
Journal of

Imaging

Article

Comparing Stacking Ensemble Techniques to Improve
Musculoskeletal Fracture Image Classification

Ibrahem Kandel 1,*, Mauro Castelli 1 and Aleš Popovič 1,2

����������
�������

Citation: Kandel, I.; Castelli, M.;

Popovič, A. Comparing Stacking

Ensemble Techniques to Improve

Musculoskeletal Fracture Image

Classification. J. Imaging 2021, 7, 100.

https://doi.org/10.3390/

jimaging7060100

Academic Editor: Ke Chen

Received: 2 May 2021

Accepted: 15 June 2021

Published: 21 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide,
1070-312 Lisboa, Portugal; mcastelli@novaims.unl.pt (M.C.); apopovic@novaims.unl.pt (A.P.)

2 School of Economics and Business, University of Ljubljana, Kardeljeva Ploščad 17, 1000 Ljubljana, Slovenia
* Correspondence: D20181143@novaims.unl.pt

Abstract: Bone fractures are among the main reasons for emergency room admittance and require a
rapid response from doctors. Bone fractures can be severe and can lead to permanent disability if not
treated correctly and rapidly. Using X-ray imaging in the emergency room to detect fractures is a
challenging task that requires an experienced radiologist, a specialist who is not always available.
The availability of an automatic tool for image classification can provide a second opinion for doctors
operating in the emergency room and reduce the error rate in diagnosis. This study aims to increase
the existing state-of-the-art convolutional neural networks’ performance by using various ensemble
techniques. In this approach, different CNNs (Convolutional Neural Networks) are used to classify
the images; rather than choosing the best one, a stacking ensemble provides a more reliable and
robust classifier. The ensemble model outperforms the results of individual CNNs by an average
of 10%.

Keywords: deep learning; image classification; stacking; ensemble learning; convolutional neural
networks; transfer learning; medical images

1. Introduction

The incidence of bone fractures is affected by many factors including age, gender,
biology, physiology, and access to treatment and prevention programs [1–3]. Impairment-
related bone fractures contribute to an increase in morbidity and mortality across the age
span [3]. The leading causes of bone fractures include osteoporosis [2,4,5] and trauma [6].
Osteoporosis is a chronic bone disease related to the loss of bone density. Bone trauma
can be defined as an injury caused to the bone by a force external to the body. When
applied to clinical practice, a systematic study of bone fracture data can allow clinicians
to compare affected and unaffected patient groups, determine definable and preventable
characteristics that predispose patients to skeletal fractures and ensure the provision of
appropriate prevention and treatment strategies [7–9].

Deep learning is a subfield of artificial intelligence that has gained much attention
due to its robust results in many challenging domains, such as machine translation, natural
language processing, and computer vision, among others [10]. Convolutional neural
networks (CNNs) are part of deep learning domains where at least one layer of the neural
network is a convolution layer. Many state-of-the-art results were achieved by using CNNs,
especially in the computer vision domain. However, one of the main drawbacks of using
CNNs to classify images is the dataset size needed to train them accurately: thousands
of images are usually required. This issue limits the usage of CNNs in classifying images
in the medical field. However, two main techniques can be used to get over the issue of
dataset size: transfer learning and ensemble learning. Transfer learning was introduced to
get over the dataset size challenge by training a CNN on a sizeable nonmedical dataset,
then fine-tuning the weights to a medical dataset. Ensemble learning is a technique based
on the principle of the crowd’s wisdom. In ensemble learning, multiple classifiers are

J. Imaging 2021, 7, 100. https://doi.org/10.3390/jimaging7060100 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8793-1451
https://doi.org/10.3390/jimaging7060100
https://doi.org/10.3390/jimaging7060100
https://doi.org/10.3390/jimaging7060100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7060100
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7060100?type=check_update&version=1

J. Imaging 2021, 7, 100 2 of 24

trained, and then their results are combined. There are different methods of combining
the outputs of different classifiers, such as taking the average of their outputs or using
a machine learning algorithm over their predictions—that is, creating a classifier to sort
different models’ outputs.

The classification of fracture images using CNNs was investigated in many stud-
ies. Chung et al. [11] used a private dataset to investigate shoulder image usage to
classify humerus fractures using ResNet CNN. In particular, they used a dataset with
256 × 256-pixel images. After fine-tuning the CNN, they applied the CNN model to reach
an accuracy of 96%, a performance higher than that of human experts. Rajpurkar et al. [12]
investigated CNN’s performance in classifying bone fractures using a novel dataset called
MURA. The images were rescaled to 320 × 320 pixels, and they compared the performance
of their networks to three different radiologists’ assessments. The radiologists’ performance
was more accurate than their results.

Olczak et al. [13] tested CNN on a private dataset with 256,000 images split among
wrist, hand, and ankle images. The X-ray images were rescaled to 256 × 256 pixels, and
VGG16 achieved the best performance. Additionally, CNN’s performance was comparable
to two senior orthopedic surgeons. Lindsey et al. [14] studied the effect of having a CNN
to classify wrist fractures in the ER to help in fracture diagnosis. They used a private
dataset to train a CNN by relying on an extension of U-Net architecture as a classifier.
Subsequently, they did a controlled experiment to evaluate the importance of having a
CNN to aid doctors’ diagnoses. Olczak et al. [13] found a significant decrease of 47% in the
misinterpretation rate when using CNN.

Uysal et al. [15] studied the effect of different SOTA CNN architectures on the MURA
dataset’s shoulder images. The images were scaled to 320 × 320 pixels. The Adam
optimizer was chosen, with a learning rate of 0.0001 with 40 epochs for training. The best
kappa score was 0.6942, resulting from taking an ensemble of ResNet34, DenseNet169,
DenseNet201, and a sub-ensemble of different CNNs.

Guan et al. [16] used 3392 positive images (images with fractures) of the humerus,
elbows, finger, hand, and forearm fracture from the MURA dataset to detect bone fractures.
The image size was scaled to be 800 pixels for the shorter side and 1333 pixels for the
longer side. Subsequently, an improved two-stage RCNN detection method was proposed.
However, the original MURA dataset did not contain annotations of exact fracture locations.
For this reason, the locations were annotated using the help of three radiological experts
with more than 20 years of experience. To mitigate the small dataset’s effect, two main
geometric augmentation techniques were considered: horizontal flipping and random
rotation. The authors used 4 GPU NVIDIA GeForce GTX 1080Ti graphic cards to train the
model. The average precision reported in the study was 62.04% [16].

Huynh et al. [17] used the humerus images from the MURA dataset. The images were
rescaled to 150 × 150 pixels, and a novel CNN architecture with two convolution layers
and one max pooling layer was presented. The learning rate of 0.0001 achieved the best
results compared to three different learning rates. Moreover, the proposed model achieved
a validation accuracy of 0.684 compared to a kappa score of 0.600 for the MURA dataset.
Urinbayev et al. [18] used the MURA dataset as a preprocessing step to determine the
organ type before further classification. Thus, the dataset was used in the context of organ
type classification and not for fracture classifications. The main aim was to classify chest
X-ray images.

Kitamura et al. [19] investigated the performance of three SOTA CNN models on a
private dataset. The dataset used was composed of 596 ankle images. The image size was
300 × 300 pixels. Four different geometric augmentation techniques were used to increase
the size of the training dataset and to make the models more invariant. The techniques
used were random rotation, flipping, brightness variation, and contrast alteration. An
NVIDIA GeForce 1080 GTX graphics card was used to perform the experiments, in which
the performance of each of the three CNNs and an ensemble composed of the three models

J. Imaging 2021, 7, 100 3 of 24

were investigated. The performance of the ensemble methods was better than any single
model’s performance, and the best accuracy recorded was 81%.

Many studies have investigated the effects of ensemble techniques, especially their
impacts on CNNs. Chouhan et al. [20] proposed a study to classify pneumonia images
and used five different CNNs. By taking the average of the five CNNs instead of using
them individually, it was possible to increase the final model’s accuracy. A 2% increase
in accuracy was achieved by using the average instead of using the best-performing
CNN. Even with the robust model introduced by He et al. [21] in 2016, the authors used
the ensemble technique to win the ImageNet challenge [22]. Whereas their top model
scored a 4.49% error rate, using ensemble techniques allowed them to reduce the error
rate to 3.57%. Rajaraman et al. [23] investigated four different approaches to accurately
classify tuberculosis from X-ray images. They reported that stacking achieved the best
results. Cha et al. [24] studied different techniques for classifying ear diseases by using
otoendoscopic images. They compared the performance of nine CNNs and then selected the
best two CNNs to build an ensemble model. The ensemble model achieved the best result
compared to the other CNNs taken into account. Kandel and Castelli [25] investigated
the impact of transfer learning, i.e., using the weights of ImageNet instead of training
the network from scratch on X-ray classification to detect fractures. They used the seven
MURA datasets [12], and investigated six state-of-the-art CNN architectures: VGG19 [26],
InceptionV3 [27], ResNet50 [21], DenseNet [28], Xception [29], and InceptionResNet [30].
Experimental results show that the weights of ImageNet had an impact other than training
the CNN from scratch. Moreover, sometimes, by training the networks from scratch, it did
not converge at all, given the MURA dataset’s limited size [12].

Joshi et al. [31] reviewed several contributions that apply artificial intelligence tech-
niques to fracture detection. Among techniques, they pointed out that only a few works
use CNNs for fracture detection. They cited five papers in which CNNs were used with
data augmentation for fracture detection. While their work suggests that stacking was
used in the past with traditional (fully connected) neural networks, random forests, and
support vector machines, no study was cited on the use of stacking with CNNs. Thus, we
believe our contribution is timely and provides an interesting contribution to this field.

Our primary goal is to develop a classification framework for bone fracture detection
using X-ray images. To reach our goal, we compared different stacking techniques to
improve the classification of fractures using X-ray images.

The main contributions of this work are as follows:

(1) We evaluate different state-of-the-art CNNs. We also assess their combinations’
performance, either in averaging, weighted average, or majority vote.

(2) We investigate the usage of the stacking ensemble along with CNN outputs. To do
so, we tested the performance of eight different machine learning meta-classifiers.
Two main methods are considered: using probability outputs to construct the level-1
ensemble, or using label outputs.

The rest of this paper is organized as follows: In the second section, we describe our
methodology. The third section presents our results obtained. The fourth section discusses
the main findings of this study. Finally, the fifth section concludes the paper.

2. Materials and Methods

In Figure 1, we illustrate a schematic diagram of the proposed pipeline, showing how
we stacked different machine learning algorithms. In the following subsections, we briefly
discuss the methods used in this research and the dataset used to train the CNN.

J. Imaging 2021, 7, 100 4 of 24
J. Imaging 2021, 7, x 4 of 22

Figure 1. Schematic diagram of the proposed pipeline.

2.1. Conventional Neural Networks
After CNN’s success in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC challenge), it became the de facto algorithm for image classification. The differ-
ence between CNNs and any other neural network is the presence of the convolution
layer. The convolution layer’s importance is that it decreases the number of connections
required and considers the spatial and temporal information of images. The convolution
layer works by applying a window size called the kernel that convolves the image to de-
tect essential features that can be used in the classification task. Equation (1) shows the
convolution operation for colored images: 𝑂ሾ𝑖, 𝑗ሿ = 𝐹(𝑢, 𝑣) ∗ 𝐼(𝑖, 𝑗) = 𝐹(𝑢, 𝑣) ⊙ 𝐼(𝑖 + 𝑢, 𝑗 + 𝑣)∈ሼோ,ீ,ሽ ௩ ௨ (1)

where 𝐼(.) is the input image, 𝑐 is the color channels, 𝐹(.) is the kernel, and 𝑂ሾ𝑖, 𝑗ሿ is
the output pixel in the (𝑖, 𝑗) position. Moreover, the asterisk ∗ operation resembles the
convolution operation between the image and the kernel, which equals the dot product’s
summation ⊙ between different pixels in the (𝑖, 𝑗) position.

A CNN mainly consists of two types of layers: primary layers and secondary layers.
Primary layers are mandatory layers that constitute the CNN (i.e., convolution layers,
pooling layers, and fully connected layers). Secondary layers (e.g., dropout layers and
normalization layers) are used to increase CNN performance.

