters was tuned by a 5-fold cross-validation 

method. The AUC on the testing set was 0.8679 (Figure 1). 
By evaluating the above two models, the balanced random 
forest model has better prediction accuracy for neoantigen 
prediction.
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Peptide synthesis and quality control 
The selected peptides were synthesized. The CI resins were 
selected and deprotected in 20% piperidine dimethylformamide 
(DMF) solution. The resin was filtered off and rinsed with DMF 
three times to remove Fmoc residues. The completeness of amino 
deprotection was measured by taking a sample of the resin and 
mixing it with detection reagents A and B. If there was a color 
change, the Fmoc groups were removed successfully. The amino 
acid solution was added into a mixture of the resin and di-
isopropyl carbodiimide in DMF, and the mixture was shaken at 
room temperature. The completeness of the coupling reaction 
was confirmed by taking a sample of the resin and mixing 
with detection reagents A and B, followed by resin washing 
with DMF three times. When all the amino acids were coupled 
onto the resins, the peptide chain was dissociated from the 
resins by treatment with TFA/DMF. The crude peptides were 
further purified by reversed-phase high-performance liquid 
chromatography and were frozen and dried under vacuum. The 
molecular weights of the selected peptides were analyzed by 
LC-MS. Endotoxin levels were detected using Horseshoe Crab 
Reagent. The peptide with an endotoxin level < 10 EU/mg was 
used for the MHC binding assays. 

HLA-A02:01 peptide-binding assay 
The QuickSwitch™ Quant HLA-A02:01 Tetramer Kit-PE was used 
to investigate the binding affinity of the selected neoepitope to 
MHC HLA-A02:01. The synthesized peptides were incubated with 
the MHC HLA-A02:01 complex, which already contained a control 
peptide. The tested peptide competed with the control peptide, 
and the exchange rate was used to identify the peptide-binding 
affinity. QuickSwitch™ Quant HLA-A02:01 Tetramer Kit-PE and 
flow cytometry were used to investigate the exchange rate of the 
MHC HLA-A02:01 control peptide. The tested peptide was mixed 
with the tetramer and peptide exchange factor for 4.5 h at room 
temperature. The peptide exchange rate was quantitated by flow 
cytometry [21, 22]. The reference positive peptide was provided by 
the QuickSwitch™ Quant HLA-A∗02:01 Tetramer Kit-PE. 

RESULTS 
Overview 
The overall workflow of this study is depicted in Figure 2. The  ML  
model was developed using the balanced random forest algorithm 
for neoantigen prediction using multiple biological features rele-
vant to neoantigen biogenesis, transportation, presentation, and 
T-cell recognition (agretopicity, foreignness, hydrophobicity, bind-
ing stability, peptide processing, and transportation scores). This 
ML model was incorporated into the ImmuneMirror bioinformat-
ics pipeline, which is also a web server for neoantigen prediction 
and prioritization from multiomics sequencing data. The pipeline 
takes the raw FASTQ reads as input, while the web server takes 
variant call format (VCF) files containing the somatic mutations 
(Figure 3). We applied this pipeline to identify neoantigens derived 
from somatic mutations in cancer-related genes with common 
MHC class I subtypes in Pan-Cancer studies and from real-world 
WES and RNA-Seq data from GIT cancer patients. Experiments 
were carried out to confirm the binding affinity of the putative 
neoantigens with MHC class I HLA-A02:01. 

Implementation of the ImmuneMirror pipeline 
and web server 
We developed the ImmuneMirror pipeline for neoantigen 
prediction and prioritization based on multiple genomic and 

