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Abstract: Developing efficient and economical catalysts for NO reduction is of great interest. Herein,
the catalytic reduction of NO molecules on an Al-decorated C2N monolayer (Al-C2N) is systematically
investigated using density functional theory (DFT) calculations. Our results reveal that the Al-C2N
catalyst is highly selective for NO, more so than CO, according to the values of the adsorption energy
and charge transfer. The NO reduction reaction more preferably undergoes the (NO)2 dimer reduction
process instead of the NO direct decomposition process. For the (NO)2 dimer reduction process, two
NO molecules initially co-adsorb to form (NO)2 dimers, followed by decomposition into N2O and
Oads species. On this basis, five kinds of (NO)2 dimer structures that initiate four reaction paths are
explored on the Al-C2N surface. Particularly, the cis-(NO)2 dimer structures (Dcis-N and Dcis-O) are
crucial intermediates for NO reduction, where the max energy barrier along the energetically most
favorable pathway (path II) is as low as 3.6 kcal/mol. The remaining Oads species on Al-C2N are then
easily reduced with CO molecules, being beneficial for a new catalytic cycle. These results, combined
with its low-cost nature, render Al-C2N a promising catalyst for NO reduction under mild conditions.

Keywords: NO catalytic reduction; C2N monolayer; Al-C2N catalyst; nitric oxide; DFT calculation

1. Introduction

The increasing emission of nitrogen oxides (NOx) has brought serious harm to the
atmospheric environment and human health [1–3]. Nitric oxide (NO), which comprises
approximately 95% of NOx emissions, is considered a major cause of acid rain and photo-
chemical smog formation [4]. Selective catalytic reduction (SCR) is a promising method
that typically selects CO [5–9], H2 [8–11], or NH3 [12] as the reducing agent to eliminate
emitted NO. Since CO and NO commonly coexist in exhaust gases, the catalytic reduction
of NO with CO as a reducing agent can simultaneously convert CO and NO pollutants into
harmless N2 and acceptable CO2. Noble metal catalysts such as Pt, Au, or Pd have been
extensively studied; however, there are problems, such as high cost, low abundance, and
toxicity [13–16]. Thus, it is of utmost importance to design high-efficiency and low-cost
alternative catalysts to remove or reduce NO molecules.

Reducing the particle size of active metals to a few atoms is a valuable strategy to
improve catalytic activity [17–20]. Compared to traditional catalysts, single-atom catalysts
can greatly decrease the amount of metal used, thereby reducing costs. In particular,
single-atom catalysts have been proven to efficiently catalyze or adsorb various harmful
gas molecules, such as NO [21–25], CO [23,25], H2S [26], and SO2 [27]. Recently, a two-
dimensional (2D) graphene porous material, a C2N monolayer, was successfully prepared
via a simple wet chemical reaction [28]. This novel material with a uniform pore distribution
has attracted much attention due to its large surface area and good structural stability. Given
the uniform cavity structure of C2N, it has been demonstrated to be a suitable material
for anchoring metal atoms. Previous studies have shown that metal-atom-decorated C2N
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monolayers can efficiently trap small gas molecules. For example, Ma et al. proposed
3D transition-metal-modified C2N as a promising candidate for the low-temperature CO
oxidation reaction [29]. Anikina et al. reported that metal-decorated C2N monolayers
have high storage capacities for H2 [30]. Furthermore, several studies reported that single
metal-atom-anchored C2N monolayers can also act as effective catalysts for N2 reduction,
oxygen reduction, and hydrogen evolution reactions [31–35].

The metal aluminum is environmentally friendly, inexpensive, and abundant in stor-
age. Previous work has shown that decoration with Al atoms can significantly improve
the adsorption capacity of 2D materials [36–44]. Specifically, Al-doped graphene showed a
good adsorption ability for small molecules, such as N2O, NO2, SO3, and CO2 [36–40,43].
The Al-embedded C2N was shown to be a prospective candidate to adsorb and degrade
volatile organic compounds, mainly due to a strong electronic transfer between the ad-
sorbed molecules and Al atoms [41,42]. Strong adsorption properties of NO2 and NH3
molecules were also observed in Al-MoS2 [44].

Inspired by these findings, we investigated the reaction mechanism of the NO reduc-
tion with CO molecules on an Al-C2N monolayer based on density functional theory (DFT)
calculations. The geometries of reactants, transition states, and products, as well as reaction
energies, were calculated in detail. The key intermediates and preferred reaction pathways
for NO reduction on Al-C2N were further identified. The catalytic reactivity of Al-C2N was
also compared with other catalytic materials to evaluate the possibility of using Al-C2N as
a catalyst for NO reduction.