2.1.1. VGG19 Network
VGG networks were introduced by Simonyan and Zisserman [26] to participate in

the ImageNet challenge. VGG networks are composed of sequential convolutional blocks
separated by max-pooling layers. VGG networks come in many variants. We used a 19-
layered version (i.e., VGG19).

2.1.2. Inceptionv3 Network
The InceptionV3 network was introduced by Szegedy et al. [33] to participate in the

ImageNet challenge. The InceptionV3 network has a novel module called the inception
module, where convolution layers are connected in parallel and sequentially.

Figure 1. Schematic diagram of the proposed pipeline.

2.1. Conventional Neural Networks

After CNN’s success in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC challenge), it became the de facto algorithm for image classification. The difference
between CNNs and any other neural network is the presence of the convolution layer. The
convolution layer’s importance is that it decreases the number of connections required and
considers the spatial and temporal information of images. The convolution layer works
by applying a window size called the kernel that convolves the image to detect essential
features that can be used in the classification task. Equation (1) shows the convolution
operation for colored images:

O[i, j] = F(u, v) ∗ I(i, j) = ∑u ∑v ∑c∈{R,G,B} Fc(u, v) � Ic(i + u, j + v) (1)

where I(.) is the input image, c is the color channels, F(.) is the kernel, and O[i, j] is
the output pixel in the (i, j) position. Moreover, the asterisk ∗ operation resembles the
convolution operation between the image and the kernel, which equals the dot product’s
summation � between different pixels in the (i, j) position.

A CNN mainly consists of two types of layers: primary layers and secondary layers.
Primary layers are mandatory layers that constitute the CNN (i.e., convolution layers,
pooling layers, and fully connected layers). Secondary layers (e.g., dropout layers and
normalization layers) are used to increase CNN performance.

2.1.1. VGG19 Network

VGG networks were introduced by Simonyan and Zisserman [26] to participate in
the ImageNet challenge. VGG networks are composed of sequential convolutional blocks
separated by max-pooling layers. VGG networks come in many variants. We used a
19-layered version (i.e., VGG19).

2.1.2. InceptionV3 Network

The InceptionV3 network was introduced by Szegedy et al. [32] to participate in the
ImageNet challenge. The InceptionV3 network has a novel module called the inception
module, where convolution layers are connected in parallel and sequentially.

J. Imaging 2021, 7, 100 5 of 24

2.1.3. Resnet Network

ResNet was introduced by He et al. [21] in 2015. They proposed a new connection
called the residual connection to minimize the vanishing gradient problem that usually
happens to very deep networks (i.e., networks with more than 30 layers).

2.1.4. Xception Network

The Xception network was introduced by Chollet [29]. They used depth-wise separa-
ble convolutional layers instead of conventional convolutional layers.

2.1.5. Densenet Network

DenseNet was introduced by Huang et al. [28]. They were inspired by the residual
connection proposed in the ResNet CNN [21]. Instead of using the residual connection,
they densely connected the convolutional layers. In addition, the layers were concatenated
instead of added to each other, similar to ResNet.

2.2. Machine Learning Algorithms

In this section, we provide a summary of the different machine learning algorithms
used in this paper.

2.2.1. Logistic Regression

This is a simple linear model with a binary outcome. Logistic regression models the
target variable with a line for two dependent variables or a hyperplane for more than two
variables. Equation (2) shows the logistic operation:

p =
1

1 + e−(β0+β1x1+...+βnxn)
(2)

where p is the probability of success (in our study is the presence of fracture), β0 is the
model intercept, and βi are the regression coefficients.

2.2.2. Bagging and Random Forests

Breiman [33] introduced the bagging algorithm to decrease the high variance of
decision trees. “Bagging” stands for bootstrap aggregation, where several decision trees
are constructed using sampling with replacement from the dataset. The trees’ outputs are
averaged in case of regression, and a majority vote is taken in the event of a classification
task. Breiman introduced an upgrade to bagging called random forests [34]: to decorrelate
the trees, only a subset of the variables is randomly selected in each step to construct a
decision tree. Bagging and random forests consider homogenous learners.

2.2.3. AdaBoost

AdaBoost (adaptive boosting) [35] is an ensemble approach that uses an iterative
process. The main idea is to give more importance to misclassified data points built by the
first weak learner, then build another weak learner that concentrates on these misclassified
data points. This iterative nature of the algorithm ensures that each misclassified data point
will have a learner specifically built to focus on it. The formula of AdaBoost is presented in
Equation (3):

F(x) = sign
(
∑K

k=1 θk fk(x)
)

(3)

where K is the number of weak classifiers, θk is the weight of the Kth weak classifier, and
fk(x) is the Kth weak classifier.

2.2.4. Gradient Boosting Machine

A gradient boosting machine [36] is an iterative ensemble technique. Usually, the
weak learners are decision trees. The weak learners have residuals that the subsequent
learner tries to minimize. In the stochastic gradient descent algorithm, Friedman [37]

J. Imaging 2021, 7, 100 6 of 24

proposed building weak learners on samples drawn from a dataset by using sampling with
replacement technique to give the model some variability and decrease bias.

2.2.5. Naïve Bayes

Naïve Bayes (NB) is a classifier based on the Bayes theorem, which is calculated by
estimating probabilities. The NB classifier assumes that every conditional probability
of each feature is independent of each other. According to Bayes’ theorem, NB can be
calculated using Equation (4):

P(y|x) = P(x|y)P(y)
P(x)

(4)

where P(x|y) is the conditional probability of each feature, P(x) is the feature’s prior
probability, and P(y) is the target class y’s prior probability. Generally speaking, NB
classifiers have three main subclasses: Gaussian, multinomial, and Bernoulli. In this study,
we used the GaussianNB classifier, in which the likelihood of features is assumed to be
Gaussian. This can be calculated using Equation (5):

P(x|y) = 1√
2πσ2

y

e
(− (x−µy)2

2σ2
y

)
(5)

where the parameters σ2
y and µy are the variance and the mean, respectively. These values

are estimated using maximum likelihood. For more information, the reader is referred to
the corresponding article [38].

2.3. Stacking

Wolpert [39] introduced stacking as an ensemble algorithm that is different from
bagging, random forest, and boosting: stacking considers heterogeneous learners. A
schematic diagram of the stacking method is presented in Figure 2. There are usually
two or more levels of classifiers. The first level is called the zero level, and it contains
the base classifiers that take the original inputs. As seen in Figure 2, H0 is the original
dataset, which is the MURA dataset in our case. The zero-level classifiers will produce
the H1 dataset, which will be used in the second level by the meta-classifiers (or level-one
classifiers). H1 is the dataset that will be produced by the base classifiers, which are the
CNNs in our case. CBi are the base classifiers that will be used to produce the H1 dataset.
CMi are the meta-classifiers that will be used for classification of the H1 dataset. H1 could
be probabilities or labels, meaning the output of the CBi that will be used by CMi . We will
compare both methods.

J. Imaging 2021, 7, x 7 of 22

Figure 2. A schematic diagram of the stacking method.

2.4. Evaluation Metrics
Two evaluation metrics were used to assess each classifier’s performance. Below are

the summaries for each.

2.4.1. Accuracy
The percentage of correctly classified images to the total number of images. Can be

calculated using Equation (6): 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6)

where TP is the number of true positive images, TN is the number of truly negative im-
ages, FP is the number of false-positive images, and FN is the number of false-negative
images.

2.4.2. Kappa Score
The Kappa score [41] measures the agreement between the actual label and the pre-

dicted label. It ranges from െ1 to +1, where +1 means that the classifier predicts the
correct labels and 0 means that the classifier is just a random guess. The Kappa score
can be calculated using Equation (7): 𝐾𝑎𝑝𝑝𝑎 = 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ை௦௩ௗ െ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ா௫௧ௗ1 െ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ா௫௧ௗ (7)

where 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ை௦௩ௗ is the accuracy of classifier 𝐶 and 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ா௫௧ௗ is cal-
culated using Equation (8). 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡ா௫௧ௗ = 1𝑁ଶ 𝑛ଵ𝑛ଶ (8)

For 𝑘 mutually exclusive categories with 𝑁 total data points and 𝑛 the number
of times classifier 𝐶 predicted category 𝑘.

2.5. Dataset
The dataset used in this paper is the publicly available MURA dataset introduced by

Rajpurkar et al. [12]. MURA includes seven different musculoskeletal categories, namely
wrist, hand, elbow, shoulder, forearm, finger, and humerus. The dataset contains 40,005
images split into 92% for training and 8% for testing. The original size of the images is not
constant and ranges from 512 × 512 pixels to 97 × 512 pixels. The file extension of the im-
ages is .png. In Figure 3, a sample of each fracture type is shown.

Figure 2. A schematic diagram of the stacking method.

J. Imaging 2021, 7, 100 7 of 24

2.4. Evaluation Metrics

Two evaluation metrics were used to assess each classifier’s performance. Below are
the summaries for each.

2.4.1. Accuracy

The percentage of correctly classified images to the total number of images. Can be
calculated using Equation (6):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP is the number of true positive images, TN is the number of truly negative images,
FP is the number of false-positive images, and FN is the number of false-negative images.

2.4.2. Kappa Score

The Kappa score [40] measures the agreement between the actual label and the pre-
dicted label. It ranges from −1 to +1, where +1 means that the classifier predicts the
correct labels and ≤0 means that the classifier is just a random guess. The Kappa score can
be calculated using Equation (7):

Kappa =
AgreementObserved − AgreementExpected

1− AgreementExpected
(7)

where AgreementObserved is the accuracy of classifier C and AgreementExpected is calculated
using Equation (8).

AgreementExpected =
1

N2 ∑k nk1nk2 (8)

For k mutually exclusive categories with N total data points and nki the number of
times classifier C predicted category k.

2.5. Dataset

The dataset used in this paper is the publicly available MURA dataset introduced
by Rajpurkar et al. [12]. MURA includes seven different musculoskeletal categories,
namely wrist, hand, elbow, shoulder, forearm, finger, and humerus. The dataset contains
40,005 images split into 92% for training and 8% for testing. The original size of the images
is not constant and ranges from 512 × 512 pixels to 97 × 512 pixels. The file extension of
the images is .png. In Figure 3, a sample of each fracture type is shown.

J. Imaging 2021, 7, 100 8 of 24J. Imaging 2021, 7, x 8 of 22

Figure 3. Samples of each fracture type from MURA dataset: (a) Fractured elbow. (b) Fractured finger. (c) Fractured wrist.
(d) Fractured forearm. (e) Fractured hand. (f) Fractured humerus. (g) Fractured shoulder.

3. Results
As pointed out by [19,42], fine-tuning the CNN architectures will yield better results

and converge faster than training a CNN from scratch. In this paper, we fine-tuned all
CNN layers using the ImageNet dataset. All hyperparameters were fixed for all CNNs
during the training process. We used the Adam optimizer [43] with a learning rate of
0.0001 for all CNNs. The batch size was 64. All images were rescaled to 96 × 96 pixels. An
early stopping criterion was used to stop the training if no progress occurred for 50

Figure 3. Samples of each fracture type from MURA dataset: (a) Fractured elbow. (b) Fractured
finger. (c) Fractured wrist. (d) Fractured forearm. (e) Fractured hand. (f) Fractured humerus. (g)
Fractured shoulder.

3. Results

As pointed out by [19,41], fine-tuning the CNN architectures will yield better results
and converge faster than training a CNN from scratch. In this paper, we fine-tuned all
CNN layers using the ImageNet dataset. All hyperparameters were fixed for all CNNs
during the training process. We used the Adam optimizer [42] with a learning rate of
0.0001 for all CNNs. The batch size was 64. All images were rescaled to 96 × 96 pixels. An
early stopping criterion was used to stop the training if no progress occurred for 50 epochs.
Four image augmentation techniques were considered to increase the model performance:
zooming, 180◦ rotations, and horizontal and vertical flips. We relied on data augmentation

J. Imaging 2021, 7, 100 9 of 24

to balance the numbers of images in the different classes. All machine learning algorithms’
hyperparameters were kept at the default settings of the Scikit-learn Python package. An
NVIDIA RTX 2060 graphics card and an Intel i7-10750H CPU were used for training.