transcriptomic features. The workflow of the ImmuneMirror 
pipeline is depicted in Supplementary Figure S1. The pipeline 
was built as a docker container that can be run in any docker-
supported operating system, such as Linux, Mac and Windows. 
The pipeline required FASTQ input of matched normal-tumor 
WES samples and tumor bulk RNA-Seq samples. The full list 
of packages and software that were used for ImmuneMirror 
pipeline development are listed in Supplementary Table S3. 
We implemented the prediction model as an R function for 
prioritizing the neoantigens restricted by HLA class I. The 
germline and somatic mutations, estimated tumor mutation 
burden (TMB), microsatellite instability (MSI) status [a condition 
of genetic hypermutability due to defective DNA mismatch repair 
(MMR)], HLA typing, neoantigen load for HLA class I and II, the 
top-ranked neoantigens with T-cell immunogenicity, and the 
expression of innate anti-PD1 resistance (IPRES) gene expression 
signature [23] are the final outputs of the pipeline. Users can 
download the Docker image and the relevant files (reference files 
and example samples) from http://immunemirror.hku.hk/ and 
clone the ImmuneMirror pipeline from the GitHub repository 
(https://github.com/weidai2/ImmuneMirror/ ) [  24]. 

Apart from the development of the stand-alone pipeline, we 
also developed an ImmuneMirror web server (Figure 3) that takes 
a VCF file containing the somatic mutations detected by MuTect2 
(GATK4) [25] as the input and identifies the potential neoantigens 
derived from somatic mutations for both HLA class I and class 
II molecules. Users can upload a VCF file, enter a set of alleles 
for both HLA class I and II, and select peptide lengths via the 
web interface. The uniform resource locator link for downloading 
the results will be sent to the user-provided e-mail automatically 
by the server upon job completion. The web server is freely 
available for users with detailed usage instructions at http:// 
immunemirror.hku.hk/App/ . 

Graphical analysis report 
With the advantages of our developed analysis database, 
ImmuneMirror produces a visual analysis report for each of the 
samples. The report, as illustrated in Supplementary Figure S2, 
includes TMB, HLA types, neoantigen load for HLA class I and 
II, MMR status, germline and somatic mutations, ImmuneMirror 
prediction score, and IPRES gene expression signature [23]. The 
TMB is shown as the number of mutations per Mb. The HLA 
typing of the sample is presented in a table for class I and class II. 
The number of neoantigens restricted by HLA class I and class II 
are illustrated as box plots and bar plots with indicators for high 
and low neoantigen loads, respectively. The MMR status of the 
sample is also reported. The cutoff for the MSI-high group was 
determined by the optimal value of the MSIsensor-pro score for 
distinguishing the MSI group from the other groups in CRC. The 
sample with a MSIsensor-pro score higher than the cutoff was 
defined as MMR deficient. ImmuneMirror prediction scores are 
presented as a boxplot (Supplementary Figure S2(I)). Moreover, 
both germline variants and somatic mutations of selected genes, 
such as BRCA2, B2M, MLH1 and MSH2, and expression of the genes 
from the IPRES signature are included in the analysis report. It has 
been reported that these selected mutations and gene expression 
signatures are relevant to the immunotherapy response [23, 26]. 

Testing, computation speed evaluation and 
resources 
We tested the pipeline on Linux operating systems (ubuntu 20.04). 
It took approximately 30 h to process one pair of samples with 
13 threads. Moreover, we ran the pipeline with multiple pairs of 
samples from different cancer types, i.e. ESCC, HCC and CRC.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
http://immunemirror.hku.hk/
http://immunemirror.hku.hk/
http://immunemirror.hku.hk/
http://immunemirror.hku.hk/
https://github.com/weidai2/ImmuneMirror/
https://github.com/weidai2/ImmuneMirror/
https://github.com/weidai2/ImmuneMirror/
https://github.com/weidai2/ImmuneMirror/
https://github.com/weidai2/ImmuneMirror/
http://immunemirror.hku.hk/App/
http://immunemirror.hku.hk/App/
http://immunemirror.hku.hk/App/
http://immunemirror.hku.hk/App/
http://immunemirror.hku.hk/App/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data


ImmuneMirror | 5 

Figure 2. Overall study workflow. Neopeptides with experimentally confirmed T-cell responses were gathered as training data for model construction. 
Relevant features were selected through feature selection. The prediction model was established with the balanced random forest algorithm [19 ], 
and then the ImmuneMirror pipeline was developed by incorporating built prediction model. ImmuneMirror was subsequently applied to the hotspot 
mutations derived from the common cancer gene list from OncoKB [28] to predict potential neoantigens. Wells’ criteria [8 ] were also applied to hotspot 
mutations for the selection of neoantigens. The publicly available data from ESCC, CRC and HCC patients were processed and analyzed by ImmuneMirror. 
We compared the results obtained from the two data resources and identified overlapping candidates that were then subject to experimental validation 
of binding affinity with HLA-A02. ESCC, esophageal squamous cell carcinoma; CRC, colorectal cancer; HCC hepatocellular carcinoma. 

