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Graph theory has provided a key mathematical framework to analyse

the architecture of human brain networks. This architecture embodies an

inherently complex relationship between connection topology, the spatial

arrangement of network elements, and the resulting network cost and func-

tional performance. An exploration of these interacting factors and driving

forces may reveal salient network features that are critically important for

shaping and constraining the brain’s topological organization and its evolv-

ability. Several studies have pointed to an economic balance between network

cost and network efficiency with networks organized in an ‘economical’

small-world favouring high communication efficiency at a low wiring cost. In

this study, we define and explore a network morphospace in order to character-

ize different aspects of communication efficiency in human brain networks.

Using a multi-objective evolutionary approach that approximates a Pareto-

optimal set within the morphospace, we investigate the capacity of anatomical

brain networks to evolve towards topologies that exhibit optimal information

processing features while preserving network cost. This approach allows us to

investigate network topologies that emerge under specific selection pressures,

thus providing some insight into the selectional forces that may have shaped

the network architecture of existing human brains.
1. Introduction
The emergence of network science and the increasing availability of brain con-

nectivity data have recently opened up a network-based perspective on brain

function. Studies in this area use diverse mathematical and computational

tools to study the architecture of brain networks and its role in the dynamics

of information processing [1,2]. In the human brain, the use of diffusion im-

aging techniques to detect white matter pathways connecting anatomical

brain regions has enabled the mapping and analysis of structural brain net-

works. While descriptive studies have identified a number of characteristic

topological attributes [3–5], the fundamental selectional forces and factors

that have shaped human brain network topology remain poorly understood.

Three candidate factors explored here are network cost [6–8], network

communication efficiency [9–11] and dynamic complexity [12–14].

It has been recognized for over a century that one fundamental factor shaping

neuronal morphology and connectivity is that brain networks are embedded in

space. A major consequence of spatial embedding is that the generation, mainten-

ance and use of connections incur a cost, as connectivity consumes various

resources such as wiring length [6–8] and metabolic energy [15]. Like in any
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biological system, these resources are limited and the need

to conserve such resources places strong constraints on the

topology of the system. Underscoring the importance of spatial

embedding [16,17], many studies have shown that the top-

ology of connections between individual neurons is strongly

influenced by the spatial distance between them [18] and that

cortical regions that are spatially close have high probability

of being connected to each other [19–21].

However, spatial distance alone is insufficient to fully

explain the connectivity patterns observed in brain networks.

Structural brain networks are characterized by the existence

of specific long-range pathways [22], highly connected regions

(hubs) [23] and community structure [24,25], features that

violate the concept of wiring minimization. In general, these

connectional attributes are found in systems that achieve

highly efficient global communication and whose components

are highly clustered, e.g. small-world networks [26]. Many

studies have shown that human brain networks are organized

in an economical small-world manner, which tends to min-

imize wiring costs while supporting a few long-range

connections that are thought to ensure high efficiency in

global communication [22,27,28].

Another aspect of network organization relates to the

brain’s capacity to support a great diversity of dynamic pat-

terns which are highly complex and essential to sustain a

large number of competing functional demands. This diver-

sity of dynamic patterns has been conceptualized as a

‘functional repertoire’ of network states that enables flexi-

bility across a broad range of cognitive functions [29]. From

a network perspective, this aspect points to the importance

of local or specialized information processing in the cortex

as well as the integration of information between different

specialized regions [12,13]. It has been suggested that both

aspects of information processing, integration and segre-

gation, underlie the complex dynamics taking place in the

network and that the patterns of structural connectivity

found in the brain promote such complex dynamics [1,12,30].

None of these three factors alone is sufficient to account

for all aspects of human brain network architecture. Instead,

this architecture appears to represent a trade-off between

these (and possibly other) competing factors, enabling econ-

omic information processing within a small-world topology

[31]. Here, we explore the extent to which the structure

of the human cortical brain network is optimally organized

in order to achieve efficient and economical information

processing. By defining a network morphospace and a

multi-objective evolutionary algorithm that operates on the

morphospace, we investigated the capacity of brain networks

to evolve towards distinct biologically feasible topologies.

This approach allows us to address important questions

about what topological features emerge as a result of apply-

ing different types of selection pressure on the evolution of

brain networks. For instance, how different are the networks

selected for efficient information processing from networks

selecting for certain dynamical properties? Furthermore, the

analysis of a brain network morphospace aids in the under-

standing of actual brain network structure and provides a

framework to study the structural variations to which brain

networks are subject, due to individual differences or

neurological degeneration.

Our analysis was performed over three different structural

brain networks, obtained independently and from different ima-

ging techniques. The analysis proceeds in three steps. First, we
study the behaviour of our measures of information processing

and dynamical complexity as the empirical networks are

rewired towards two null models, namely, randomized and lat-

ticized networks. Both null models preserve crucial features of

the corresponding empirical brain networks, such as network

size, density, degree sequence and wiring cost. Second, we

create a set of proximal networks by minimally perturbing the

structure of the empirical networks. These proximal networks

allow us to (i) quantify the sensitivity of our measures to small

structural perturbations and (ii) depict the distribution of the

proximal morphospace. Third, we use a multi-objective evol-

utionary algorithm to do a local exploration of the efficiency-

complexity morphospace of brain-like networks. The aim of a

local exploration is to investigate alternative biologically feasible

topologies for structural brain networks. Through this kind of

analysis, we are able to portray how and how much a sub-

region of the morphospace (the region surrounding the empiri-

cal brain network) is filled; this in turn, can provide a picture of

the underlying rules and constraints pervading the organization

of brain networks.
2. Material and methods
(a) Graph theory
To study brain connectivity, we apply methods from a branch of

mathematics called graph theory [32–34]. In the context of graph

theory, an anatomical brain network with N interconnected

neural elements is modelled as a graph G ¼ (V, E), where V is

the set of vertices (or nodes) representing brain regions and E
is the set of edges (links), representing white matter pathways.