Due to the dataset’s size, we did not use point estimates. Instead, each base-learner clas-
sifier was trained 10 times, then average scores were calculated. To determine the statistical
significance of the results, we followed the methods of [43,44], in which a small confidence in-
terval implies statistical significance [45]. For the sake of readability, we provided a summary
of the results for all images in Table 1. Full tables may be found in the annex.

Table 1. The average Kappa score achieved by each classifier for every organ (±Confidence Interval 95%). Test performance
is reported.

Classifier Humerus Finger Elbow Wrist Forearm Hand Shoulder

Base-Learner

VGG19 0.630 ± 2.40% 0.371 ± 4.83% 0.644 ± 2.19% 0.600 ± 0.99% 0.508 ± 2.55% 0.436 ± 1.68% 0.464 ± 2.49%
InceptionV3 0.592 ± 2.71% 0.357 ± 2.41% 0.612 ± 2.25% 0.591 ± 2.16% 0.503 ± 4.36% 0.347 ± 3.01% 0.389 ± 4.35%

ResNet50 0.535 ± 3.67% 0.361 ± 3.62% 0.624 ± 2.16% 0.583 ± 2.39% 0.543 ± 3.64% 0.360 ± 4.84% 0.415 ± 4.53%
Xception 0.605 ± 2.56% 0.405 ± 1.68% 0.643 ± 0.91% 0.613 ± 1.59% 0.527 ± 3.11% 0.394 ± 4.39% 0.421 ± 3.43%
DenseNet 0.573 ± 2.50% 0.417 ± 3.54% 0.639 ± 2.10% 0.598 ± 1.54% 0.559 ± 2.16% 0.381 ± 4.06% 0.453 ± 2.73%

Meta-Learner using Statistics

Average 0.666 ± 1.60% 0.440 ± 2.01% 0.696 ± 0.73% 0.655 ± 0.72% 0.572 ± 2.04% 0.419 ± 2.60% 0.488 ± 2.17%
Majority Vote 0.662 ± 1.67% 0.424 ± 1.68% 0.691 ± 0.94% 0.647 ± 0.86% 0.563 ± 2.18% 0.414 ± 2.63% 0.485 ± 2.57%

Weighted
Average 0.666 ± 1.69% 0.440 ± 1.92% 0.697 ± 0.67% 0.656 ± 0.58% 0.577 ± 1.85% 0.426 ± 2.30% 0.491 ± 2.19%

Meta-Learner using probability

Logistic
Regression 0.651 ± 1.33% 0.473 ± 1.83% 0.675 ± 1.71% 0.651 ± 1.06% 0.600 ± 1.76% 0.482 ± 1.56% 0.489 ± 2.63%

Radom Forest 0.643 ± 1.40% 0.466 ± 2.08% 0.665 ± 2.04% 0.626 ± 1.37% 0.597 ± 2.38% 0.468 ± 2.00% 0.489 ± 1.64%
AdaBoost 0.631 ± 1.60% 0.465 ± 0.98% 0.664 ± 1.64% 0.641 ± 1.33% 0.579 ± 1.91% 0.474 ± 0.99% 0.498 ± 2.56%
Bagging

Classifier SVC 0.645 ± 1.44% 0.454 ± 1.55% 0.674 ± 1.49% 0.650 ± 0.85% 0.590 ± 2.64% 0.460 ± 1.93% 0.505 ± 2.42%

Bagging
Classifier

SGD
0.648 ± 1.09% 0.455 ± 1.81% 0.674 ± 1.97% 0.644 ± 1.16% 0.610 ± 1.96% 0.466 ± 2.58% 0.490 ± 3.58%

Bagging
Classifier LR 0.648 ± 1.17% 0.472 ± 1.72% 0.676 ± 1.74% 0.650 ± 1.04% 0.600 ± 2.08% 0.482 ± 1.52% 0.486 ± 2.58%

GBM 0.647 ± 1.59% 0.475 ± 1.52% 0.674 ± 1.63% 0.644 ± 1.12% 0.596 ± 2.28% 0.487 ± 1.86% 0.505 ± 2.09%
Gaussian NB 0.661 ± 1.28% 0.486 ± 2.42% 0.673 ± 1.58% 0.642 ± 1.04% 0.620 ± 2.00% 0.503 ± 1.14% 0.501 ± 1.75%

In the first experiment, we tested different techniques on the humerus images. The first
set of experiments tested the performance of various state-of-the-art CNNs on the humerus
dataset, which considered level-0 classifiers. The VGG19 architecture achieved the highest
score among the five CNNs, κ = 0.6299 ± 2.40%. This was the greatest kappa value and the
smallest confidence interval compared to other level-0 classifiers. The ResNet50 network
achieved the lowest score, κ = 0.5349 ± 3.67% but had the greatest confidence interval.
Subsequently, to assess the performance of statistical metrics, we averaged the predictions
of the five CNNs. A majority vote was taken, and the weighted average based on kappa
scores was calculated. The three scores were approximately the same, with the average
score being slightly higher than the others. The second set of experiments aimed at training
a machine learning classifier over the probability outputs of the CNN. The NB classifier
achieved the highest score, with a score slightly lower than the one achieved in the first set
of experiments. The third set of experiments was similar to the second but considered the
label outputs of the CNN. The scores achieved in the third experiment were smaller than
the ones achieved in the first and the second sets of experiments. Overall, the highest score
was achieved by taking the average of the level-0 classifiers for the humerus images.

We tested the different techniques on the finger fracture images, as we had with the
humerus images. The first set of experiments considered the level-0 classifiers. The best
CNN was the DenseNet network, κ = 0.4168 ± 3.54%; while the InceptionV3 network
achieved the lowest score, κ = 0.3566 ± 2.41%. To assess the performance of simple
statistical metrics, we averaged the predictions of the five CNNs. A majority vote was

J. Imaging 2021, 7, 100 10 of 24

taken, and the weighted average based on kappa scores was calculated. The kappa score of
the average vote and the weighted vote were the same and were higher than the majority
vote and the DenseNet score from level 0. Overall, in the first set of experiments, the
highest score was achieved by considering the CNNs’ average vote. In the second set of
experiments, each CNN’s probability score was used to train a machine learning classifier.
The highest score was achieved by the NB classifier, κ = 0.4862± 2.42%. The score achieved
by the NB classifier was greater than all previous scores. For the third set of experiments,
the NB classifier also achieved the highest score; however, it was less than that achieved by
using the probability score. Overall, the second set of experiments’ performance was better
than both the first and the third sets of experiments.

In the first set of experiments for elbow images, the greatest kappa scores were
achieved by the VGG19 network, κ = 0.6436 ± 2.19%; and the Xception network,
κ = 0.6433 ± 0.91%. The VGG19 network’s kappa value was slightly high; however, the
Xception network’s confidence interval was less than that of the VGG19 network. To
assess the performance of simple statistical metrics, the predictions of the five CNNs
were averaged, the majority vote was taken, and the weighted average based on kappa
scores was calculated. All three kappa scores were similar to the weighted average score
(0.6970 ± 0.67%), which was slightly greater than the others with the smallest confidence
interval. In the second set of experiments, the probabilities of the CNNs were used to
train eight machine-learning classifiers. All scores were approximately similar, with the LR
bagging classifier being the highest, κ = 0.6758 ± 1.74%. Overall, the scores of the second
set of experiments were lesser than those of the first set of experiments. The third set of
experiments’ results were lesser than those achieved in the first and second experimental
sets. AdaBoost classifier scored the highest, κ = 0.6720 ± 1.78%. Overall, the best kappa
score achieved for the elbow images was achieved by taking the weighted average vote of
level-0 classifiers.

For wrist images, the best score achieved by a level-0 classifier was by the Xception
network, κ = 0.6127% ± 1.59%. To assess the performance of simple statistical metrics,
the predictions of the five CNNs were averaged, the majority vote was taken, and the
weighted average based on kappa scores was calculated. The highest score was achieved
by the weighted average of the level-0 classifiers, κ = 0.6556 ± 0.58%, which was greater
than the Xception network’s score. In the second set of experiments, the best performer
was the logistic regression classifier, κ = 0.6510 ± 1.06%. While this score was greater than
the level-0 classifiers’ scores, it was still less than the weighted average vote of the level-0
classifiers. The results of the third set of experiments were lesser than both the first and
second sets. Overall, in all experiments, the weighted average vote of the level-0 classifiers
yielded the best results for wrist images.

For forearm images, the best CNN was DenseNet, κ = 0.5592 ± 2.16%. To assess the
performance of simple statistical metrics, the predictions of the five CNNs were averaged,
the majority vote was taken, and the weighted average based on kappa scores was calcu-
lated. The weighted average votes achieved the highest score, κ = 0.5765 ± 1.85%. The
results achieved in the second set of experiments were better than those of the first set, with
the NB classifier achieving the highest kappa score, κ = 0.6195± 2%. The results achieved in
the third set of experiments were as high as the second set, with the NB classifier achieving
the highest kappa score as well, κ = 0.6201 ± 1.76%. Overall, the NB classifier using label
predictions achieved the best results for forearm images.

For hand images, the VGG19 network achieved the highest score among all CNNs,
κ = 0.4358 ± 1.68%. To assess the performance of simple statistical metrics, the predic-
tions of the five CNNs were averaged, the majority vote was taken, and the weighted
average based on kappa scores was calculated. The weighted average votes achieved the
highest score, κ = 0.4260 ± 2.30%. However, this score was less than the score achieved
by the VGG19 network. The results achieved in the second set of experiments were
better than those of the first set, with the NB classifier achieving the highest kappa
score, κ = 0.5029 ± 1.14%. The results achieved in the third set of experiments were

J. Imaging 2021, 7, 100 11 of 24

slightly lesser than the second set, with the NB classifier achieving the highest kappa
score, κ = 0.4962 ± 2.62%). Overall, the best result was achieved by an NB classifier
using probabilities.

For shoulder images, the best performing CNN was the VGG19 network,
κ = 0.4638 ± 2.49%. To assess the performance of simple statistical metrics, the predictions
of the five CNNs were averaged, the majority vote was taken, and the weighted average
based on kappa scores was calculated. The weighted average votes achieved the highest
score, κ = 0.4908 ± 2.19%. For the second set of experiments, the highest score was achieved
by the GBM classifier, κ = 0.5050 ± 2.09%. The GBM kappa score was greater than both the
level-0 classifiers and their average weight score. For the third set of experiments, the bagging
classifier achieved the highest score using logistic regression, κ = 0.4882 ± 2.30%. Overall,
the best classifier for shoulder images was the GBM classifier trained using probability scores.
Appendix A contains all the results for the expriments we performed.

4. Discussion

In this study, rather than relying on a single CNN classification, we investigated differ-
ent methods to combine the results of individual CNN networks (level-0 classifiers) in order
to classify musculoskeletal X-ray images. We first trained five different CNN networks,
then assessed their performance. Afterward, we combined their predictions by taking
an average of their votes, a weighted average of their votes, or by taking their majority
votes. We called this last step a meta-learner using statistics. Afterward, we examined
the eight different machine learning algorithms’ performance on top of the predictions
made by level-0 classifiers. Two different inputs were used to train the machine learning
algorithms—either the probability output of the level-0 classifiers or their label output. In
Table 2, we present the differences between the kappa scores of the best performing level-0
classifiers (CNNs) and those of the level-1 classifiers (machine learning algorithms).

Table 2. Difference between the percentage values of the Kappa score of the highest level-0 classifiers (CNNs) and the
Kappa score of the level-1 classifiers (machine learning algorithms).