2. Computational Methods

All DFT calculations were carried out at the level of the B3LYP exchange–correlation
functional with Grimme’s DFT-D3 empirical dispersion correction using the Gaussian09
software package [45–48]. Previous literature confirmed that the B3LYP functional with
DFT-D3 is a reasonable condition for calculating intermolecular non-covalent interac-
tions [49]. The 6-31G(d, p) basis set was used to describe all atoms [50]. A pristine C2N
cluster model in this study contained 37 carbon atoms, 12 nitrogen atoms, and 12 hydrogen
atoms. All the energies were corrected with zero-point vibrational energy (ZPE). Vibration
frequency calculations were performed to verify the optimized structure, where the mini-
mum structure had no imaginary frequency, and the transition state only had one imaginary
frequency. Intrinsic reaction coordinate (IRC) calculations were used to verify the transi-
tion states [51–53]. Atomic charges were discussed with the natural bond orbital (NBO)
analysis [54]. Electron density difference (EDD) plots were obtained with the Multiwfn
program [55]. For each adsorption configuration, the EDD plots were calculated as:

∆ρ = ρA/S − ρA − ρS (1)

where ρA/S, ρA, and ρS are the electron density of the total complexes, isolated substrate,
and isolated adsorbate, respectively.

The adsorption energy (Eads) of a given adsorbate was defined as:

Eads= Etotal − EA − ES (2)

where Etotal, EA, and ES are the energies of the total adsorbate-substrate systems, isolated
adsorbate, and isolated substrate, respectively.

The change in Gibbs free energy (∆G) was defined as:

∆G = ∆H− T∆S (3)

where ∆H and ∆S represent the enthalpy with a zero-point energy correction and the
entropy change at 298.15 K, respectively.
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3. Results and Discussion
3.1. Geometrical Structures and Stability of Pristine C2N and Al-C2N Monolayer

Firstly, we examined the geometric structure and stability of the designed Al-C2N. The
optimized structure of the pristine C2N cluster is shown in Figure 1a. The calculated lattice
parameter of 8.286 Å was consistent with the experiment result (8.30 Å) [28]. Then, a single
Al atom was attached to the C2N cluster via two adjacent N atoms (shown in Figure 1b),
with both bond lengths being 1.939 Å, in which the Al atom was more preferably anchored
at the corners of the six-fold cavity of the C2N. The calculated bond length value was in
line with the previously periodic system-reported results (1.96 Å) [56]. EDD plots revealed
a sizeable interaction area between the Al atom and its two adjacent N atoms. It is worth
mentioning that the modification of the Al atoms could effectively change the surface
properties of the C2N monolayer. As shown in Figure 1c,d, the uniformly distributed
charge on the C2N monolayer changed to a directional concentrated distribution, which
was essential for the subsequent adsorption of gas molecules.
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Figure 1. Optimized structures of the (a) pristine C2N cluster and (b) Al-C2N monolayer, respectively.
Electron density difference plots (in 0.002 au) for (c) pristine C2N and (d) Al-C2N, respectively. Blue
and yellow parts represent charge accumulation and depletion, respectively. All bond lengths are
in Å.

To evaluate the thermal stability of the designed Al-C2N systems, we carried out MD
simulations at 300 K and 500 K for 8 ps with a time step of 2 fs under the NVT ensemble (see
Figure S1 in the Supplementary Materials). According to the MD simulations, the energies
of the Al-C2N system fluctuated gently, suggesting its high thermodynamic stability.

3.2. Adsorption Behavior of NO and CO Molecules on Al-C2N Surface

The stable configurations of CO and NO adsorbed on the Al-C2N surface are displayed
in Figure 2. Table 1 summarizes the corresponding adsorption parameters for the NO and
CO molecules, including the Eads, ∆G, and charge transfer values. Note that all the calcu-
lated ∆G values of the CO or NO molecules adsorbed on the Al-C2N surface were negative,
suggesting that the adsorption of these species was thermodynamically spontaneous.
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Table 1. Calculated adsorption energies (Eads, kcal/mol), adsorption free energies (∆G, kcal/mol),
and net charge-transfer values (q, e) for different adsorption species on the Al-C2N surface, along
with the corresponding energy barriers (Ea, kcal/mol) and reaction energies (∆Er) for a single NO or
(NO)2 dimer reduction on Al-C2N surface.