The size of a network is given by the number of nodes and con-

nections composing the network, whereas the network density is

defined as the number of existing connections divided by the

maximum possible number of connections that the network can

support. Formally, G is described by an N � N adjacency matrix

AG ¼ faijg, where aij ¼ 1 if nodes i and j are connected and aij ¼ 0

otherwise. In addition, G is a weighted graph if there is a scalar

associated with every connection, such that if aij ¼ 1, then there

is a non-zero weight wij assigned to the connection fi, jg. In the

case of anatomical brain networks, we focus on two weighted

matrices associated to the connections: a matrix of fibre densities

WG ¼ fwijg and a matrix of fibre lengths LG ¼ flijg estimated as

in [3]. Thus, the degree of a node is given by the number of

edges incident to the node, whereas the weighted degree is given

by the sum of the fibre densities of the edges incident to the

node. Finally, in this study, all the connections of anatomical

brain networks are undirected, that is aij ¼ aji for all pairs fi,jg
and thus AG, WG and LG are all symmetric matrices.

(b) Brain networks
Our analyses were carried out over three anatomical human brain

networks (labelled LAU1, LAU2 and UTR; datasets are provided

in the electronic supplementary material) constructed from

data acquired independently in different imaging centres, using

different acquisition protocols and different subject cohorts.

(i) LAU1
Five healthy right-handed male subjects (mean age 29.4 years, s.d.

3.4) were scanned on a 3-T Philips Achieva scanner. A high-

resolution T1-weighted gradient echo sequence was acquired in

a matrix of 512 � 512 � 128 voxels of isotropic 1 mm resolution.

Diffusion spectrum imaging (DSI) was performed using a

diffusion-weighted single-shot echoplanar imaging sequence

(TR ¼ 4200 ms; TE¼ 89 ms) encoding 129 diffusion directions
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over a hemisphere. The maximum diffusion gradient intensity was

80 mT m21, the gradient duration was 32.5 ms and the diffusion

time was 43.5 ms, yielding a maximal b-value of 9000 s mm22.

The acquisition matrix was 112 � 112, with an in-plane resolution

of 2 � 2 mm. Following diffusion spectrum and T1-weighted MRI

acquisitions, the segmented grey matter was partitioned into 998

regions of interest (ROIs). Following white matter tractography,

connectivity was aggregated across all voxels within each of the

998 ROIs. Further details are available elsewhere [3].

(ii) LAU2
Forty healthy subjects (24 males and 16 females, 25.3+4.9 years

old) underwent an MRI session on a 3-T Siemens Trio scanner

with a 32-channel head-coil. The magnetization-prepared rapid

gradient-echo (MPRAGE) sequence was 1 mm in-plane resolution

and 1.2 mm slice thickness. The DSI sequence included 128

diffusion-weighted volumes þ 1 reference b_0 volume, maximum

b-value of 8000 s mm22 and 2.2� 2.2 � 3.0 mm voxel size. The

echo planar imaging (EPI) sequence was 3.3 mm in-plane resol-

ution and 0.3 mm slice thickness with TR 1920 ms. DSI and

MPRAGE data were processed using the Connectome Mapping

Toolkit [35]. Segmentation of grey and white matter was based

on MPRAGE volumes. Cerebral cortex was parcellated into 1000

equally sized ROIs [36] followed by whole-brain streamline tracto-

graphy [37].

(iii) UTR
Imaging data were acquired from 25 subjects (17 males and eight

females, 29.4+7.7 years old). Diffusion-weighted imaging

(DWI) was performed at 3 T, with two sets of 30 weighted diffu-

sion scans (b ¼ 1000 s mm22), each set consisting of five

unweighted B0 scans (b ¼ 0 s mm22) and 30 weighted scans

(SENSE, p-reduction 3; gradient set of 30 weighting directions,

TR ¼ 7035 ms, TE ¼ 68 ms, EPI factor 35; FOV 240 � 240 mm,

2 mm isotropic, 75 slices, second diffusion set acquired with a

reversed k-space readout). Preprocessing of the DWI involved

the following steps: (i) diffusion images were realigned, corrected

for eddy currents and susceptibility distortions; (ii) diffusion pro-

files were fitted with a single tensor and deterministic streamline

tractography was used to reconstruct streamlines; and (iii) stream-

lines were used to build subject-specific structural brain networks

among 1170 equally sized randomly partitioned cortical parcels

(nodes). For a detailed description see [38].

For all three datasets, all subsequent analyses and modelling

were carried out on group consensus matrices, built by averaging

over all existing connections (expressed as fibre densities) that

were present in at least 25% of participants in each dataset. For

this study, we limit the analysis to networks containing nodes

and connections in the right hemisphere of the brain, for two

reasons. First, inter-hemispheric connections are less reliably cap-

tured by diffusion imaging and more difficult to reconstruct with

tractography [39]. Second, the computational cost of running the

analyses and simulations proposed here in whole-brain networks

was prohibitive.

(c) Metrics of network performance
Complex network analysis has provided various metrics that aim

to characterize different aspects of network topology [32,33].

Here, we selected four measures that jointly capture the perform-

ance of a network at combining integrated and segregated

information processing in an economical manner.

(i) Wiring cost
This measure quantifies the cost of making and maintaining ana-

tomical connections between neurons [8,15]. By assuming that

the wiring cost is proportional to the wiring volume [28,31], we
can express the cost of a single connection fi, jg as the product

between its fibre density and length. Then, the total wiring cost

of a network with N nodes is given by cost ¼
PN

i,j wijlij:

(ii) Efficiency of information processing
We approach the measurement of efficiency of information pro-

cessing from the perspective of two different communication

schemes, one based on the routing of information in a network,

and the other one based on the diffusion of information within

the network [11].