Users can run ImmuneMirror with a list of samples, and the actual 
run time depends on the computation speed and resources of 
their own devices. In general, we recommend a device with at 
least 64 GB of RAM and the necessary space for the pipeline, 
including docker image (79.6 GB), supporting files (483 GB) and 
analysis results (approximately 41 GB for one pair of samples), 
to successfully run the pipeline. The supporting files provide 
the necessary resources, such as the reference human genome 
(hg38), to run the pipeline; thus, no additional step is needed to 
download these files or to reconfigure the pipeline. The web server 
has been tested on Linux, macOS and Windows platforms with 
various web browsers ( Supplementary Table S4). The format of 
the input/output files and detailed instructions are provided on 
the website and will be updated regularly. 

Comparison of features for neoantigen prediction 
tools 
We compared the bioinformatics tools available for neoantigen 
prediction (Supplementary Table S5). Compared to other exist-
ing pipelines, only ImmuneMirror has all the following seven 
unique features: methods used for prioritization, docker image, 

web server, neoantigen prediction for HLA class I and II, multi-
ple prediction algorithms, open source. As a docker image, the 
ImmuneMirror pipeline takes the raw FASTQ files from both WES 
(matched normal-tumor pairs) and RNA-Seq (tumor, optional) 
data as the input. On the other hand, similar to pVAC-Seq [10], 
ImmuneMirror can be used for neoantigen prediction restricted 
by HLA class I and class II using multiple algorithms. Besides, 
ImmuneMirror provides a unique web server taking the VCF file 
that contains the somatic mutations detected by MuTect2 from 
GATK4 [25] as the input for neoantigen prediction, which makes 
ImmuneMirror more user-friendly. 

Moreover, we performed a comparative analysis to identify 
neoantigens by OpenVax [27], a tool closely similar to ImmuneMir-
ror pipeline. Both OpenVax and ImmuneMirror take raw FASTQ 
files from WES (normal-tumor) samples and bulk RNA-Seq data 
from tumor samples as their input, utilizing somatic mutations 
as the basis for neoantigen prediction. Compared to OpenVax, 
ImmuneMirror has an additional web server for neoantigen pre-
diction from VCF input file, containing a list of somatic mutations. 
In this comparative analysis, we randomly selected three samples 
from distinct cancer types: CRC, HCC and ESCC for comparison 
of the neoantigen candidates. In total, we identified 44 and 52

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
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Figure 3. The overall workflow of ImmuneMirror, major analysis steps involved in the ImmuneMirror pipeline and the ImmuneMirror web server. The 
ImmuneMirror pipeline preprocesses raw FASTQ files, including multiple analysis steps (e.g. prediction of HLA subtypes, SNV and Indels detection, 
variant annotation, neoantigen prediction and prioritization), and generates a graphical analysis report for each sample. The input for the web server 
is a VCF file, and the analysis result (list of prioritized neoantigens) is sent as a web link to the email address of the end user. HLA, human leukocyte 
antigen; SNV, single nucleotide variant; Indel, insertion or deletion; VCF, variant call format. 
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Table 1: The neoantigens identified from hotspot mutations in TCGA Pan-Cancer studies 

Gene Mutation Neoepitope (mutation) HLA restriction ImmuneMirror score 

BRAF V600K KIGDFGLATK A∗11:01 0.7 
PIK3CA N345K KILCATYVK A∗11:01 0.9 
PIK3CA E542K AISTRDPLSK A∗11:01 0.6 
PIK3CA E545K STRDPLSEITK A∗11:01 0.7 
PIK3CA H1047L ALHGGWTTK A∗11:01 0.7 
TP53 G245V YMCNSSCMGV A∗02:01 0.5 
TP53 P250L RLILTIITL A∗02:01 0.6 
TP53 C242F HYNYMCNSSF A∗24:02 0.7 
TP53 S241F HYNYMCNSF A∗24:02 0.8 

neoantigens from these three samples using ImmuneMirror and 
OpenVax, respectively. Notably, 24 neoantigens were found to be 
common between both tools ( Supplementary Figure S3). 