Adsorbate Eads ∆G q 1 Ea Path ∆Er

CO −21.8 −11.4 0.083 - - -
NO (O-end) −7.4 −4.1 −0.337 - - -
NO (N-end) −29.2 −17.8 −0.430 68.0 - 41.1

Dring −109.7 −86.3 −1.377 33.5 (43.1) Ia (Ib) 23.2 (−67.7)
Dcis-N −53.1 −31.8 −0.672 3.6 II −8.6
Dcis-O −61.7 −39.9 −0.731 2.7 II −24.8

Dtrans-N −73.8 −52.3 −1.303 16.5 III −12.7
Dtrans-O −62.0 −40.0 −0697 12.7 IV −24.5

1 Positive and negative values of q correspond to the net charge transfer from the adsorbate to the Al-C2N and the
net charge transfer from the Al-C2N surface to the adsorbate, respectively.

The adsorption geometries of the NO, CO, and (NO)2 dimers on Al-C2N are shown in
Figure 2. For the NO molecules, two possible adsorption modes (including N-end and O-
end) were investigated. From Figure 2a,b, it can be seen that the NO molecules were tilted
concerning the Al-C2N surface, consistent with previous reports [24,57,58]. As evident, the
calculated N-O bond lengths of the NO molecules were elongated to 1.203 Å and 1.213 Å,
respectively, when compared with the free NO molecule (1.160 Å). The Eads values for the N-
end and O-end adsorption modes were −29.2 and −7.4 kcal/mol, respectively, which was
more negative than the values in Si-doped graphene (−18.4 and −4.4 kcal/mol) [57]. From
the viewpoint of adsorption energy, it is clear that the N-end adsorption was energetically
more favorable than the O-end. This result was also supported by the NBO charge analysis,
in which the N-end mode was accompanied by a larger charge transfer of 0.430 e from the
Al-C2N surface to the 2π* orbital of the NO molecule (Table 1).

As for the CO molecules, our results demonstrated that CO preferred to adsorb on
the Al-C2N surface via its C-end. Figure 2c demonstrates that the C-O bond length of
CO was nearly unchanged compared to that of the free CO molecule (1.14 Å), indicating
that CO was not activated after being adsorbed on the Al-C2N surface. Based on the Eads
value, the adsorption of CO (−21.8 kcal/mol) on Al-C2N was weaker than that of NO
(−29.2 kcal/mol). In this case, it was expected that the tendency of the NO molecule to
adsorb onto the Al-C2N surface was greater than that of CO. Unlike the NO molecules, CO
acted as the electron donor, where the charge value transferred from the CO molecule to
the Al-C2N surface was 0.083 e (Table 1).
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Next, we considered the (NO)2 dimer configuration formed by two NO molecules
co-adsorbed on the Al-C2N surface. The (NO)2 dimer was characterized for the first time by
Dinerman and Ewing using infrared spectroscopy [59]. The stable (NO)2 dimer adsorption
configurations are illustrated in Figure 2d–h. The IR spectra plots of five (NO)2 dimers on
the Al-C2N surface are displayed in Figure S2. As can be seen, five different (NO)2 dimers
were obtained on the Al-C2N surface.

Figure 2d shows a five-membered ring (NO)2 dimer structure (labeled as Dring), in
which both NO molecules were bound to the Al site through their O-end. The bond
lengths of the two formed Al-O bonds and the N1-N2 bond were 1.788, 1.770, and 1.248 Å,
respectively. This structure was similar to that of Si-doped graphene (1.783, 1.762, and
1.240 Å for two Si-O bonds and the N1-N2 bond) [60]. Figure 2e,g display the cis- and
trans-(NO)2 dimer structures at the N-end (labeled as Dcis-N and Dtrans-N), respectively, in
which one NO molecule was adsorbed into the Al site via its N-end and two NO molecules
were bound through N-N bonds. The calculated bond lengths of the N1-N2 bond were
1.469 and 1.286 Å, respectively. It is noteworthy that two novel (NO)2 dimer structures
were explored in this work, which have not been reported in current catalysts [57,59,61–64].
Figure 2f,h correspond to two novel cis- and trans-(NO)2 dimer structures at the O-end
(labeled as Dcis-O and Dtrans-O) with N1-N2 bond lengths of 1.240 and 1.254 Å, respectively.
Among the above (NO)2 dimers, the calculated N1-N2 bond lengths ranged from 1.505 to
1.233 Å, which were much shorter than the value in the gas phase (NO)2 dimer (1.970 Å).
As shown in Table 1, the calculated adsorption energies of the five (NO)2 dimers on the
Al-C2N surface were significantly enhanced, with values of −109.7, −53.1, −61.7, −73.8,
and −62.0 kcal/mol, respectively, which were larger than twice that of a NO molecule
(−29.2 kcal/mol). This indicated that the addition of the second NO molecule was beneficial
for strengthening the interaction between the catalyst and NO molecule. Similar results
were further verified with the NBO charge analysis, where the considerable charge-transfer
values from the Al-C2N surface to (NO)2 dimers were −1.377, −0.672, −0.731, −1.303, and
−0697, respectively (Table 1).