Routing efficiency
In this work, the measure Eglob defined in [9] is referred to as

Erout [11]. This measure is based on the shortest path length

matrix w ¼ [wij] where the distance between a pair of nodes is

computed in terms of the inverse of the fibre densities of the

connections. Then, the routing efficiency is computed as follows:

Erout ¼
X

i,j

1=wij

N(N � 1)
, i = j:

Diffusion efficiency
We start by defining a transition matrix P as the matrix whose

elements pij represent the probability of a random walker going

from node i to node j in one step. If the transition probabilities

are proportional to the fibre density of the connections, pij ¼

wij/ki, where ki is the weighted degree of node i. Given a tran-

sition matrix, the mean first passage time (MFPT) between

node i and j is defined as the average number of steps it takes

a random walker starting at node i, to arrive at node j for the

first time [40]. If the network is connected and has no self-con-

nections, the MFPT between any pair of nodes is finite and can

be computed as follows:

tij ¼
z jj � zij

vj
, i = j,

where the vector v is the left eigenvector associated to the eigen-

value of value unity; Z ¼ [zjj] is the fundamental matrix,

computed as Z ¼ (I 2 P þW )21, where I is the N � N identity

matrix, P is the transition matrix and W is an N � N matrix with

each column being the vector v such that 8j Wij ¼ vi. Diffusion

efficiency is then defined as follows [11]:

Ediff ¼
P

i
P

j 1=tij

N(N � 1)
, i = j:

(iii) Neural complexity
Neural complexity (CN) is a measure that captures the coexistence of

functional segregation and functional integration in a neural system

[12]. CN is a statistical measure of the dynamics of the system

defined in terms of the mutual information between subsystems.

CN was originally defined in terms of the integration associated

with a system of n neural components and a stationary stochastic

process X(t) ; {Xi(t)ji ¼ 1, 2, . . . , n}, where Xi(t) represents the

activity of the ith neural component at time t. Integration is com-

puted as I ¼
Pn

i¼1 Hi �H, where H is the entropy of the entire

system and Hi is the entropy of the ith individual component.

Then, neural complexity is defined as follows:

CN ¼
Xn�1

k¼1

k
n

I � kIlk

� �
,

where k.lk denotes an average over all
n
k

� �
subsystems of size k. CN

tends to be low for systems whose components are either statisti-

cally independent or highly dependent; conversely, CN is high for

systems whose components are (on average) independent in small

subsets and increasingly dependent in subsets of increasing size.
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Computation of CN

Note that in the definition of CN given above, the number of sub-

systems of size k ¼ 1, 2,. . ., n 2 1 increases exponentially with n
as 2n. The subsequent combinatorial explosion makes it unfeasi-

ble to calculate CN for large values of n. To overcome this problem,

CN can be approximated by a sampling method, which consists of

taking M random samples of subsystems of size k (for k ¼ 1,. . .,

n 2 1); as M increases, the approximation approaches the exact

value of CN; hence, M must be sufficiently large to get an accurate

approximation and this computation becomes very intensive.

Alternatively, a computationally less intensive approximation for

CN has been proposed [41], used here to compute CN values.

This approximation assumes that the correlation between the

activities of neural components is small and that the dynamics of

the system are stable; CN can then be approximated as

CN ¼ C�N(R)þ C��N (R)þO(14),

where

C�N(R) ¼ nþ 1

24
trace(R̂2) and C��N (R) ¼ nþ 1

24
trace(R̂3),

and R̂ is the correlation matrix with elements equal to zero in the

diagonal (rii ¼ 0 8i).
To derive correlation matrices from the structural connectivity

matrices, we implemented a linear model of neural activity

described in [42]. This model is based on the linearization of a

coupled neural system driven around a fixed point by spatially

and temporally independent Gaussian noise sources. The correl-

ation of the dynamics, matrix A, can be obtained analytically as

A ¼ (1� aDt)I þ CDt. The coupling matrix C used here is the

structural connectivity matrix, I is the identity matrix and a is

the rate of activation leakage per node (here set to a ¼ 2). Finally,

the condition for weakly coupled neural elements is met when the

spectral radius (the absolute value of the largest eigenvalue) of

the covariance matrix is smaller than unity.

The condition of weakly coupled neural elements comes from

the assumption that neural dynamics can be approximately charac-

terized by a stationary multivariate Gaussian process. By

implementing a Gaussian neural model as a linear process, the com-

putation of CN is remarkably simplified, given that it is possible to

express the interactions between neural elements (i.e. entropies and

mutual information) in terms of a covariance matrix that can be

derived analytically from the network’s connectivity matrix. How-

ever, the linearization of the neural model is an approximation in

the weakly coupled near-linear regime of the nonlinear dynamics

of the system. Linear approximations are commonly used in neuro-

science to model large-scale neural systems [43], which is what the

nodes of the networks used in this work represent.
(d) Network morphospace
The concept of morphospace originated in the context of evolution-

ary biology [44]. It provides a framework to map all the possible

biological forms that can result by varying the parameter values

of a geometrical or mathematical model of form. Most importantly,

it allows the identification of forms that have been produced in

nature and forms that have not. The parameters of a model of

form define the axes or dimensions of a morphospace, where

different locations within each dimension specify the parameter

values and are associated with a particular biological form. Here,

we extend the concept of morphospace to encompass network

structure; hence, the dimensions of a network morphospace are

given by network structural measures and positions within

the morphospace correspond to characteristic aspects of network

topology (figure 1a). Specifically, in this paper we define a three-

dimensional morphospace with axes given by Ediff, Erout and CN;

therefore, networks are placed within the morphospace according

to the previously defined measures.
In the context of this study, a morphospace exploration is the pro-

cess of simulating brain-like networks and identifying their locations

within the efficiency-complexity morphospace by measuring their

corresponding values of Ediff, Erout and CN. Simulated brain-like

networks are generated by incremental rewiring of a population of

minimally perturbed empirical brain networks, which is

implemented through a multi-objective evolutionary algorithm

that approximates a Pareto-optimal set within the morphospace.