Humerus Finger Elbow Wrist Forearm Hand Shoulder

Reference VGG19 DenseNet VGG19 Xception DenseNet VGG19 VGG19

Meta-Learner using Statistics

Average 5.77% 5.60% 8.17% 6.90% 2.28% −3.85% 5.31%
Majority Vote 5.12% 1.70% 7.36% 5.58% 0.73% −5.06% 4.54%

Weighted Average 5.77% 5.60% 8.30% 7.00% 3.11% −2.26% 5.84%

Meta-Learner using
Statistics Average 5.55% 4.30% 7.94% 6.49% 2.04% −3.72% 5.23%

Meta-Learner using probability

Logistic Regression 3.33% 13.60% 4.80% 6.24% 7.37% 10.49% 5.39%
Random Forest 2.09% 11.80% 3.28% 2.20% 6.78% 7.26% 5.33%

AdaBoost 0.22% 11.60% 3.22% 4.58% 3.57% 8.75% 7.41%
Bagging Classifier SVC 2.42% 8.80% 4.72% 6.04% 5.59% 5.54% 8.80%
Bagging Classifier SGD 2.80% 9.20% 4.66% 5.16% 9.02% 6.99% 5.73%
Bagging Classifier LR 2.88% 13.30% 5.00% 5.98% 7.37% 10.53% 4.85%

GBM 2.77% 13.90% 4.69% 5.03% 6.65% 11.81% 8.89%
Gaussian NB 4.90% 16.70% 4.57% 4.80% 10.79% 15.38% 7.98%

Meta-Learner using
Probability Average 2.68% 12.36% 4.37% 5.00% 7.14% 9.59% 6.80%

Max percentage 5.77% 16.70% 8.30% 7.00% 10.79% 15.38% 8.89%
Min percentage 0.22% 1.70% 3.22% 2.20% 0.73% −5.06% 4.54%

By comparing the meta-learners using statistics (MLUSs) across the seven different
datasets, we observed that their performance was usually better than any single CNN,

J. Imaging 2021, 7, 100 12 of 24

except for in the hand dataset, whose best-performing CNN (VGG19) achieved a better
score than the three combination methods. Across the three methods, the weighted average
achieved the best results. Even in the case of the hand dataset, it yielded a better score.
It is worth noting that the weights were measured based on kappa scores. The greatest
difference between the meta-learners using statistics and the best CNN occurred in the
elbow dataset, with an average difference of 8.30%. The least difference occurred in the
hand dataset, where the best CNN achieved better results than the combinations by an
average of 5.06%.

Comparing the meta-learners using probability (MLUPs) to level 0, we observed that
the MLUP classifiers achieved better results than the level-0 CNNs. The most signifi-
cant difference was spotted in the finger dataset, where the average increase was 12.36%
compared to level 0. The least difference occurred in the humerus dataset, in which the
average increase was 2.68% compared to level 0. Additionally, across the eight machine
learning algorithms, all achieved more accurate results than the best level-0 classifier. The
best achieving meta-classifier was NB for four datasets. Comparing MLUPs to MLUSs,
MLUPs achieved higher results than MLUSs for four datasets, and MLUSs achieved the
best results for the remaining three datasets. However, it is worth noting that for the hand
dataset, where the score of the best level-0 classifier achieved better results than all the
MLUSs, MLUPs achieved significantly better results than the MLUSs, with an average
9.59% increase in accuracy.

Comparing the meta-learners using labels (MLULs) to level-0 CNNs, we observed
that the MLUL meta-classifiers achieved better results than all level-0 CNNs. The most
significant difference was in the finger dataset, where the average increase was 8.78%
compared to level 0. The least difference occurred in the humerus dataset, where the
average increase was 0.61% compared to level 0. However, across the eight machine
learning algorithms, some scored lower than the highest level-0 classifiers, such as the SGD
bagging classifier for the humerus and shoulder datasets and the SVC bagging classifier
for the humerus dataset. The best meta-classifier was the NB classifier, as it achieved the
best results five times. Comparing MLULs to MLUSs, MLUSs achieved higher results than
MLULs for four datasets. The MLUSs achieved the best results for the remaining three
datasets. However, it is worth noting that for the hand dataset, where the score of the best
level-0 classifier achieved better results than all MLUSs, MLULs achieved significantly
better results than the MLUSs, with an average increase of 7.66%. Comparing MLUPs to
MLULs, MLUPs achieved better results than MLULs for all seven datasets.

From our results, it is clear that using stacking achieves better results than using any
single classifier on its own. This conclusion matches the results obtained by several works
presented in the literature [46]. One of the leading hypotheses for why stacking achieves
better results than any single classifier is that combining the outputs of different classifiers
can decrease each classifier’s error. This diversity is what makes stacking work [47,48],
whereas the underlying level-0 classifiers must be different from each other and must make
different errors. In our case, each CNN was different from the others both in its number of
parameters and its underlying architecture, so each CNN made different errors.

Regarding the computational power needed for each MLUS, MLUP, and MLUL, the
least was needed for the MLUSs. Here, no high computational power was needed since
the method is all about taking the average or the majority vote. However, for MLUPs and
MLULs, greater computational power was needed to train the machine learning algorithms.
Nevertheless, it is worth noting that the computational power needed for the machine
learning algorithm is less than the power needed to train CNNs by order of magnitude.
Full tables on computational requirements can be found in the annex.

Our choice of dataset was successful for two reasons. First, the dataset has seven
different types of images. Second, each of the seven datasets has a different size. Thus, it
was possible to compare our results across different types of images and different dataset
sizes. Based on our results, we conclude that stacking algorithms achieve higher results
than level-0 algorithms alone. MLUPs achieved better results than MLULs in all datasets.

J. Imaging 2021, 7, 100 13 of 24

Thus, we recommend using MLUPs over MLULs. However, further studies are needed to
compare MLUSs to MLUPs and determine which method is better.

Concerning other results presented in the literature, Kitamura et al. [19] investigated an
ensemble method’s performance built on three CNNs: InceptionV3, ResNet, and Xception.
They reported that using an ensemble (where the voting method was used to combine the
different CNNs’ outputs) achieved better results than using a single model. Moreover, they
investigated combining all the models versus combining only the best-achieving models.
The performance of the ensemble using all models was better than that of the ensemble
built on the best models only [19]. Both our study and Kitamura et al.’s [19] concluded that
an ensemble of different CNNs would yield better results than using a single CNN.

Chung et al. [11] used a single model (ResNet) to classify humerus fracture images.
They compared the performance of the single model to human experts. However, they
neither compared their model to other CNN models nor examined any ensemble models’
performance. Olczak et al. [13] compared five different CNN architectures and selected
the best model, which was the VGG16 network. They did not examine the performance of
any ensemble models. Similarly, Lindsey et al. [14] did not investigate the role of ensemble
learning and instead relied on simple learners.

The main difference between our study and Uysal et al.’s [15] is that we used all seven
different MURA datasets. Uysal et al. [15] used only the shoulder dataset. Thus, their results
cannot be generalized over the different types of fracture images. Additionally, compared
to Uysal et al. [15], we repeated each experiment 10 times to increase the significance of
our findings. On the other hand, Uysal et al. [15] provided no average results and only
presented their findings on a single model. They reported a kappa score exceeding our
highest score for the shoulder dataset; we might speculate that this is due to the fact that
they considered high-resolution images. All in all, considering the different experimental
settings between our work and Uysal et al.’s work, the results obtained for the shoulder
dataset are comparable.

The main difference between our study and Huynh et al.’s [17] is that we used all
seven MURA datasets, while Huynh et al. [17] used only the humerus dataset. Thus, in this
case as well, it is difficult to generalize their findings on all the different types of fracture
images. The authors compared their model’s validation accuracy score to the MURA
study’s kappa score [12]. Our score was comparable to that reported by Huynh et al. [17],
even if our image sizes were smaller than the sizes they considered. Our score for the
humerus dataset was κ = 0.6662 ± 1.60%, compared to κ = 0.684 reported by [17].

5. Conclusions

Using deep learning techniques in the emergency room can be very helpful for doctors
when detecting fractures. In particular, deep learning models can reduce the time needed
to classify fracture types. In this study, we discussed several ensemble techniques that can
be used to improve musculoskeletal fracture classification performance. In the first set of
experiments, we averaged the predictions of five CNNs, calculated a weighted average,
and took a majority vote among CNNs to assess the performance of simple statistical
metrics. In the second set of experiments, we investigated different machine learning
algorithms as meta-classifiers for stacking techniques trained on the probability output
of level-0 CNNs. In the third set of experiments, the meta-classifiers were trained on the
level-0 CNNs’ label output. From our results, we conclude that using stacking algorithms
achieves better results than using a single CNN.

However, MLUSs achieved better results than level-0 classifiers in six out of seven
datasets. MLUSs have no high computational power requirements. MLUPs and MLULs
achieved better results than level-0 classifiers in all datasets but required greater computa-
tional power. MLUPs achieved better accuracy than MLULs, so we conclude that MLUPs
are better than MLULs. Nevertheless, the question of whether MLUPs or MLUSs are more
accurate still requires further investigation.

J. Imaging 2021, 7, 100 14 of 24

Author Contributions: Conceptualization, I.K. and M.C.; methodology, I.K. and M.C.; software, I.K.;
validation, I.K. and M.C.; formal analysis, I.K.; investigation, I.K. and M.C.; resources, A.P.; data
curation, I.K.; writing—original draft preparation, I.K.; writing—review and editing, M.C. and A.P.;
visualization, I.K.; supervision, A.P. and M.C.; project administration, M.C.; funding acquisition, A.P.
and M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by national funds through the FCT (Fundação para a Ciência e a
Tecnologia) by the project GADgET (DSAIPA/DS/0022/2018) and the financial support from the
Slovenian Research Agency (research core funding no. P5-0410).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MURA dataset underlying this study is a publicly available dataset
available from arXiv:1712.06957.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The Kappa score achieved by each classifier of the test set for the humerus images (±Confidence Interval 95%).
Test performance is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 81.46% ± 1.22% 0.6299 ± 2.40% 81.57% ± 1.17% 78.49% ± 2.35% 77.57% ± 3.54% 85.57% ± 2.04%

InceptionV3 79.55% ± 1.39% 0.5918 ± 2.71% 79.66% ± 1.32% 76.73% ± 2.73% 75.54% ± 4.68% 83.79% ± 2.79%
ResNet50 76.67% ± 1.89% 0.5349 ± 3.67% 76.84% ± 1.80% 73.20% ± 3.21% 70.61% ± 5.82% 83.07% ± 3.32%
Xception 80.21% ± 1.30% 0.6045 ± 2.56% 80.27% ± 1.26% 78.29% ± 2.56% 78.04% ± 3.88% 82.50% ± 2.86%
DenseNet 78.68% ± 1.25% 0.5733 ± 2.50% 78.66% ± 1.25% 78.20% ± 1.90% 79.26% ± 2.72% 78.07% ± 2.62%

Meta-Learner using Statistics
Average 83.30% ± 0.81% 0.6662 ± 1.60% 83.36% ± 0.78% 81.27% ± 1.55% 81.28% ± 2.08% 85.43% ± 1.30%

Majority Vote 83.09% ± 0.84% 0.6621 ± 1.67% 83.15% ± 0.82% 80.93% ± 1.55% 80.88% ± 2.01% 85.43% ± 0.84%
Weighted
Average 83.30% ± 0.86% 0.6662 ± 1.69% 83.35% ± 0.83% 81.31% ± 1.60% 81.35% ± 2.10% 85.36% ± 1.08%

Meta-Learner using probability
Logistic

Regression 82.53% ± 0.66% 0.6508 ± 1.33% 82.58% ± 0.67% 80.78% ± 1.02% 81.01% ± 1.41% 84.14% ± 1.54%

RF Prop 82.15% ± 0.70% 0.6430 ± 1.40% 82.17% ± 0.69% 80.97% ± 1.18% 81.55% ± 1.48% 82.79% ± 0.92%
AdaBoost Prop 81.56% ± 0.79% 0.6312 ± 1.60% 81.59% ± 0.82% 80.20% ± 0.61% 80.74% ± 0.89% 82.43% ± 1.97%

Bagging
Classifier SVC 82.26% ± 0.72% 0.6451 ± 1.44% 82.28% ± 0.73% 81.00% ± 0.87% 81.55% ± 1.12% 83.00% ± 1.50%

Bagging
Classifier SGD 82.36% ± 0.55% 0.6475 ± 1.09% 82.42% ± 0.54% 80.24% ± 1.24% 80.20% ± 1.87% 84.64% ± 1.81%

Bagging
Classifier LR 82.40% ± 0.59% 0.6480 ± 1.17% 82.44% ± 0.59% 80.73% ± 0.98% 81.01% ± 1.43% 83.86% ± 1.67%

GBM 82.36% ± 0.79% 0.6473 ± 1.59% 82.39% ± 0.80% 80.82% ± 0.96% 81.22% ± 1.24% 83.57% ± 1.60%
Gaussian NB 83.02% ± 0.65% 0.6607 ± 1.28% 83.09% ± 0.64% 80.74% ± 1.03% 80.68% ± 1.37% 85.50% ± 0.99%

Meta-Learner using label
Logistic

Regression 82.08% ± 0.62% 0.6417 ± 1.25% 82.11% ± 0.63% 80.60% ± 0.92% 81.01% ± 1.30% 83.21% ± 1.57%

RF Label 81.60% ± 0.80% 0.6321 ± 1.60% 81.64% ± 0.79% 79.84% ± 1.25% 80.07% ± 1.63% 83.21% ± 1.28%
AdaBoost Label 82.01% ± 0.61% 0.6403 ± 1.22% 82.04% ± 0.61% 80.62% ± 0.99% 81.08% ± 1.40% 83.00% ± 1.67%

Bagging
Classifier SVC 80.73% ± 1.21% 0.6145 ± 2.43% 80.74% ± 1.22% 79.59% ± 1.35% 80.27% ± 1.56% 81.21% ± 1.79%

J. Imaging 2021, 7, 100 15 of 24

Table A1. Cont.