3.3. NO Reduction Mechanism on Al-C2N Surface

Here, the NO reduction mechanism mainly included the direct decomposition process
and the (NO)2 dimer reduction process. For the former, a NO molecule was directly
decomposed into O and N atoms. For the latter, two NO molecules were co-adsorbed
forming (NO)2 dimers, followed by their decomposition into N2O molecules and O atoms.
Subsequently, the N2O molecules were desorbed, and the remaining O atoms could be
removed with the NO or CO molecules.

3.3.1. NO Direct Decomposition Process

Figure 3 shows the energy profile of the NO direct decomposition process on Al-
C2N, where the energy sum of Al-C2N and free NO molecules was set as the reference
energy. As seen, the reaction began with the NO molecule adsorbed on Al-C2N via its
N-end. In the TS structure, the calculated O-N bond length of the NO molecule was
elongated from 1.215 Å to 2.420 Å. In the FS structure, the O-N bond was broken and the
distance between the O and N atoms was 3.292 Å. Our results showed that the NO direct
decomposition process was unfavorable both in kinetics and thermodynamics due to the
high reaction energy barrier (68.0 kcal/mol) and endothermic nature (41.1 kcal/mol), which
agreed withprevious reports, such as Si-doped graphene (39.2 kcal/mol) [24], Si-doped BN
nanosheets (57.9 kcal/mol) [60], and Fe-doped graphene (124.1 kcal/mol) [25].
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3.3.2. (NO)2 Dimer Reduction Process

In this section, we examined the possible reaction pathways of the (NO)2 dimer
reduction process on Al-C2N. There were four reaction pathways starting with different
(NO)2 dimer structures described as path I, path II, path III, and path IV, respectively. For
simplicity, the remaining oxygen atoms on the Al-C2N surface were labeled as Oads.

In path Ia, the five-membered ring (NO)2 dimer structure (Dring) was the initial state.
The energy profile and corresponding minima state and transition state are displayed
in Figure 4a. As can be seen, the Dring structure could be decomposed into the product
(N2O + Oads) through the transition state with a high-energy barrier of 33.5 kcal/mol. In
the TS structure, the N2-O2 bond broke with the bond length increasing from 1.398 to
2.364 Å, while the N1-N2 bond length decreased from 1.248 to 1.141 Å. The entire process
from Dring to the FS structure was endothermic by 23.2 kcal/mol. Given the high reaction
barrier and endothermicity, it was expected that the Dring dimer reduction on Al-C2N was
unfavorable both kinetically and thermodynamically.

In path Ib, a two-step reaction was identified: (i) (NO)2 → N2 + 2Oads, followed by
(ii) CO + Oads → CO2. As shown in Figure 4b, the Dring structure was taken as the initial
state and, subsequently, CO was physisorbed over Al-C2N to form an intermediate state
(the MS1 structure). In the TS1 structure, two N-O bonds broke with the bond lengths
increasing to 1.880 and 1.978 Å, respectively, while the N1-N2 bond length was shortened
to 1.144 Å. Next, N2 was completely formed in the MS2 structure. In the next step, CO
approached the O1 atom. The O1···C bond’s length reduced from 2.859 to 2.152 Å and,
finally, formed the CO2 molecule. Note that the energy barriers of the first and second steps
were 43.1 and 1.6 kcal/mol, respectively, which could be provided by the larger exothermic
reaction energy (−67.7 kcal/mol, from Dring to FS).