Given that the brain networks constructed from each dataset

display differences in size and density, we define three distinct

morphospaces, one for each dataset [46]. Within each morpho-

space, we constrained the set of possibly simulated networks to

preserve the number of nodes and edges, degree sequence and

network cost invariant with respect to the values measured

from the corresponding empirical network. Finally, graph

metrics are normalized in each morphospace with respect to

the values of the corresponding empirical networks. Therefore,

each empirical network is located within its morphospace in

the coordinates (Ediff, Erout, CN) ¼ (1, 1, 1).

(e) Morphospace analysis
In a theoretical morphospace, there is a distinction between possible

and impossible forms (topologies), and a second distinction be-

tween functional and non-functional forms (topologies). The

former distinction refers to topologies that are impossible because

the combination of parameters (structural traits) is meaningless or

infeasible and no network can satisfy such combination. The later

distinction defines a subset of the formally possible topologies,

which consists of the functionally feasible topologies. This means

that within the space of possible topologies, there are networks

that are not functionally feasible and therefore, such networks will

not be found in the real world. For instance, all disconnected net-

works belong to the set of impossible brain network topologies. In

addition, crucial properties of brain networks such as density,

length and volume of neuronal connections, are subject to functional

constraints that define the subset of biologically feasible networks

within the set of possible networks in the brain network morpho-

space. In our work, we perform a morphospace exploration that

implements functional constraints through a rewiring algorithm,

whose objective is to preserve the total cost of the network connec-

tions. This strategy of morphospace exploration is based on

evolving a population of networks by repeatedly carrying out two

steps: network selection and network variation.

Network selection occurs according to Pareto optimality, a con-

cept used in economics and engineering to describe a set

of solutions that optimize multiple objectives simultaneously [47].

In general, a solution is said to be Pareto-optimal if an improvement

of any single objective cannot be achieved without negatively

affecting some other objective (figure 1b). In the context of a popu-

lation or ensemble of networks that are being evaluated by multiple

objective functions, a network G belongs to the Pareto-front set if

and only if (1) G is not worse than any other network within the

population, with respect to all objectives; (2) G is strictly better

than any other network in the population, with respect to at least

one objective [45] (figure 1c).

Network variation refers to small structural changes that are

implemented with a rewiring algorithm. The algorithm is based

on a random rewiring algorithm whose elementary moves are

the so-called ‘edge-swaps’ [48]. An edge swap consists of the

following steps:

(a) Randomly, select four distinct nodes, namely (i, j, k, l ).

(b) If (aik, a jl, ail, a jk) ¼ (1, 1, 0, 0) then swap the edges, so that the

adjacency matrix entries become (aik, a jl, ail, a jk) ¼ (0, 0, 1, 1).

(c) Otherwise, go back to (a).

This rewiring procedure ensures that the rewired network always

remains connected and that the degree of each node is
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Figure 1. (a) Diagram of a communication-efficiency morphospace for toy-networks; the location of a toy-network within this morphospace of abstract networks can
be associated with specific aspects of network structure that favour two distinct communication schemes: diffusion-based communication (Ediff ) and routing-based
communication (Erout). (b) Geometric example of Pareto optimality: the area of three circles represents three objectives to be maximized; circles are constrained to be
contained within an equilateral triangle and cannot overlap with each other. There are several solutions to the problem; the top triangle shows a solution that could
be improved by increasing the area of the blue circle; thus, it is not Pareto-optimal. The two bottom triangles show solutions in which the area of none of the circles
can be increased without having to decrease the area of another circle; therefore, the solutions are Pareto-optimal [45]. (c) Example of a Pareto front, where three
objective functions are to be maximized. All the points in the plot represent feasible solutions; however, only the red points belong to the Pareto front. (d ) Rewiring
rule: the weights of the edges fi, lg and f j, kg are randomly selected, provided that the total wiring cost is preserved. (e) Matrix of Euclidean distances (left side)
and interpolated fibre lengths (right side) between all pairs of nodes of the LAU1 dataset. The colour map on the human cortex images represents the fibre lengths
after interpolation between node 300 (whose location is indicated with a white circle) and all other nodes of the LAU1 network.
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unchanged [49]. In this study, we require that each edge swap

satisfies two additional conditions. The first condition is that

the total wiring cost of the network must remain constant. The

second condition is that the value of the fibre densities of all con-

nections remains confined to the interval (0, wmax), where wmax is

the maximum fibre density found among all the connections of

the empirical network. Therefore, when an edge swap is per-

formed, the fibre densities wil, wjk corresponding to the added

edges fi, lg and f j, kg are randomly chosen, provided that

they satisfy the equation wiklik þ w jll jl ¼ willil þ w jkl jk subject to

0 , wil, wjk , wmax (figure 1d ). We refer to an edge swap that

satisfies these conditions as a rewiring step.
(i) Fibre-length interpolation
Note that many times, when a pair of edges are swapped, the

values of lil and ljk are not defined in the original connectivity

matrices extracted from the neuroimaging data, simply because

there is no actual connection between the pairs of nodes fi, lg
and f j, kg. To assign fibre length values to edges created
during the rewiring process, for each dataset a fully connected

matrix LI was constructed combining existing and interpolated

fibre length values between all pairs of nodes. This was done

by making the assumption that two fibres whose starting and

ending points are close in space should follow similar trajec-

tories in the brain and thus have similar lengths. Under this

assumption, an estimated fibre length based on similar existing

fibres can be assigned to pairs of nodes that are not connected

in the empirical network. We consider two fibres to be similar

if we can define two neighbourhoods—one containing the

starting nodes of the fibres, and another containing the

ending points of the fibres—such that the radius of each

neighbourhood is smaller than d, where d is defined as 20%

of the Euclidean distance that separates the centres of both

neighbourhoods. For every pair of unconnected nodes fi, jg
in the empirical network, we defined such neighbourhoods