Application of ImmuneMirror to real-world data 
Identification of clonal mutations as neoantigens from 
TCGA pan-cancer studies 
The top 27 cancer-relevant genes with hotspot mutations 
(frequency > 0.1%) from the OncoKB [28] cancer gene list were 
selected for analysis. Each mutant is paired with four common 
HLA alleles, HLA-A02:07, HLA-A24:02, HLA-A02:01 and HLA-
A11:01, derived from Asian populations. The prediction scores of 
the mutant-HLA combinations as well as many other biological 
features were calculated by ImmuneMirror. Wells et al. [8] 
developed selection criteria (binding affinity <34 nM; binding 
stability >1.4 hours; tumor abundance >33 TPM; agretopicity 
<0.1 or foreignness >10−16) to select neoantigens based on several 
experimental validation results [8]. To present a more thorough 
analysis, we also applied Wells’ criteria [8] to all  the mutants  
identified from these 27 genes to compare with our prediction 
results. Neoantigen candidates were finalized if (1) the prediction 
score was greater than 0.515 (sensitivity: 0.851; specificity: 0.7, 
evaluated by the testing data set) and (2) they fulfilled Well’s 
criteria [8] with an adapted gene expression cutoff of TPM >10. 
We finally identified a total of 9 neoantigens derived from the 
mutations of 27 genes with a mutation frequency > 0.1% from 
TCGA Pan-Cancer studies. The results included multiple potential 
neoantigens derived from TP53P250L, TP53C242F and TP53S241F 

(Table 1). 
In addition, our analysis also indicated that the hotspot 

mutations BRAFV600K, PIK3CAN345K, PIK3CAE542K, PIK3CAE545K 

and PIK3CAH1047L are promising candidates for neoantigens 
derived from cancer-relevant genes. Nearly half of all cutaneous 
melanomas carry activating BRAFV600 mutations, among which 
10–30% contain the BRFAV600K mutation, making it the second 
most common genotype after BRAFV600E [29, 30]. BRAFV600K lead 
to a gain in BraF protein function, as demonstrated by increased 
kinase activity, increased downstream signaling, and the ability 
to transform cells in vitro [31, 32]. Clinically, BRAFV600K tumors 
cause patients to experience distant metastases sooner, and these 
patients have a higher risk of relapse and shorter survival than 
those with V600E tumors [33]. 

Identification of GIT cancer neoantigens 
We further evaluated the genomic and transcriptomic data from 
colorectal cancer (CRC), esophageal squamous cell carcinoma 
(ESCC) and hepatocellular carcinoma (HCC) patients to further 

evaluate the putative neoantigens in these three types of cancers 
in the real world. We collected a total of 805 samples from differ-
ent data sources (Supplementary Table S6). After quality checking, 
we analyzed a total of 691 samples, composed of 316 CRC samples, 
290 ESCC samples and 85 HCC samples. On average, we identified 
17 (0, 316), 5 (0, 76) and 6 (0, 64) neoantigens by ImmuneMirror 
for each CRC, ESCC and HCC patient, respectively. Noticeably, the 
neoantigen load was significantly correlated with favorable clin-
ical outcome in terms of longer overall survival in ESCC samples 
(Supplementary Figure S4). CRC patients can be categorized as 
high MSI-high (MSI-H), low MSI-low (MSI-L) and microsatellite 
stability according to the status of the mismatch repair pathway 
[34]. MSI-H tumors respond well to immunotherapy, presumably 
due to a high TMB and neoantigen load [35, 36]. More interestingly, 
although the neoantigen load was not correlated with overall 
survival in CRC samples, we found that a subgroup of MSI-H CRC 
patients with MMR deficiency had a much lower neoantigen load 
for both HLA class I and II and a high TMB that was comparable to 
other MSI-H CRC patients (Figure 4). These patients were subject 
to advanced T stage (T4 versus others: 30.8% versus 0%, Fisher’s 
exact test P = 0.011). 