Accuracy Kappa AUC Precision Sensitivity Specificity

Bagging
Classifier SGD 81.01% ± 1.02% 0.6203 ± 2.04% 81.05% ± 1.02% 79.26% ± 1.50% 79.46% ± 2.00% 82.64% ± 1.82%

Bagging
Classifier LR 82.05% ± 0.64% 0.6410 ± 1.28% 82.08% ± 0.64% 80.46% ± 1.03% 80.81% ± 1.41% 83.36% ± 1.43%

GBM 81.67% ± 0.92% 0.6335 ± 1.83% 81.72% ± 0.91% 79.80% ± 1.40% 79.93% ± 1.85% 83.50% ± 1.41%
Gaussian NB 82.29% ± 1.01% 0.6462 ± 2.01% 82.37% ± 1.01% 79.80% ± 1.14% 79.59% ± 1.34% 85.14% ± 1.27%

Table A2. The Kappa score achieved by each classifier for the finger images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 67.77% ± 2.63% 0.3710 ± 4.83% 69.08% ± 2.41% 82.57% ± 2.69% 87.38% ± 2.94% 50.77% ± 6.05%

InceptionV3 67.25% ± 1.33% 0.3566 ± 2.41% 68.24% ± 1.17% 78.47% ± 3.26% 82.10% ± 4.73% 54.37% ± 5.47%
ResNet50 67.38% ± 1.82% 0.3605 ± 3.62% 68.49% ± 1.87% 79.80% ± 3.69% 84.11% ± 4.13% 52.87% ± 3.25%
Xception 69.74% ± 0.93% 0.4052 ± 1.68% 70.72% ± 0.82% 81.06% ± 1.85% 84.39% ± 2.74% 57.04% ± 3.45%
DenseNet 70.30% ± 1.90% 0.4168 ± 3.54% 71.31% ± 1.74% 82.15% ± 2.39% 85.42% ± 2.83% 57.21% ± 4.68%

Meta-Learner using Statistics
Average 71.41% ± 1.10% 0.4401 ± 2.01% 72.58% ± 0.98% 85.54% ± 1.11% 88.97% ± 1.33% 56.19% ± 2.81%

Majority Vote 70.54% ± 0.91% 0.4237 ± 1.68% 71.76% ± 0.83% 85.04% ± 1.55% 88.79% ± 1.60% 54.74% ± 2.45%
Weighted
Average 71.41% ± 1.05% 0.4401 ± 1.92% 72.58% ± 0.94% 85.54% ± 1.12% 88.97% ± 1.33% 56.19% ± 2.71%

Meta-Learner using probability
Logistic

Regression 73.36% ± 0.92% 0.4733 ± 1.83% 74.06% ± 0.93% 82.12% ± 1.42% 83.79% ± 1.59% 64.33% ± 1.35%

RF Prop 72.97% ± 1.06% 0.4660 ± 2.08% 73.71% ± 1.05% 82.09% ± 1.30% 83.79% ± 1.64% 62.63% ± 1.62%
AdaBoost Prop 72.97% ± 0.48% 0.4653 ± 0.98% 73.64% ± 0.52% 81.38% ± 1.26% 84.02% ± 1.31% 63.40% ± 1.37%

Bagging
Classifier SVC 72.30% ± 0.81% 0.4536 ± 1.55% 73.11% ± 0.77% 82.15% ± 1.26% 82.90% ± 1.93% 63.20% ± 1.61%

Bagging
Classifier SGD 72.39% ± 0.97% 0.4552 ± 1.81% 73.19% ± 0.88% 82.11% ± 1.07% 82.94% ± 1.55% 64.33% ± 1.03%

Bagging
Classifier LR 73.32% ± 0.87% 0.4724 ± 1.72% 74.01% ± 0.88% 82.04% ± 1.39% 83.88% ± 1.71% 62.51% ± 1.75%

GBM 73.47% ± 0.76% 0.4748 ± 1.52% 74.10% ± 0.77% 81.56% ± 1.08% 84.44% ± 1.59% 61.78% ± 1.92%
Gaussian NB 74.12% ± 1.23% 0.4862 ± 2.42% 74.62% ± 1.22% 80.91% ± 1.44% 82.43% ± 2.07% 62.71% ± 1.57%

Meta-Learner using label
Logistic

Regression 72.45% ± 0.84% 0.4560 ± 1.65% 73.21% ± 0.84% 81.73% ± 1.36% 83.79% ± 1.64% 62.63% ± 1.62%

RF Label 72.34% ± 0.95% 0.4533 ± 1.89% 73.05% ± 0.97% 81.08% ± 1.61% 84.02% ± 1.31% 63.40% ± 1.37%
AdaBoost Label 72.43% ± 0.83% 0.4556 ± 1.62% 73.19% ± 0.82% 81.80% ± 1.39% 82.90% ± 1.93% 63.20% ± 1.61%

Bagging
Classifier SVC 71.87% ± 1.12% 0.4439 ± 2.22% 72.57% ± 1.14% 80.54% ± 1.82% 82.94% ± 1.55% 64.33% ± 1.03%

Bagging
Classifier SGD 71.48% ± 1.43% 0.4367 ± 2.76% 72.23% ± 1.38% 80.50% ± 1.54% 83.88% ± 1.71% 62.51% ± 1.75%

Bagging
Classifier LR 72.49% ± 0.86% 0.4568 ± 1.67% 73.25% ± 0.85% 81.75% ± 1.36% 84.44% ± 1.59% 61.78% ± 1.92%

GBM 72.30% ± 0.95% 0.4525 ± 1.89% 73.01% ± 0.98% 81.09% ± 1.68% 82.43% ± 2.07% 62.71% ± 1.57%
Gaussian NB 73.49% ± 1.15% 0.4718 ± 2.24% 73.80% ± 1.11% 78.58% ± 1.29% 84.35% ± 1.52% 62.02% ± 2.50%

J. Imaging 2021, 7, 100 16 of 24

Table A3. The Kappa score achieved by each classifier for the elbow images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 82.21% ± 1.09% 0.6436 ± 2.19% 82.12% ± 1.10% 88.97% ± 2.06% 90.98% ± 2.01% 73.26% ± 2.70%

InceptionV3 80.62% ± 1.12% 0.6119 ± 2.25% 80.55% ± 1.12% 85.38% ± 2.37% 87.49% ± 2.62% 73.61% ± 2.16%
ResNet50 81.25% ± 1.08% 0.6243 ± 2.16% 81.16% ± 1.08% 86.95% ± 2.42% 89.06% ± 2.46% 73.26% ± 2.41%
Xception 82.19% ± 0.46% 0.6433 ± 0.91% 82.11% ± 0.46% 87.79% ± 2.26% 89.66% ± 2.32% 74.57% ± 2.29%
DenseNet 81.98% ± 1.05% 0.6390 ± 2.10% 81.91% ± 1.06% 86.74% ± 2.44% 88.47% ± 2.76% 75.35% ± 3.52%

Meta-Learner using Statistics
Average 84.83% ± 0.36% 0.6962 ± 0.73% 84.75% ± 0.37% 91.90% ± 0.92% 93.36% ± 0.85% 75.61% ± 1.45%

Majority Vote 84.58% ± 0.46% 0.6910 ± 0.94% 84.49% ± 0.47% 91.80% ± 0.87% 93.49% ± 0.90% 76.09% ± 1.29%
Weighted
Average 84.88% ± 0.33% 0.6970 ± 0.67% 84.79% ± 0.34% 92.00% ± 0.92% 87.66% ± 1.23% 79.74% ± 1.29%

Meta-Learner using probability
Logistic

Regression 83.74% ± 0.86% 0.6745 ± 1.71% 83.70% ± 0.86% 86.37% ± 1.17% 87.66% ± 1.23% 79.74% ± 1.29%

RF Prop 83.25% ± 1.02% 0.6647 ± 2.04% 83.21% ± 1.02% 85.65% ± 1.39% 86.94% ± 1.45% 79.48% ± 1.28%
AdaBoost Prop 83.23% ± 0.82% 0.6643 ± 1.64% 83.20% ± 0.82% 84.62% ± 1.01% 85.62% ± 1.09% 80.78% ± 1.27%

Bagging
Classifier SVC 83.72% ± 0.74% 0.6740 ± 1.49% 83.67% ± 0.74% 87.29% ± 1.30% 88.77% ± 1.35% 78.57% ± 0.96%

Bagging
Classifier SGD 83.70% ± 0.98% 0.6736 ± 1.97% 83.64% ± 0.98% 87.23% ± 1.64% 88.68% ± 1.66% 78.61% ± 1.50%

Bagging
Classifier LR 83.81% ± 0.87% 0.6758 ± 1.74% 83.77% ± 0.87% 86.36% ± 1.16% 87.62% ± 1.22% 79.91% ± 1.33%

GBM 83.70% ± 0.81% 0.6738 ± 1.63% 83.67% ± 0.81% 85.25% ± 1.08% 86.26% ± 1.12% 81.09% ± 0.72%
Gaussian NB 83.66% ± 0.79% 0.6730 ± 1.58% 83.65% ± 0.79% 84.00% ± 0.92% 84.55% ± 1.01% 82.74% ± 1.21%

Meta-Learner using label
Logistic

Regression 83.50% ± 0.81% 0.6699 ± 1.63% 83.47% ± 0.81% 85.59% ± 1.48% 86.72% ± 1.69% 80.22% ± 1.25%

RF Label 83.08% ± 0.93% 0.6612 ± 1.87% 83.03% ± 0.93% 85.93% ± 1.30% 87.36% ± 1.35% 78.70% ± 1.29%
AdaBoost Label 83.61% ± 0.89% 0.6720 ± 1.78% 83.58% ± 0.89% 85.53% ± 1.51% 86.60% ± 1.72% 80.57% ± 1.28%

Bagging
Classifier SVC 82.84% ± 0.99% 0.6564 ± 1.98% 82.79% ± 0.99% 85.88% ± 1.79% 87.32% ± 1.95% 78.26% ± 1.69%

Bagging
Classifier SGD 82.77% ± 1.06% 0.6551 ± 2.11% 82.73% ± 1.05% 85.69% ± 1.79% 87.11% ± 1.99% 78.35% ± 1.72%

Bagging
Classifier LR 83.55% ± 0.76% 0.6707 ± 1.53% 83.51% ± 0.76% 85.91% ± 1.41% 87.11% ± 1.68% 79.91% ± 1.49%