and looked for fibres whose endpoints are in each of the

neighbourhoods. If such fibres were found, we assigned their

average length to the length of a fibre between nodes i, j.
Finally, for all pairs of nodes for which we could not find
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similar fibres connecting their neighbourhoods, we used a

polynomial interpolation of degree 2 to fit the fibre lengths

as a function of Euclidean distance. For the right hemisphere

sub-network of each dataset used in this study, the fraction

of fibre lengths estimated by polynomial interpolation was

88%, 87% and 78% for LAU1, LAU2 and UTR respectively;

the correlation between the interpolated fibre length matrix

and the Euclidean distance matrix is 0.980, 0.982 and 0.992

for LAU1, LAU2 and UTR, respectively. Figure 1e shows the

matrix of Euclidean distances between all pairs of nodes of

the LAU1 network, together with the full fibre length matrix

LI after the interpolation process.
Phil.Trans.R.Soc.B
369:20130530
(ii) Evolutionary process
All morphospace explorations start with an initial population of

M0 ¼ 500 networks, derived from the empirical brain network by

performing three rewiring steps. During the evolutionary pro-

cess, all networks preserve the number of nodes and edges,

degree sequence and network cost of the corresponding empir-

ical network. For every epoch of the evolution (defined by a

single iteration of network selection, followed by network vari-

ation), the objective functions are evaluated on all of the

population members. Selection according to Pareto optimality

is applied to define the set of networks that pass unchanged to

the next epoch. The set of networks that do not belong to the

Pareto front are eliminated and substituted with a random

sample of the Pareto-front members, which is subjected to mini-

mum variation by carrying out one rewiring step on each

network.

We avoid falling in to local maxima by introducing noise in

the evolutionary process as follows. At a given epoch, if more

than 90% of the population belongs to the Pareto-front set,

then half of the population is randomly selected and subjected

to one rewiring step. Then the simulation carries on.

In order to explore a greater extent of the sub-region of the

morphospace surrounding the empirical brain network, we car-

ried out eight independent runs of the evolutionary process.

All runs start with the same initial population but implement

distinct objective functions that aimed to drive the population

of simulated brain networks towards the eight quadrants of the

three-dimensional morphospace. The eight objective functions

are defined as follows:

f1 ¼ {max (Ediff), max (Erout), max (CN)},

f2 ¼ {max (Ediff), max (Erout), min (CN)},

f3 ¼ {max (Ediff), min (Erout), max (CN)},

f4 ¼ {max (Ediff), min (Erout), min (CN)},

f5 ¼ {min (Ediff), max (Erout), max (CN)},

f6 ¼ {min (Ediff), max (Erout), min (CN)},

f7 ¼ {min (Ediff), min (Erout), max (CN)},

f8 ¼ {min (Ediff), min (Erout), min (CN)},

where max() and min() stand for the maximization and mini-

mization function. The maximum number of iterations

(epochs) for each objective function was set to 2000; however,

all eight runs of the evolutionary process (one per objective

function) required different CPU times to compute, and CPU

times varied depending on the objective functions and the data-

sets. Therefore, the stopping condition for each evolutionary

process was either 2000 iterations completed or 7 days of

computation.

It is worth mentioning that in this work, the terms evolution
and selection pressure are used within the context of a compu-

tational algorithm, and their usage does not necessarily

reflect a direct mapping onto processes studied in the field of

evolutionary biology.
3. Results
(a) Randomization and latticization of the brain

networks
We explored the behaviour of the efficiency and complexity

measures when the empirical networks are rewired towards

two canonical models, namely a spatial lattice-like network

and a random network. Both processes involving the ran-

domization and latticization of the empirical networks use

the edge swapping algorithm (see §2e) iteratively to rewire

the networks; this guarantees that the latticized and randomized
networks preserve the number of nodes and edges, degree

sequence and wiring cost. The latticization process takes into

account the spatial positions (Euclidean distances) of the net-

work nodes in order to create a lattice-like network where

nodes tend to be connected to their spatially nearest

neighbours.

Figure 2a shows Ediff, Erout and CN as a function of the

number of rewiring steps carried out on all three empirical

networks during their randomization (blue dots) and latticiza-

tion (red dots), respectively. All values are averages over

40 repetitions of the randomization and the latticization

processes.

In all three datasets, the three measures reach a stable

regime after 215 rewiring steps, suggesting that additional

rewiring steps do not further change the topology of the

networks. Qualitatively, the efficiency measures behave

similarly across the three datasets during the randomiz-

ation process: Ediff increases while Erout decreases as a

function of the number of rewiring steps towards ran-

domization. CN decreases in the LAU1 and UTR datasets,

in agreement with earlier studies showing that randomly

rewiring cortical networks tends to decrease their complex-

ity [14]. However, we found inconsistent behaviour of CN

for the LAU2 network, as well as larger variance of CN

across repetitions of the randomization and latticization.

In order to test whether the observed variability of CN is

intrinsic to the LAU2 network or if it is produced by the

approximation method used to calculate CN (see §2c(iii)),

we computed CN values of randomized and latticized net-

works with the sampling method (see §2c(iii)); the correlation

between approximated and sampled CN values is 0.989

( p , 0.01) for the randomized networks and 0.995 ( p ,

0.01) for the latticized networks, thus suggesting that varia-

bility in CN is due to differences in network topology

across the datasets.