We identified a total of 12 putative neoepitopes that ful-
filled Well’s criteria [8] and had an ImmuneMirror prediction 
score > 0.5. These neoepitopes were derived from TP53, STAT3 
and RAB35 with high affinity for the HLA-A∗02:01, HLA-A∗11:01, 
HLA-A∗33:03, HLA-A∗33:01, HLA-A∗03:01 and HLA-A∗02:06 HLA 
alleles (Table 2). More specifically, the neoepitope TP53G245V 

(YMCNSSCMGV) restricted by HLA-A∗02 was identified in the 
real-world data analysis of ESCC patient samples. This mutation 
affects the binding of p53 to DNA and interferes with the 
protein’s transcription activity. The RNA-Seq data indicated 
that this mutant is widely expressed in the tumor tissues 
(Supplementary Figure S5). 

Validation of HLA-A02 binding with TP53.pG245V 
We evaluated HLA-A02 binding affinity with neoepitopes derived 
from multiple mutations at G245 in TP53 using the QuickSwitch 
Quant HLA-A∗02:01 Tretramer Kit-PE. The neoepitope TP53G245V 

(YMCNSSCMGV) had a higher reference peptide exchange rate 
of 97.03% than the wild-type peptide YMCNSSCMGG (80.8%) 
(Figure 5A). Among the five most common mutations at G245 
of the gene TP53, the binding affinity of neoepitope-TP53G245V 

(YMCNSSCMGV) was the highest among TP53G245R, TP53G245D, 
TP53G245C and TP53G245S (Figure 5B), and the Pearson’s correlation 
between the ImmuneMirror prediction scores and binding 
affinities was 0.897 (Figure 5C). This result confirmed the 
effectiveness and reliability of ImmuneMirror as an advanced 
tool for neoantigen prediction.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
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Figure 4. Lower neoantigen loads were detected in a subgroup of MSI-H CRC patients. (A) TMB.  (B) MSISensor score for MSI status. (C) The neoantigen 
load for HLA class I. (D) The neoantigen load for HLA class II. HLA, human leukocyte antigen. 

DISCUSSION 
We developed ImmuneMirror as a self-standing open-source 
pipeline and a web server for neoantigen prediction and 
prioritization by integrating a balanced random forest model. 
ImmuneMirror was trained and tested using immunogenic 
neoantigens collected from 19 studies (Supplementary Tables S1 
and S2). To the best of our knowledge, this is the largest study 
to date to comprehensively evaluate the neoantigen prediction 
model using experimentally validated neopeptides. Accurate 

neoantigen prediction depends on inclusion of the most predictive 
biological features that essentially govern epitope immuno-
genicity. Referring to published studies, our model integrates 
important biological features of immunogenic neoantigens. 
Then, we developed a prediction model based on the advanced 
balanced random forest algorithm [19]. The effectiveness and 
reliability of ImmuneMirror have been demonstrated by analyzing 
805 samples of gastrointestinal tract cancers and experimental 
validation of selected neopeptide candidates.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
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Table 2: The neoantigens identified in GIT cancer samples 

Sample_ID Type Gene Mutation Protein 
position 

Neoepitope 
(mutation) 