GBM 83.27% ± 0.66% 0.6651 ± 1.32% 83.23% ± 0.66% 85.62% ± 1.01% 86.89% ± 1.18% 79.57% ± 1.41%
Gaussian NB 82.56% ± 1.21% 0.6512 ± 2.41% 82.57% ± 1.20% 81.74% ± 1.65% 81.70% ± 2.01% 83.43% ± 1.16%

J. Imaging 2021, 7, 100 17 of 24

Table A4. The Kappa score achieved by each classifier for the wrist images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 80.53% ± 0.48% 0.6004 ± 0.99% 79.57% ± 0.52% 83.72% ± 2.11% 88.74% ± 2.10% 70.41% ± 2.49%

InceptionV3 80.02% ± 1.11% 0.5914 ± 2.16% 79.23% ± 1.00% 81.66% ± 2.80% 86.70% ± 2.82% 71.76% ± 2.14%
ResNet50 79.68% ± 1.18% 0.5830 ± 2.39% 78.73% ± 1.18% 82.63% ± 2.99% 87.86% ± 2.99% 69.59% ± 3.28%
Xception 81.15% ± 0.76% 0.6127 ± 1.59% 80.15% ± 0.82% 84.90% ± 1.94% 89.70% ± 1.84% 70.61% ± 2.50%
DenseNet 80.46% ± 0.86% 0.5984 ± 1.54% 79.44% ± 0.68% 84.63% ± 3.74% 89.18% ± 4.21% 69.69% ± 3.98%

Meta-Learner using Statistics
Average 83.25% ± 0.38% 0.6550 ± 0.72% 82.16% ± 0.32% 88.77% ± 1.78% 92.55% ± 1.51% 71.76% ± 1.38%

Majority Vote 82.87% ± 0.45% 0.6469 ± 0.86% 81.73% ± 0.39% 88.69% ± 1.87% 92.58% ± 1.57% 70.88% ± 1.38%
Weighted
Average 83.28% ± 0.30% 0.6556 ± 0.58% 82.19% ± 0.26% 88.82% ± 1.59% 92.61% ± 1.34% 71.76% ± 1.30%

Meta-Learner using probability
Logistic

Regression 82.97% ± 0.53% 0.6510 ± 1.06% 82.10% ± 0.51% 86.25% ± 1.36% 90.41% ± 1.26% 73.80% ± 1.25%

RF Prop 81.79% ± 0.68% 0.6262 ± 1.37% 80.84% ± 0.65% 85.23% ± 1.34% 89.95% ± 1.71% 73.22% ± 1.66%
AdaBoost Prop 82.49% ± 0.65% 0.6408 ± 1.33% 81.58% ± 0.66% 85.82% ± 0.97% 89.89% ± 1.06% 71.80% ± 0.73%

Bagging
Classifier SVC 83.02% ± 0.43% 0.6497 ± 0.85% 81.85% ± 0.39% 89.23% ± 1.33% 91.51% ± 1.30% 72.03% ± 1.06%

Bagging
Classifier SGD 82.69% ± 0.59% 0.6444 ± 1.16% 81.71% ± 0.54% 86.78% ± 1.67% 90.22% ± 0.74% 72.95% ± 0.93%

Bagging
Classifier LR 82.90% ± 0.52% 0.6494 ± 1.04% 82.03% ± 0.50% 86.15% ± 1.31% 89.67% ± 1.78% 73.39% ± 1.63%

GBM 82.63% ± 0.53% 0.6436 ± 1.12% 81.72% ± 0.57% 86.03% ± 1.01% 93.05% ± 1.06% 70.64% ± 0.83%
Gaussian NB 82.50% ± 0.51% 0.6421 ± 1.04% 81.74% ± 0.51% 84.62% ± 0.96% 91.29% ± 2.02% 70.75% ± 1.37%

Meta-Learner using label
Logistic

Regression 82.46% ± 0.58% 0.6404 ± 1.15% 81.58% ± 0.55% 85.63% ± 1.80% 89.95% ± 1.71% 73.22% ± 1.66%

RF Label 82.79% ± 0.59% 0.6462 ± 1.18% 81.77% ± 0.55% 87.38% ± 1.56% 89.89% ± 1.06% 71.80% ± 0.73%
AdaBoost Label 82.38% ± 0.60% 0.6390 ± 1.19% 81.53% ± 0.56% 85.33% ± 1.84% 91.51% ± 1.30% 72.03% ± 1.06%

Bagging
Classifier SVC 82.09% ± 0.70% 0.6315 ± 1.35% 81.02% ± 0.59% 86.99% ± 2.36% 90.22% ± 0.74% 72.95% ± 0.93%

Bagging
Classifier SGD 81.59% ± 0.92% 0.6225 ± 1.86% 80.69% ± 0.91% 84.57% ± 1.73% 89.67% ± 1.78% 73.39% ± 1.63%

Bagging
Classifier LR 82.41% ± 0.49% 0.6394 ± 0.99% 81.53% ± 0.48% 85.59% ± 1.58% 93.05% ± 1.06% 70.64% ± 0.83%

GBM 82.64% ± 0.67% 0.6430 ± 1.33% 81.62% ± 0.61% 87.21% ± 1.74% 91.29% ± 2.02% 70.75% ± 1.37%
Gaussian NB 81.52% ± 0.80% 0.6236 ± 1.59% 80.96% ± 0.76% 81.79% ± 1.76% 90.99% ± 1.43% 72.44% ± 1.07%

J. Imaging 2021, 7, 100 18 of 24

Table A5. The Kappa score achieved by each classifier for the forearm images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 75.38% ± 1.27% 0.5081 ± 2.55% 75.43% ± 1.28% 85.94% ± 3.50% 89.53% ± 3.48% 61.32% ± 2.78%

InceptionV3 75.12% ± 2.19% 0.5028 ± 4.36% 75.16% ± 2.18% 85.23% ± 2.59% 89.40% ± 1.79% 60.93% ± 3.19%
ResNet50 77.14% ± 1.82% 0.5432 ± 3.64% 77.18% ± 1.82% 86.83% ± 4.25% 89.73% ± 3.90% 64.64% ± 2.11%
Xception 76.35% ± 1.56% 0.5274 ± 3.11% 76.40% ± 1.55% 89.73% ± 1.67% 93.00% ± 1.53% 59.80% ± 3.98%
DenseNet 77.94% ± 1.08% 0.5592 ± 2.16% 77.98% ± 1.08% 87.54% ± 2.14% 90.47% ± 2.04% 65.50% ± 2.91%

Meta-Learner using statistics
Average 78.57% ± 1.02% 0.5719 ± 2.04% 78.63% ± 1.02% 92.73% ± 0.85% 94.47% ± 0.78% 61.92% ± 2.29%

Majority Vote 78.14% ± 1.09% 0.5633 ± 2.18% 78.19% ± 1.09% 91.87% ± 1.02% 95.00% ± 0.75% 62.72% ± 2.29%
Weighted
Average 78.80% ± 0.93% 0.5765 ± 1.85% 78.86% ± 0.93% 92.71% ± 0.88% 93.93% ± 1.18% 66.16% ± 2.39%

Meta-Learner using probability
Logistic

Regression 80.00% ± 0.88% 0.6004 ± 1.76% 80.05% ± 0.88% 91.74% ± 1.30% 93.93% ± 1.18% 66.16% ± 2.39%

RF Prop 79.83% ± 1.19% 0.5971 ± 2.38% 79.88% ± 1.19% 91.70% ± 1.48% 94.00% ± 1.10% 65.76% ± 1.79%
AdaBoost Prop 78.94% ± 0.96% 0.5791 ± 1.91% 78.98% ± 0.96% 89.85% ± 1.27% 92.53% ± 1.07% 65.43% ± 1.76%

Bagging
Classifier SVC 79.50% ± 1.32% 0.5904 ± 2.64% 79.55% ± 1.32% 92.00% ± 1.56% 94.27% ± 1.30% 64.83% ± 2.88%

Bagging
Classifier SGD 80.47% ± 0.98% 0.6096 ± 1.96% 80.50% ± 0.98% 90.21% ± 1.58% 92.40% ± 1.62% 68.61% ± 2.82%

Bagging
Classifier LR 80.00% ± 1.04% 0.6004 ± 2.08% 80.05% ± 1.04% 91.89% ± 1.30% 94.07% ± 1.16% 66.03% ± 2.70%

GBM 79.80% ± 1.14% 0.5964 ± 2.28% 79.84% ± 1.14% 90.08% ± 1.31% 92.53% ± 1.12% 67.15% ± 2.14%
Gaussian NB 80.96% ± 1.00% 0.6195 ± 2.00% 81.00% ± 1.00% 89.03% ± 1.18% 91.20% ± 1.05% 70.79% ± 1.71%

Meta-Learner using label
Logistic

Regression 79.47% ± 0.97% 0.5897 ± 1.93% 79.51% ± 0.96% 90.75% ± 1.01% 93.20% ± 0.97% 65.83% ± 2.49%

RF Label 79.93% ± 1.21% 0.5990 ± 2.42% 79.98% ± 1.21% 90.33% ± 1.45% 92.67% ± 1.35% 67.28% ± 3.04%
AdaBoost Label 79.44% ± 0.93% 0.5891 ± 1.85% 79.48% ± 0.92% 90.26% ± 1.80% 92.67% ± 1.87% 66.29% ± 2.78%

Bagging
Classifier SVC 78.97% ± 1.43% 0.5797 ± 2.87% 79.01% ± 1.43% 88.57% ± 2.71% 91.07% ± 2.76% 66.95% ± 3.39%

Bagging
Classifier SGD 79.53% ± 1.31% 0.5910 ± 2.62% 79.57% ± 1.31% 88.39% ± 2.50% 90.73% ± 2.60% 68.41% ± 3.44%

Bagging
Classifier LR 79.30% ± 0.88% 0.5864 ± 1.76% 79.35% ± 0.88% 90.11% ± 1.91% 92.53% ± 2.01% 66.16% ± 2.90%

GBM 80.10% ± 0.84% 0.6023 ± 1.68% 80.14% ± 0.84% 90.60% ± 1.51% 92.87% ± 1.42% 67.42% ± 2.55%
Gaussian NB 81.00% ± 0.88% 0.6201 ± 1.76% 81.02% ± 0.88% 87.05% ± 0.76% 89.07% ± 0.75% 72.98% ± 1.81%

J. Imaging 2021, 7, 100 19 of 24

Table A6. The Kappa score achieved by each classifier for the hand images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 74.59% ± 0.69% 0.4358 ± 1.68% 70.28% ± 0.84% 85.33% ± 1.65% 94.43% ± 0.83% 46.14% ± 1.98%

InceptionV3 70.93% ± 1.13% 0.3473 ± 3.01% 66.00% ± 1.50% 81.40% ± 2.99% 93.69% ± 1.63% 38.31% ± 4.0%
ResNet50 71.37% ± 1.67% 0.3603 ± 4.84% 66.76% ± 2.49% 80.66% ± 3.51% 92.62% ± 2.88% 40.90% ± 7.45%
Xception 73.17% ± 1.60% 0.3940 ± 4.39% 68.09% ± 2.27% 90.08% ± 3.23% 96.61% ± 1.9% 39.58% ± 6.18%
DenseNet 72.48% ± 1.58% 0.3810 ± 4.06% 67.54% ± 2.01% 85.56% ± 2.44% 95.24% ± 1.12% 39.84% ± 4.55%

Meta-Learner using statistics
Average 74.17% ± 1.02% 0.4190 ± 2.60% 69.26% ± 1.31% 88.02% ± 4.54% 96.83% ± 0.43% 41.69% ± 2.95%

Majority Vote 73.98% ± 1.04% 0.4138 ± 2.63% 68.99% ± 1.31% 90.48% ± 1.16% 96.97% ± 0.52% 41.01% ± 2.88%
Weighted
Average 74.43% ± 0.91% 0.4260 ± 2.30% 69.61% ± 1.16% 89.98% ± 1.02% 96.68% ± 0.47% 42.54% ± 2.57%