An interesting finding is that randomization decreases

Erout. By contrast, high Erout is a typical characteristic of

random networks [9] when these networks are not con-

strained to preserve network cost. The study of the fibre

length and fibre density distributions of the empirical, ran-

domized and latticized networks (figure 2b) reveals

topological changes that have an effect on communication

efficiency. While randomization tends to increase the

amount of long-range connections in the networks, it also

has the effect of decreasing the fibre density of the majority

of the connections; overall, such thinning of connections

diminishes Erout. Regarding the observed increase of Erout

during the latticization, we note that latticized networks

tend to have higher fibre density on short-distance connec-

tions, which promotes shorter path length and thus favours

Erout.
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(b) The effects of minimal perturbations on the
structure of brain networks

The second aim of our work is to characterize the effects of

small perturbations on the structure of brain networks. To

do so, we generated three populations of 10 000 minimally

rewired network variants, each created by carrying out

three rewiring steps on each of the three empirical networks,

LAU1, LAU2 and UTR. We used three rewiring steps because

it is the minimum number of rewiring steps that allows us to

distinguish numerical differences in all three dimensions

of the morphospace. In this way, we explore the proximal

morphospace, that is, the space that contains the closest

neighbouring network elements of each empirical network.

Interestingly, in all three datasets we found that 99% of the

neighbouring networks are in a region of the morphospace

defined by Ediff . 1, i.e. most networks have higher values

of Ediff, compared with their corresponding empirical net-

works. This suggests that the three empirical networks are

located very close to a (local) Ediff minimum and that the

region of morphospace defined by Ediff � 1 is difficult to

access, given the topological constraints imposed by the

rewiring algorithm (see §2d,e). The proportion of networks

contained in the region Erout . 1 and CN . 1 varied across

datasets: 35.26%, 85.14% and 75.22% of the populations

extracted from the LAU1, LAU2 and UTR datasets, respect-

ively, were in the region Erout . 1; 28.21%, 16.07% and

27.25% of the populations (LAU1, LAU2 and UTR,
respectively) were in the region CN . 1; finally, 9.66%,

14.59% and 21.92% of the populations were in the region

fEdiff . 1, Erout . 1, CN . 1g of the respective morphospace

(LAU1, LAU2 and UTR). Figure 3 shows the distributions

of proximal networks embedded in the three morphospaces

corresponding to each dataset. The shape of the region occu-

pied by these networks shows that the accessibility of the

sub-region of morphospace surrounding the coordinates

(Ediff, Erout, CN) ¼ (1, 1, 1) is not uniform and that there are

‘preferred’ directions along each axis in which networks

are located.
(c) Exploring the efficiency-complexity morphospace of
brain networks

We implemented an evolutionary algorithm to explore a sub-

region of the efficiency-complexity morphospace in search

for alternative biologically feasible brain-like networks (see

§2e(ii)). In order to characterize the structural traits of the net-

works simulated through distinct selection pressures, we

used eight objective functions to drive a population of net-

works towards the eight quadrants of the three-dimensional

morphospace. For each dataset, we carried out 10 repetitions

of the exploratory process. Each repetition of the process

includes: (i) creating an initial population of 500 networks

by minimally rewiring the empirical network and (ii) apply-

ing the evolutionary process eight times independently, once
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for each objective function (see §2e(ii)). Therefore, the com-

pletion of an exploratory process yields eight distinct

populations of 500 networks that have been subject to differ-

ent selection pressures. We will refer to each one of these

populations as a front: front 1 is the population evolved by

optimizing the objective function f1; front 2 is the population

evolved by optimizing f2, and so on. The stopping condition

for the evolutionary process was either 2000 iterations com-

pleted or 7 days of computation. During the 10 repetitions of
the morphospace exploration, for the datasets LAU1 and

LAU2, the evolutionary process of all eight fronts was stopped

after 2000 iterations. For the UTR dataset, the evolutionary pro-

cess of fronts 3, 5, 6, 7 and 8 completed 2000 iterations, while

the evolution of fronts 1, 2 and 4 was stopped after 7 days of

computation, during which the processes had simulated on

average 1460, 1315 and 1670 iterations, respectively. Note

that all networks belonging to any front are embedded in a

sub-region of the morphospace that is still fairly close to the

empirical brain network; structural changes in the simulated

networks account for, on average, 20% and 8% of the total

number of edges present in the networks in fronts 1 through

4 and fronts 5 through 8, respectively.

Figure 4 shows the regions of the morphospace explored

during the evolution of the eight fronts, starting with a popu-

lation of networks derived from the LAU1 network (see the

electronic supplementary material, figures S1 and S2, for

LAU2 and UTR datasets, respectively). Although the shape

and extent of the regions explored by each evolving front

vary across datasets, we find three important aspects that are

consistent, regardless of the dataset used to derive the initial

population. First, the evolutionary algorithm is unable to find

solutions within the region defined by fEdiff , 1g. Second,

none of the fronts follows the trajectory of a randomization

or latticization process. This demonstrates that the evolution

of the network populations towards different regions of the

morphospace is driven by distinct selection pressures, and

not by the random nature of the rewiring algorithm. Third,

the evolutionary process is able to generate brain-like networks

within the region fEdiff . 1, Erout . 1, CN . 1g; that is, all three

topological aspects of brain networks can simultaneously

increase, while preserving wiring cost.
(d) Characterization of Pareto-optimal brain networks
To allow comparisons across datasets, brain networks were

down-sampled into a commonly used low-resolution par-

tition of the human cortex, composed of 66 anatomical

areas [50], with 33 areas representing the right cortical hemi-

sphere of the brain (see figure 5a). For each dataset, networks

evolved towards eight fronts (10 repetitions per front) and the

final populations of 500 evolved networks were down-

sampled to the low-resolution partition and then aggregated

according to front membership. Thus, we obtained eight

populations (one for each front) of low-resolution brain net-

works, each population containing 5000 evolved brain

networks. As the four fronts driving networks towards

fEdiff , 1g failed to advance, their evolved networks were

not investigated further. For the remaining four fronts, we

identified anatomical pathways whose fibre density and/or

cost has significantly changed during the evolutionary pro-

cess to favour particular topological traits. For each front,

all final populations of evolved networks were aggregated

into a single average network, representative of the corre-

sponding front. The differences between the average

networks of each front and the corresponding empirical net-

work are shown in figure 5c, together with the corresponding

plots recording the consistency with which connections

increased or decreased in strength (figure 5d ). Each of the

fronts is associated with a characteristic pattern of changes

in connection weights, and visual inspection suggests greater

similarity in the patterns for fronts 1 and 3, and for patterns

for fronts 2 and 4, respectively. Analysis of the pairwise
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cosine angles between average networks of each front con-