HLA 
restriction 

ImmuneMirror 
score 

WES_E09039T ESCC CREBBP R/L 1408 LLTAVYHEI HLA-A∗02:01 0.6 
TCGA-F4-6570-T CRC CTNNA1 E/K 529 HVNPVQALSK HLA-A∗11:01 0.5 
TCGA-CA-6719-T CRC PCSK7 E/K 357 VTIGAVDEK HLA-A∗11:01 0.7 
TCGA-CA-6718-T CRC POLE P/R 286 TTKLPLKFR HLA-A∗33:03 0.7 
TCGA-CK-5916-T CRC PPP6C L/R 19 EIARLCKYR HLA-A∗33:01 0.7 
TCGA-AY-6197-T CRC PRKAR1A T/M 106 YMEEDAASYV HLA-A∗02:01 0.6 
TCGA-CM-5349-T CRC RAB35 E/K 94 VVYDVTSAK HLA-A∗03:01 0.9 
TCGA-BC-A3KF-T HCC STAT3 M/K 28 QLYSDSFPK HLA-A∗03:01 0.8 
TCGA-D5-6922-T CRC TP53 R/L 213 YLDDRNTFL HLA-A∗02:01 0.5 
TCGA-LN-A49Y-T ESCC TP53 G/V 245 YMCNSSCMGV HLA-A∗02:06 0.5 
WES_E12230T ESCC TP53 H/R 179 EVVRRCPHR HLA-A∗33:03 0.7 
TCGA-D5-6923-T CRC TSC2 E/K 134 KVIKDYPSNK HLA-A∗11:01 0.7 

Figure 5. Validation of binding affinity between HLA-A02 and neoepitopes derived from TP53 mutations. (A) The exchange ratios (mean ± SD) of the 
TP53G245V mutant compared with the matched wild type (exchange ratio over 80% is used as the cutoff for positive and negative values). (B) The  
exchange ratio (mean ± SD) of TP53G245 mutants compared with the positive control (an exchange ratio of 80% was considered biologically relevant). 
(C) Scatterplot of the prediction score versus the exchange ratio (mean ± SD) for TP53G245 mutants. 

Both the ImmuneMirror and Wells’ study [ 8] indicate that 
neopeptides with strong MHC binding affinity, long half-life and 
low agretopicity are most likely to be neoantigens. From the 
feature importance plot in Supplementary Figure S6, we further 
found that agretopicity was the most important feature followed 

by stability rank and MHC binding affinity score. Moreover, in the 
ablation study, we fit a logistic regression model to predict the 
T-cell activity on test set (Supplementary Table S2) using  only  
the MHC binding affinity. It was found that the area under the 
curve (AUC) of the model using only the MHC binding affinity

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae024#supplementary-data
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was 0.64, while the AUC of our proposed model is 0.87 (Supple-
mentary Figure S7). However, when analyzing the same data set, 
Wells’ criteria [8] tend to be very stringent about binding affinity, 
agretopicity and peptide stability to accommodate the needs 
of high specificity for clinical application, while the Immune-
Mirror model offers an integrated approach by including more 
relevant biological features: binding affinity, ‘agretopicity’ [9, 11] 
(the ratio of binding affinity between neoantigen and wild-type 
counterpart), ‘foreignness’ of nonpolar substances to aggregate 
in ad aqueous solution and exclude water molecules), binding 
stability (half-life of peptide-HLA binding complex), peptide pro-
cessing (proteasomal cleavage sites) and transportation (trans-
porter associated with antigen processing) scores without cutoffs, 
which provides more potential candidates for downstream exper-
imental validation. Neoantigen generation and T-cell activation 
is a complex biological process. Moreover, in the comparative 
analysis of predicting neoantigens between OpenVax [27] and  
ImmuneMirror, 20 neoantigens (45%) were identified solely by 
ImmuneMirror (Supplementary Figure S3). This finding indicates 
the limitations of current computational approaches and sug-
gests that researchers should leverage diverse tools to improve 
accuracy in novel neoantigen prediction. Therefore, continuous 
efforts are still needed to collect more experimentally validated 
neoantigens, which will help better understand these complicated 
biological processes and select more relevant features for neoanti-
gen prediction. 