Meta-Learner using probability
Logistic

Regression 76.43% ± 0.73% 0.4815 ± 1.56% 72.60% ± 0.72% 85.87% ± 2.11% 94.10% ± 1.01% 51.11% ± 0.95%

RF Prop 75.72% ± 0.89% 0.4675 ± 2.00% 72.02% ± 0.97% 83.23% ± 1.91% 94.58% ± 1.06% 48.52% ± 1.58%
AdaBoost Prop 75.98% ± 0.48% 0.4740 ± 0.99% 72.35% ± 0.45% 83.33% ± 1.78% 92.77% ± 0.97% 51.27% ± 1.72%

Bagging
Classifier SVC 75.65% ± 0.87% 0.4600 ± 1.93% 71.42% ± 0.91% 87.44% ± 2.58% 94.46% ± 0.87% 49.58% ± 1.75%

Bagging
Classifier SGD 75.85% ± 1.16% 0.4663 ± 2.58% 71.79% ± 1.21% 86.34% ± 2.91% 92.69% ± 1.01% 52.01% ± 1.01%

Bagging
Classifier LR 76.43% ± 0.72% 0.4817 ± 1.52% 72.62% ± 0.70% 85.75% ± 2.12% 94.61% ± 1.04% 48.52% ± 1.58%

GBM 76.57% ± 0.81% 0.4873 ± 1.86% 73.01% ± 0.93% 84.04% ± 1.46% 95.17% ± 1.16% 47.67% ± 1.58%
Gaussian NB 76.96% ± 0.57% 0.5029 ± 1.14% 74.07% ± 0.51% 80.63% ± 1.66% 94.91% ± 0.85% 48.10% ± 1.91%

Meta-Learner using label
Logistic

Regression 75.65% ± 0.63% 0.4614 ± 1.42% 71.55% ± 0.69% 86.33% ± 2.21% 94.58% ± 1.06% 48.52% ± 1.58%

RF Label 76.02% ± 0.62% 0.4706 ± 1.48% 72.02% ± 0.74% 86.30% ± 1.72% 92.77% ± 0.97% 51.27% ± 1.72%
AdaBoost Label 75.67% ± 0.59% 0.4619 ± 1.35% 71.57% ± 0.66% 86.41% ± 2.13% 94.46% ± 0.87% 49.58% ± 1.75%

Bagging
Classifier SVC 75.67% ± 0.87% 0.4611 ± 2.02% 71.50% ± 0.99% 86.89% ± 1.94% 92.69% ± 1.01% 52.01% ± 1.01%

Bagging
Classifier SGD 75.85% ± 0.74% 0.4659 ± 1.73% 71.77% ± 0.86% 86.62% ± 2.28% 94.61% ± 1.04% 48.52% ± 1.58%

Bagging
Classifier LR 75.70% ± 0.66% 0.4626 ± 1.51% 71.61% ± 0.74% 86.29% ± 2.23% 95.17% ± 1.16% 47.67% ± 1.58%

GBM 76.15% ± 0.62% 0.4739 ± 1.47% 72.19% ± 0.74% 86.32% ± 1.83% 94.91% ± 0.85% 48.10% ± 1.91%
Gaussian NB 76.37% ± 1.29% 0.4962 ± 2.62% 74.03% ± 1.22% 76.96% ± 2.77% 94.54% ± 1.29% 49.05% ± 1.78%

J. Imaging 2021, 7, 100 20 of 24

Table A7. The Kappa score achieved by each classifier for the shoulder images (±Confidence Interval 95%). Test performance
is reported.

Accuracy Kappa AUC Precision Sensitivity Specificity

Base-Learner
VGG19 73.21% ± 1.26% 0.4638 ± 2.49% 73.17% ± 1.23% 75.09% ± 3.09% 77.12% ± 4.49% 69.21% ± 3.18%

InceptionV3 69.38% ± 2.18% 0.3888 ± 4.35% 69.48% ± 2.18% 66.27% ± 2.13% 61.23% ± 4.10% 77.73% ± 3.64%
ResNet50 70.67% ± 2.30% 0.4145 ± 4.53% 70.76% ± 2.25% 68.19% ± 3.61% 63.89% ± 6.53% 77.63% ± 2.52%
Xception 70.98% ± 1.73% 0.4207 ± 3.43% 71.08% ± 1.71% 67.78% ± 2.23% 63.12% ± 3.81% 79.03% ± 1.95%
DenseNet 72.61% ± 1.39% 0.4527 ± 2.73% 72.66% ± 1.35% 70.90% ± 2.83% 68.88% ± 4.99% 76.44% ± 3.10%

Meta-Learner using statistics
Average 74.39% ± 1.10% 0.4884 ± 2.17% 74.45% ± 1.08% 71.69% ± 1.66% 69.12% ± 2.85% 79.78% ± 1.71%

Majority Vote 74.21% ± 1.29% 0.4848 ± 2.57% 74.27% ± 1.28% 71.73% ± 1.88% 69.40% ± 3.19% 79.14% ± 1.88%
Weighted
Average 74.51% ± 1.10% 0.4908 ± 2.19% 74.57% ± 1.09% 71.94% ± 1.69% 69.58% ± 2.89% 79.57% ± 1.66%

Meta-Learner using probability
Logistic

Regression 74.42% ± 1.32% 0.4887 ± 2.63% 74.45% ± 1.31% 72.87% ± 1.54% 72.04% ± 1.95% 76.87% ± 0.95%

RF Prop 74.44% ± 0.82% 0.4885 ± 1.64% 74.41% ± 0.82% 75.14% ± 0.97% 76.70% ± 1.17% 72.12% ± 1.24%
AdaBoost Prop 74.90% ± 1.28% 0.4981 ± 2.56% 74.91% ± 1.28% 74.14% ± 1.62% 74.21% ± 2.07% 75.61% ± 1.46%

Bagging
Classifier SVC 75.24% ± 1.21% 0.5045 ± 2.42% 75.22% ± 1.20% 75.75% ± 1.75% 76.98% ± 2.12% 73.45% ± 0.88%

Bagging
Classifier SGD 74.51% ± 1.80% 0.4903 ± 3.58% 74.52% ± 1.78% 73.85% ± 2.79% 73.68% ± 3.94% 75.36% ± 1.23%

Bagging
Classifier LR 74.30% ± 1.30% 0.4863 ± 2.58% 74.33% ± 1.29% 72.70% ± 1.57% 71.79% ± 2.05% 76.87% ± 0.96%

GBM 75.26% ± 1.05% 0.5050 ± 2.09% 75.24% ± 1.04% 75.42% ± 1.28% 76.42% ± 1.48% 74.06% ± 1.11%
Gaussian NB 75.03% ± 0.88% 0.5008 ± 1.75% 75.05% ± 0.87% 73.59% ± 1.14% 72.95% ± 1.59% 77.16% ± 0.93%

Meta-Learner using label
Logistic

Regression 74.17% ± 1.26% 0.4839 ± 2.50% 74.22% ± 1.24% 72.17% ± 1.93% 70.56% ± 3.00% 77.91% ± 1.24%

RF Label 74.19% ± 1.24% 0.4839 ± 2.45% 74.20% ± 1.22% 73.72% ± 2.12% 73.02% ± 2.93% 74.78% ± 1.17%
AdaBoost Label 73.00% ± 2.14% 0.4606 ± 4.24% 73.05% ± 2.10% 71.33% ± 3.43% 70.54% ± 3.03% 77.91% ± 1.24%

Bagging
Classifier SVC 74.30% ± 1.31% 0.4863 ± 2.60% 74.34% ± 1.29% 72.51% ± 1.75% 73.89% ± 3.07% 74.50% ± 1.63%

Bagging
Classifier SGD 74.05% ± 1.23% 0.4810 ± 2.45% 74.05% ± 1.22% 73.54% ± 1.95% 69.33% ± 5.41% 76.76% ± 1.90%

Bagging
Classifier LR 74.39% ± 1.15% 0.4882 ± 2.30% 74.43% ± 1.15% 72.39% ± 1.40% 71.26% ± 2.55% 77.41% ± 0.96%

GBM 74.17% ± 1.26% 0.4839 ± 2.50% 74.22% ± 1.24% 72.17% ± 1.93% 73.75% ± 2.78% 74.35% ± 1.51%
Gaussian NB 74.19% ± 1.24% 0.4839 ± 2.45% 74.20% ± 1.22% 73.72% ± 2.12% 70.95% ± 2.19% 77.91% ± 2.04%

Table A8. The percentage difference between the Kappa score of the highest level-0 classifiers (CNNs) to the Kappa score of
the level-1 classifiers (machine learning algorithms). Test performance is reported.

Humerus Finger Elbow Wrist Forearm Hand Shoulder

Reference VGG19 DenseNet121 VGG19 Xception DenseNet121 VGG19 VGG19

Meta-Learner using Statistics
Average 5.77% 5.60% 8.17% 6.90% 2.28% −3.85% 5.31%

Majority Vote 5.12% 1.70% 7.36% 5.58% 0.73% −5.06% 4.54%
Weighted Average 5.77% 5.60% 8.30% 7.00% 3.11% −2.26% 5.84%

Meta-Learner using Statistics
Average 5.55% 4.30% 7.94% 6.49% 2.04% −3.72% 5.23%

Meta-Learner using probability
Logistic Regression 3.33% 13.60% 4.80% 6.24% 7.37% 10.49% 5.39%

RF Prop 2.09% 11.80% 3.28% 2.20% 6.78% 7.26% 5.33%
AdaBoost Prop 0.22% 11.60% 3.22% 4.58% 3.57% 8.75% 7.41%

Bagging Classifier SVC Prop 2.42% 8.80% 4.72% 6.04% 5.59% 5.54% 8.80%

J. Imaging 2021, 7, 100 21 of 24

Table A8. Cont.

Humerus Finger Elbow Wrist Forearm Hand Shoulder

Reference VGG19 DenseNet121 VGG19 Xception DenseNet121 VGG19 VGG19

Bagging Classifier SGD Prop 2.80% 9.20% 4.66% 5.16% 9.02% 6.99% 5.73%
Bagging Classifier LR Prop 2.88% 13.30% 5.00% 5.98% 7.37% 10.53% 4.85%

GBM Prop 2.77% 13.90% 4.69% 5.03% 6.65% 11.81% 8.89%
Gaussian NB Prop 4.90% 16.70% 4.57% 4.80% 10.79% 15.38% 7.98%

Meta-Learner using
Probability Average 2.68% 12.36% 4.37% 5.00% 7.14% 9.59% 6.80%

Meta-Learner using label
Logistic Regression 1.88% 9.40% 4.09% 4.51% 5.47% 5.88% 4.43%

RF Label 0.36% 8.80% 2.73% 5.46% 7.13% 7.98% 3.05%
AdaBoost Label 1.66% 9.30% 4.41% 4.29% 5.35% 5.97% 4.35%

Bagging Classifier SVC Label −2.44% 6.50% 1.99% 3.06% 3.68% 5.79% 4.33%
Bagging Classifier SGD Label −1.52% 4.80% 1.79% 1.60% 5.69% 6.91% −0.69%
Bagging Classifier LR Label 1.78% 9.60% 4.21% 4.35% 4.87% 6.14% 4.87%

GBM Label 0.58% 8.60% 3.34% 4.95% 7.72% 8.73% 3.72%
Gaussian NB Label 2.60% 13.20% 1.18% 1.78% 10.90% 13.86% 5.26%

Meta-Learner using label
Average 0.61% 8.78% 2.97% 3.75% 6.35% 7.66% 3.67%

Max percentage 5.77% 16.70% 8.30% 7.00% 10.90% 15.38% 8.89%
Min percentage −2.44% 1.70% 1.18% 1.60% 0.73% −5.06% −0.69%

Table A9. The Average Training Time.