firms this observation, with fronts 1 and 3 (both

maximizing CN) and fronts 2 and 4 (both minimizing CN)

exhibiting the greatest similarity across all three datasets.
Other aspects of changes in connection patterns were con-

sistently observed across all three datasets. First, the density

of evolved networks in all four fronts increases significantly

(figure 6a), indicating that areas originally unconnected
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have a strong tendency to become weakly connected.

These new projections appear as a result of rewiring of

edges away from denser pathways, thus sculpting their over-

all pattern into a new topology and steering the population

towards one of the four Pareto fronts. Second, most of these

newly formed projections extend over long spatial distances,

while most of the projections that become weakened

involve nodes that are spatially close, including node pairs

that belong to the same anatomical region (figure 6b).

Finally, a cost analysis suggests that high-cost connections,

i.e. connections that contribute strongly to the overall cost

of the network (which is conserved in our simulations) are

principal targets for rewiring (figure 6c). Their rewiring

results in a dispersal of their contribution to network cost

to a larger set of connections spanning a greater number of

anatomical regions.
4. Discussion
In this work, we applied a multi-objective evolutionary

approach to rewire brain networks and place them within an

efficiency-complexity morphospace. Using various Pareto-

optimal selection criteria, we were able to explore how brain

networks evolve when subject to distinct selection pressures.

Furthermore, the approach allowed us to investigate relation-

ships and trade-offs between distinct topological traits

associated with the principal axes of the morphospace, Ediff,

Erout and CN. Our results demonstrate that the empirical net-

works we used as seed points for evolution are surrounded

by a large space of variant network topologies, even when

holding wiring cost constant, including networks that combine

a higher capacity to support efficient communication with

higher neural complexity.

Our work attempts to make several methodological contri-

butions. First, building on fundamental work in evolutionary

theory [44,51,52], we extend the morphospace analysis frame-

work into the realm of human brain networks. In the past,

morphospace analysis has been applied independently in

the field of complex networks [11,53,54], and in the field of

neuroscience [55]; here, we combine methodology from the

three fields, evolutionary biology, neuroscience and complex

networks to study the topological features available for bio-

logically feasible brain-like networks. Our work proposes

that differences among variants of human brain networks

can be investigated by placing these variants into a space

formed by several principal axes representing fundamental

measures of network organization. Within this space, gradual

rewiring of network nodes and edges, for example by applying

multi-objective optimization, ‘moves’ networks towards new

topological patterns.

Second, as previously introduced in [11], here we explored

two separate measures of network efficiency, one based on

communication along shortest paths (routing-based communi-

cation) [9] and the other based on diffusion processes. In

addition, we considered a dynamic measure of neural com-

plexity that expressed the coexistence of segregation and

integration in the network [12].

Third, as we were interested in the trade-off of these effi-

ciency and complexity measures within the cost constraints

imposed by human brain size and geometry, we employed

a rewiring rule that conserved not only node degree [48,49]

but also overall network cost, by adjusting the fibre density

of rewired connections according to their wiring length

(figure 1d ).

Our first interesting finding was that full randomization

resulted in networks that were less efficient in routing communi-

cation. Notably, this result diverged from the sharp increase

in routing efficiency observed when non-cost-conserving

randomization models are applied. When conserving cost, ran-

domizing brain connectivity is necessarily accompanied by a

thinning out of the fibre densities (shown in the distribution of

the fibre density of randomized networks, figure 2), because

most randomized connections span greater distances; such

low-density connections do not contribute towards efficient

routing communication. Full latticization of brain networks

does not produce perfect lattices because of the constraints

imposed by the rewiring rule; in fact, a comparison of the

fibre length and density distributions between the latticized net-

works and the respective empirical networks reveals great

similarity between these networks. Latticized networks differ
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slightly from the empirical networks in that they tend to have

higher fibre density on short-distance connections, which

promotes shorter path length and thus favours Erout.

Our next results were derived from studying the effects

that minimal structural perturbations have over the measures

of communication efficiency and dynamical complexity. The

accessibility of the proximal morphospace (the region

immediately surrounding the empirical networks) was

found to be non-uniform, e.g. many more network variants

exhibited greater Erout and Ediff. This result held for all

three datasets.

A local exploration of the efficiency-complexity morpho-

space confirmed that, given the network invariants of cost,

density and degree sequence, the morphospace region

Ediff , 1 is restricted, and thus it is all but impossible to

further decrease diffusion efficiency in all three datasets.

Four separate fronts failed to advance in the direction of

Ediff , 1, suggesting that the topology of empirical brain net-

works tends to minimize Ediff. Most important, we note that

three different concepts play into the discussion of this result.

First, what is the relative magnitude of a network’s Ediff (with

respect to a null model) and to what extent can Ediff be

decreased (increased) through a rewiring process that pre-

serves certain network features? Second, to what extent can

the dynamics occurring on top of a network structure be

explained or predicted by a diffusion-based model, regardless

of whether diffusion-like dynamics are an efficient communi-

cation scheme for the system? Third, to what extent have

diffusion-based dynamics been a critical evolutionary pressure

shaping the structure of brain networks?

The relative value of Ediff captures to what degree the struc-

ture of the network facilitates the integration of information

when information spreads through diffusion-based dynamics.