In our real-world data analysis, we found that neoantigen 
load was a predictor of good clinical outcomes in ESCC patients. 
Although it is known that MSI-H is an important molecular 
biomarker for selecting CRC patients who may benefit from anti-
PD-1/PDL-1 therapy [35], we further identified a subgroup of MSI-
H CRC patients enriched for advanced T stage that had relatively 
low neoantigen loads for HLA class I and II by ImmuneMirror. 
Promising results for immunotherapy have been demonstrated in 
a previous study that evaluated the efficacy of PD-11 blockade in 
advanced MSI-H patients across 12 different cancer types with an 
objective response rate in 53% of patients and complete response 
in 21% of patients [36]. Nevertheless, almost half of MSI-H cancer 
patients do not respond well to this treatment. This previous 
study also showed in vivo expansion of T-cell clones specifically 
activated by neoantigens in patient responses [36]. Our results 
suggest that further stratification of MSI-H cancer patients based 
on neoantigen loads may be necessary, and a more detailed evalu-
ation of the objective response rate of this unique subset of MSI-H 
patients to anti-PD-1/PDL-1 therapy is needed in a clinical trial. 

The TP53G245V mutation occurs at a total frequency of 0.13% 
in diverse cancers, such as diffuse glioma, non-small cell lung 
cancer, bladder urothelial carcinoma, endometrial carcinoma, 
head and neck squamous cell carcinoma, pancreatic adenocar-
cinoma and esophageal squamous cell carcinoma, according to 
the records in the cBio Cancer Genomic portal [37]. The discovery 
of the neoepitope TP53G245V (YMCNSSCMGV) derived from this 
mutation restricted by HLA-A∗02, a common HLA class I type 
in Caucasians and Asians, showed the effectiveness and great 
potential of ImmuneMirror for detecting neoantigens. In addition 
to developing the neoantigen vaccine targeting this neoepitope, 
further identification of T cells that are specifically reactivated 
by this neoepitope is necessary for developing adoptive T-cell 
therapies for cancer patients carrying this specific mutation. 

In summary, ImmuneMirror is an integrative analysis pipeline 
for neoantigen prediction and prioritization from a variety of can-
cer types. This powerful tool could assist biologists to systemati-
cally evaluate the genomic and transcriptomic features relevant 

to the immunotherapy response, including TMB, neoantigen load, 
MSI status, HLA typing and the expression of the IPRES. More 
importantly, ImmuneMirror is strategically useful as a guide for 
clinicians to tailor treatment strategies according to the genomic 
and transcriptomic profiles for precision medicine, and to facil-
itate patient stratification to select those who are more likely 
respond to immunotherapy in clinical trial design. In addition to 
GIT cancers, further evaluation of this tool in other cancer types 
could enhance its robustness and versatility and provide broader 
prospects for clinical applications. Additional experimental and 
clinical validation of the putative neoantigens identified in this 
study are warranted to determine their usefulness for more effec-
tive immunotherapy. 

Key points 
• We developed ImmuneMirror, as a stand-alone open-

source and device independent (dockerized) pipeline and 
a web server for neoantigen prediction; source code 
and curated datasets are freely available to download 
and use. 

• The balanced random forest model is integrated into 
ImmuneMirror for neoantigen prediction and prioriti-
zation; the prediction model was trained and tested 
using known immunogenic neopeptides collected from 
19 published studies. 

• We applied ImmuneMirror to the whole-exome sequenc-
ing and bulk RNA sequencing data obtained from gas-
trointestinal tract cancers including 805 tumors from 
colorectal cancer (CRC), esophageal squamous cell car-
cinoma (ESCC) and hepatocellular carcinoma (HCC) 
patients, and made novel discoveries. 

• We experimentally validated HLA-A02 binding with 
TP53.pG245V, which demonstrated the effectiveness and 
reliability of ImmuneMirror as a robust tool for neoanti-
gen prediction. 

ACCESSION CODES 
WES data: European Genome-phenome Archive (EGA): EGAS000010 
00932 [38]; NCBI Sequence Read Archive (SRA): SRP033394 [39], 
NCBI Bioproject: PRJNA399748 [40]; and TCGA ESCC, CRC and 
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gdc.cancer.gov/ ). Data from a previous study carried out by Dai 
et al. [  41]. 

RNA-Seq data: TCGA ESCC, CRC and HCC samples from the NCI 
Genomic Data Commons (https://portal.gdc.cancer.gov/ ).
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