Humerus Finger Elbow Wrist Forearm Hand Shoulder

Meta-Learner using Statistics
VGG19 8 Min 40 Min 53 Min 103 Min 18 Min 86 Min 109 Min

InceptionV3 11 Min 32 Min 39 Min 91 Min 15 Min 64 Min 71 Min
ResNet50 9 Min 50 Min 48 Min 106 Min 20 Min 61 Min 69 Min
Xception 8 Min 38 Min 42 Min 73 Min 18 Min 41 Min 67 Min
DenseNet 10 Min 56 Min 47 Min 92 Min 18 Min 58 Min 78 Min

Meta-Learner using probability
Logistic Regression 2 S 2 S 2 S 2 S 2 S 2 S 2 S

RF Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S
AdaBoost Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S

Bagging Classifier SVC Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Bagging Classifier SGD Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Bagging Classifier LR Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S

GBM Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Gaussian NB Prop 2 S 2 S 2 S 2 S 2 S 2 S 2 S

Meta-Learner using label
Logistic Regression 2 S 2 S 2 S 2 S 2 S 2 S 2 S

RF Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S
AdaBoost Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S

Bagging Classifier SVC Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Bagging Classifier SGD Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Bagging Classifier LR Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S

GBM Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S
Gaussian NB Label 2 S 2 S 2 S 2 S 2 S 2 S 2 S

J. Imaging 2021, 7, 100 22 of 24

Table A10. The Average Testing Time.

Humerus Finger Elbow Wrist Forearm Hand Shoulder

Meta-Learner using Statistics
VGG19 8 S 9 S 11 S 15 S 7 S 9 S 12 S

InceptionV3 6 S 9 S 9 S 14 S 7 S 13 S 10 S
ResNet50 7 S 12 S 12 S 14 S 7 S 10 S 9 S
Xception 8 S 9 S 10 S 12 S 6 S 10 S 9 S
DenseNet 14 S 12 S 18 S 19 S 10 S 17 S 12 S

Meta-Learner using probability
Logistic Regression 1 S 1 S 1 S 1 S 1 S 1 S 1 S

RF Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S
AdaBoost Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S

Bagging Classifier SVC Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Bagging Classifier SGD Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Bagging Classifier LR Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S

GBM Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Gaussian NB Prop 1 S 1 S 1 S 1 S 1 S 1 S 1 S

Meta-Learner using label
Logistic Regression 1 S 1 S 1 S 1 S 1 S 1 S 1 S

RF Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S
AdaBoost Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S

Bagging Classifier SVC Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Bagging Classifier SGD Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Bagging Classifier LR Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S

GBM Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S
Gaussian NB Label 1 S 1 S 1 S 1 S 1 S 1 S 1 S

References
1. Brinker, M.R.; O’Connor, D.P. The Incidence of Fractures and Dislocations Referred for Orthopaedic Services in a Capitated

Population. JBJS 2004, 86, 290–297. [CrossRef]
2. Curtis, E.M.; van der Velde, R.; Moon, R.J.; van den Bergh, J.P.W.; Geusens, P.; de Vries, F.; van Staa, T.P.; Cooper, C.; Harvey, N.C.

Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic
status. Bone 2016, 87, 19–26. [CrossRef]

3. NIH Consensus Development Panel on Osteoporosis Prevention and Therapy, D. Osteoporosis Prevention, Diagnosis, and
Therapy. JAMA 2001, 285, 785–795. [CrossRef]

4. Scott, E.M.; Gaywood, I.; Scott, B.B. Guidelines for osteoporosis in coeliac disease and inflammatory bowel disease. British Society
of Gastroenterology. Gut 2000, 46 (Suppl. 1), i1–i8. [CrossRef]

5. Dell, R.; Greene, D.; Schelkun, S.R.; Williams, K. Osteoporosis Disease Management: The Role of the Orthopaedic Surgeon. JBJS
2008, 90, 188–194. [CrossRef]

6. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice, 7th ed.; Courtney, M.T., Jr., Eds.; Elsevier Saunders:
Philadelphia, PA, USA, 2004.

7. Cummings, P.; Koepsell, T.D.; Mueller, B.A. Methodological Challenges in Injury Epidemiology and Injury Prevention Research.
Annu. Rev. Public Health 1995, 16, 381–400. [CrossRef] [PubMed]

8. Barton, N.J. Twenty Questions about Scaphoid Fractures. J. Hand Surg. Am. 1992, 17, 289–310. [CrossRef]
9. Gäbler, C.; Kukla, C.; Breitenseher, M.J.; Trattnig, S.; Vécsei, V. Diagnosis of occult scaphoid fractures and other wrist injuries.

Langenbeck’s Arch. Surg. 2001, 386, 150–154. [CrossRef]
10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
11. Chung, S.W.; Han, S.S.; Lee, J.W.; Oh, K.-S.; Kim, N.R.; Yoon, J.P.; Kim, J.Y.; Moon, S.H.; Kwon, J.; Lee, H.-J.; et al. Automated

detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018, 89, 468–473.
[CrossRef] [PubMed]

12. Rajpurkar, P.; Irvin, J.; Bagul, A.; Ding, D.Y.; Duan, T.; Mehta, H.; Yang, B.J.; Zhu, K.; Laird, D.; Ball, R.L.; et al. MURA: Large
Dataset for Abnormality Detection in Musculoskeletal Radiographs. arXiv 2017, arXiv:1712.06957.

13. Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A.S.; Jilert, A.; Stark, A.; Sköldenberg, O.; Gordon, M. Artificial intelligence for
analyzing orthopedic trauma radiographs. Acta Orthop. 2017, 88, 581–586. [CrossRef]

14. Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; et al.
Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [CrossRef]

15. Uysal, F.; Hardalaç, F.; Peker, O.; Tolunay, T.; Tokgöz, N. Classification of Shoulder X-ray Images with Deep Learning Ensemble
Models. Appl. Sci. 2021, 11, 2723. [CrossRef]

http://doi.org/10.2106/00004623-200402000-00011
http://doi.org/10.1016/j.bone.2016.03.006
http://doi.org/10.1001/jama.285.6.785
http://doi.org/10.1136/gut.46.suppl_1.I1
http://doi.org/10.2106/JBJS.H.00628
http://doi.org/10.1146/annurev.pu.16.050195.002121
http://www.ncbi.nlm.nih.gov/pubmed/7639878
http://doi.org/10.1016/0266-7681(92)90118-L
http://doi.org/10.1007/s004230000195
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1080/17453674.2018.1453714
http://www.ncbi.nlm.nih.gov/pubmed/29577791
http://doi.org/10.1080/17453674.2017.1344459
http://doi.org/10.1073/pnas.1806905115
http://doi.org/10.3390/app11062723

J. Imaging 2021, 7, 100 23 of 24

16. Guan, B.; Zhang, G.; Yao, J.; Wang, X.; Wang, M. Arm fracture detection in X-rays based on improved deep convolutional neural
network. Comput. Electr. Eng. 2020, 81, 106530. [CrossRef]

17. Huynh, H.X.; Nguyen, H.B.T.; Phan, C.A.; Nguyen, H.T. Abnormality Bone Detection in X-Ray Images Using Convolutional Neural
Network BT—Context-Aware Systems and Applications, and Nature of Computation and Communication; Vinh, P.C., Rakib, A., Eds.;
Springer International Publishing: Cham, The Netherlands, 2021; pp. 31–43.

18. Urinbayev, K.; Orazbek, Y.; Nurambek, Y.; Mirzakhmetov, A.; Varol, H.A. End-to-End Deep Diagnosis of X-ray Images. In
Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Montréal, QC, Canada, 20–24 July 2020; pp. 2182–2185.

19. Kitamura, G.; Chung, C.Y.; Moore, B.E. Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble
Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. J. Digit. Imaging 2019, 32, 672–677.
[CrossRef] [PubMed]

20. Chouhan, V.; Singh, S.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damasevicius, R.; Albuquerque, V. A Novel Transfer
Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Appl. Sci. 2020, 10, 559. [CrossRef]

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

23. Rajaraman, S.; Candemir, S.; Xue, Z.; Alderson, P.; Thoma, G.; Antani, S. A Novel Stacked Model Ensemble for Improved TB Detection
in Chest Radiographs; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–26. ISBN 9780429029417.

24. Cha, D.; Pae, C.; Seong, S.-B.; Choi, J.Y.; Park, H.-J. Automated diagnosis of ear disease using ensemble deep learning with a big
otoendoscopy image database. EBioMedicine 2019, 45, 606–614. [CrossRef]

25. Kandel, I.; Castelli, M.; Popovič, A. Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning.
J. Imaging 2020, 6, 127. [CrossRef]

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
27. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

28. Huang, G.; Liu, Z.; Maaten, L.v.d.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

29. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEEConference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

30. Längkvist, M.; Karlsson, L.; Loutfi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.
Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]

31. Joshi, D.; Singh, T.P. A survey of fracture detection techniques in bone X-ray images. Artif. Intell. Rev. 2020, 53, 4475–4517.
[CrossRef]

32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.B. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 Jun 2016;
pp. 2818–2826.

33. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
34. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Zhu, J.; Zou, H.; Rosset, S.; Hastie, T. Multi-class AdaBoost. Stat. Interface 2009, 2, 49–360.
36. Friedman, J. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
37. Zhang, R.; Li, W.; Tan, W.; Mo, T. Deep and Shallow Model for Insurance Churn Prediction Service. In Proceedings of the 2017

IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017; pp. 346–353.
38. Rish, I. An Empirical Study of the Naïve Bayes Classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in

Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; Volume 3, pp. 41–46.
39. Wolpert, D. Stacked generalization. Neural Netw. 1992, 5, 241–259, ISSN 0893-6080. [CrossRef]
40. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
41. Kandel, I.; Castelli, M. How deeply to fine-tune a convolutional neural network: A case study using a histopathology dataset.

Appl. Sci. 2020, 10, 3359. [CrossRef]
42. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Int. Conf. Learn. Represent. 2014, arXiv:1412.6980.
43. Rajaraman, S.; Siegelman, J.; Alderson, P.O.; Folio, L.S.; Folio, L.R.; Antani, S.K. Iteratively Pruned Deep Learning Ensembles for

COVID-19 Detection in Chest X-Rays. IEEE Access 2020, 8, 115041–115050. [CrossRef] [PubMed]
44. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;

Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus PhotographsAccuracy of a Deep Learning Algorithm for Detection of Diabetic RetinopathyAccuracy of a Deep Learning
Algorithm for Detection of Di. JAMA 2016, 316, 2402–2410. [CrossRef] [PubMed]

45. Cumming, G. Introduction to the New Statistics; Calin-Jageman, R., EBSCOhost, Eds.; Routledge: New York, NY, USA, 2016;
ISBN 9781315708607.

http://doi.org/10.1016/j.compeleceng.2019.106530
http://doi.org/10.1007/s10278-018-0167-7
http://www.ncbi.nlm.nih.gov/pubmed/31001713
http://doi.org/10.3390/app10020559
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1016/j.ebiom.2019.06.050
http://doi.org/10.3390/jimaging6110127
http://doi.org/10.1016/j.patrec.2014.01.008
http://doi.org/10.1007/s10462-019-09799-0
http://doi.org/10.1007/BF00058655
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/S0167-9473(01)00065-2
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.1177/001316446002000104
http://doi.org/10.3390/app10103359
http://doi.org/10.1109/ACCESS.2020.3003810
http://www.ncbi.nlm.nih.gov/pubmed/32742893
http://doi.org/10.1001/jama.2016.17216
http://www.ncbi.nlm.nih.gov/pubmed/27898976

J. Imaging 2021, 7, 100 24 of 24

46. Ganaie, M.; Hu, M.; Tanveer, M.; Suganthan, P. Ensemble deep learning: A review. arXiv 2021, arXiv:2104.02395.
47. Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012;

ISBN 1439830037.
48. Ting, K.M.; Witten, I.H. Stacked Generalization: When Does It Work? Computer Science Working Papers; Department of Computer

Science, University of Waik: Hamilton, ON, Canada, 1997.

	Introduction
	Materials and Methods
	Conventional Neural Networks
	VGG19 Network
	InceptionV3 Network
	Resnet Network
	Xception Network
	Densenet Network

	Machine Learning Algorithms
	Logistic Regression
	Bagging and Random Forests
	AdaBoost
	Gradient Boosting Machine
	Naïve Bayes

	Stacking
	Evaluation Metrics
	Accuracy
	Kappa Score

	Dataset

	Results
	Discussion
	Conclusions
	
	References