Therefore, in this paper, we can answer the first question by

providing evidence that brain networks are close to a min-

imum of Ediff (of course, within the space of networks with a

fixed number of nodes and connections, a predetermined

degree sequence and an invariant global connection cost).

Furthermore, we can conclude that the topology of structural

brain networks does not facilitate an efficient communication

between all pairs of nodes, provided that information within

the network spreads solely as a diffusion process. However,

the relative value of a network’s Ediff does not provide any

information about the underlying process through which infor-

mation actually spreads within the network. Other studies

have used different approaches to address this question; for

example, Betzel et al. [56] and Goñi et al. [57] have provided evi-

dence that brain dynamics can be modelled and/or explained

by diffusion-like processes. It is important to bear in mind that

in these studies diffusion-like processes were used as models

for the spreading of perturbations (as generative models for

resting-brain functional connectivity), and it is well known

from studies in other systems that modular topologies tend

to limit the spread of perturbations across module boundaries.

Finally, in this paper we can only speculate about the third

question, regarding the role of diffusion-based dynamics as

an evolutionary pressure. Nonetheless, in our opinion, it

seems very unlikely that Ediff is not a critical evolutionary

factor shaping brain networks given that the value of Ediff

that brain networks exhibit is not arbitrary, but is actually at

a minimum. One possible interpretation is that minimizing

Ediff has been due to critical evolutionary pressure shaping

brain network topology in order to limit passive diffusion
(e.g. of noisy perturbations) on global scales while promoting

efficient diffusive communication on local scales, such as

within network communities [56].

Conversely to the severe constraints found on the Ediff

axis, we did not find such strict constraints on the other

two axes of the efficiency-complexity morphospace. Greater

Erout as well as greater CN, singly or in combination, could

be achieved through rewiring of specific pathways in all

three datasets. Fronts advancing towards greater or lesser

CN exhibited greater consistency in rewiring of specific path-

ways, suggesting that neural complexity depends more

strongly on specific network topologies. Instead, there

appear to be more structural configurations available for net-

works belonging to the fronts advancing towards higher or

lower Erout.

In addition to these trends that were specific to the multi-

objective function employed, we also observed some aspects

of the rewiring process that were shared among all fronts.

These aspects included a strong tendency to create new

(albeit weak) pathways linking previously unconnected ana-

tomical regions by redistributing connections away from

node pairs that were spatially close and/or linked by high-

cost connections. This study does not allow us to determine

whether these general tendencies mainly reflect constraints

imposed by the cost-conserving rewiring rule or if they

point to greater accessibility of parts of the morphospace by

structural network variants that are more diffusely or densely

connected. We acknowledge that there are several methods to

rewire weighted networks and that the constraints imposed

by any rewiring method will have certain effects on the top-

ologies of the rewired networks. For instance, a rewiring

algorithm that is constrained to preserve the distribution of

connection weights will necessarily have the effect of increas-

ing the total connection cost. This is because the rewiring

process tends to create long-range connections and the cost

measure used in this study is proportional to the connection

lengths. Alternatively, to preserve crucial aspects of brain net-

works throughout the rewiring process, one could enforce

preserving both the distribution of connection weights and

the distribution of connection lengths. However, such a set

of restrictions would have the effect of drastically reducing

the space of solutions, imposing severe limitations on the

exploration of the morphospace. Hence, for this study, we

have opted for an approach that is not as restrictive as

the latter but is still conservative, that is to preserve the

total cost of the connections of the networks. This approach

provides sufficient degrees of freedom to explore the mor-

phospace, while imposing a strong functional constraint

that allows us to study biologically feasible brain networks.

Furthermore, the rewiring algorithm we present in this

study provides an alternative null model to perform statis-

tical tests of graph measures of brain networks. The use of

random networks as null models is very common [46]; how-

ever, as we have pointed out previously, there are several

ways to randomize a network, and hypothesis testing will

yield different results depending on the selected null

model. Here, we suggest that the appropriate null model

is one that preserves most of a brain network’s basic fea-

tures that make it biologically feasible, such as grey/white

matter volume, connection density and degree sequence,

among others.

Several aspects of the present work require future exten-

sions. First, networks derived from the three datasets
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employed here shared numerous topological features but

were also somewhat variable due to differences in subject

cohort, data acquisition and tractography (see §2b). These

differences did not allow firm inferences about which

changes in specific anatomical pathways were associated

with specific Pareto fronts (i.e. due to specific selection press-

ures). This inference awaits the arrival of more uniformly

acquired, normative datasets, for example those collected as

part of the Human Connectome Project [58]. Second, while

the current work examined the trade-off between different

measures of network communication efficiency and complex-

ity, the trade-off of these measures with network cost (held

constant in this study) remained unexplored. This could be

explored, for instance, by relaxing the invariant cost assump-

tion used here and introducing network cost as a term in the

objective function instead (either conforming or being part of

one of the morphospace axes). Third, the measures forming

the principal axes of the morphospace were chosen on the

basis of previous work [11,12,14] which suggested that they

are relevant for various aspects of brain function and

dynamics; however, alternative formulations of network

morphospace that target other features of network structure

and topology may be explored in future work. Furthermore,

as opposed to using explicit network measures, one could

favour orthogonality or statistical independence (e.g. independ-

ent component analysis) when defining the morphospace axes
and the topological invariants in the evolutionary algorithm.

Finally, further extensions of this work may also include an

analysis of local or within-community communication effi-

ciency, because global measures do not capture how

communication efficiency is distributed among network

communities.

These and other extensions of the current work may become

useful for characterizing regions of network morphospace that

are occupied by existing topological variants of the human

brain. As is the case for biological forms [44], we expect that

the majority of the morphospace is empty, i.e. most possible net-

work configurations are either physically or economically

infeasible or have been selected against in evolution. Among

those variants that do occur, we expect that embedding of

individual human brains in network morphospace will high-

light important patterns in individual differences of network

organization, including those associated with disease-related

network disturbances.
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