In path II, the reaction started with the co-adsorption of two NO molecules to generate
a cis-(NO)2 dimer (N-end, Dcis-N) structure, as shown in Figure 5. As seen, this step
had a negligible energy barrier and was exothermic by 17.3 kcal/mol. Then, the Dcis-N
structure could be converted to the more stable cis-(NO)2 dimer (O-end, Dcis-O) structure
by overcoming a small energy barrier of 3.6 kcal/mol, being exothermic by 8.6 kcal/mol.
Finally, the Dcis-O structure decomposed into the product (N2O and Oads species) through
TS2 by breaking the N1-O1 bond. In the TS2 structure, the N1-O1 distance significantly
elongated from 1.469 to 1.659 Å, while the N1-N2 distance decreased from 1.240 to 1.207 Å.
We note that there was a negligible energy barrier for this step (2.7 kcal/mol), which was
exothermic by 24.8 kcal/mol. Since the entire reaction was a highly exothermic process
(−50.7 kcal/mol, from IS to FS), it was thermodynamically feasible under mild conditions.
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In path III, the trans-(NO)2 dimer structure (N-end, Dtrans-N) was considered the
starting point for the NO reduction on Al-C2N. From Figure 6a, one could see that the NO
molecule bonded with the Al site through the N-end, whereas another NO molecule was
weakly physisorbed on the surface, with the distance between the N1 and N2 atoms being
2.445 Å. The co-adsorption energy of 2NO was −35.6 kcal/mol. Next, the Dtrans-N structure
was formed through a barrierless process. In this structure, the calculated N1-N2 bond was
shortened to 1.286 Å, while the N2-O2 bond was extended to 1.451 Å. In the TS structure,
the N2-O2 bond was significantly extended from 1.451 to 2.604 Å. Finally, the N2-O2 bond
was completely broken, forming N2O and Oads moieties. This path revealed a high reaction
barrier of 16.5 kcal/mol and was exothermic by 12.7 kcal/mol. Figure 6b exhibits path IV,
starting from the trans-(NO)2 dimer structure (O-end, Dtrans-O). In this path, 2NO molecules
formed the Dtrans-O structure through an extremely low-energy barrier (1.6 kcal/mol). Then,
the N1-O1 bond length was significantly extended from 1.374 Å in the Dtrans-O structure
to 1.696 Å in the TS2 structure. The energy barrier for this step was 12.7 kcal/mol, which
could be provided by the exothermic reaction energy (−24.5 kcal/mol).
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According to our results, it was found that the NO reduction preferred to proceed via
the (NO)2 dimer reduction process. First, the Eads values of the (NO)2 dimers were much
larger than that of the single NO molecule. Second, the (NO)2 dimer reduction process
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was thermodynamically and kinetically more favorable than the NO direct decomposition
process. Based on the energy barriers (Ea) and reaction energies (∆Er), the NO dimer
reduction on the Al-C2N surface could occur via path II and path IV (Table 1). Path II was
energetically the most favorable pathway with the max energy barrier for the (NO)2 →
N2O + Oads reaction of only 3.6 kcal/mol, which was even smaller than the values in noble
metal catalysts, such as Pd-BNNS (14.9 kcal/mol) [58], Au (8.1 kcal/mol) [65], and Ag
(6.2 kcal/mol) [66]. These results implied that the Al-C2N catalyst exhibited good catalytic
activity towards the NO reduction.

After the N2O desorption, the remaining Oads atom could be removed with the NO or
CO molecules. In our previous work, we revealed that Al-C2N could serve as a promising
catalyst for N2O reduction to environmentally friendly N2 molecules [67]. Figure 7 shows
the reaction pathways of Oads + NO→NO2 and Oads + CO→ CO2 on Al-C2N, respectively.
Our results showed that Oads + NO→ NO2 was an endothermic process (7.5 kcal/mol),
and quite a high-energy barrier (15.5 kcal/mol) required to be surmounted. As seen in
Figure 7b, the Oads + CO→ CO2 reaction was an exothermic process, and an energy barrier
of only 6.6 kcal/mol was needed for Al-C2N, which was smaller than the value for Pt-
graphene (13.4 kcal/mol) [68]. This meant that CO2 molecules were more likely to form on
the Al-C2N catalyst in the existence of NO molecules.
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4. Conclusions

In this work, we investigated the NO reduction over low-cost Al-C2N catalysts us-
ing DFT calculations in detail. According to the adsorption energy and charge transfer
values, the adsorption of NO on the catalyst was significantly stronger than that of CO,
which suggested that the Al-C2N catalyst was more selective to NO than CO. For the NO
reduction mechanism, our results showed that the NO direct decomposition process was
barely possible due to the extremely high-energy barrier and endothermicity. In contrast,
the catalysis of the NO reduction via the (NO)2 dimer reduction process was both ther-
modynamically and kinetically favorable. It was found that cis-(NO)2 dimer structures
were key intermediates for the NO reduction, where the calculated max barriers along the
most energetically favorable pathway (path II) was only 3.6 kcal/mol. The remaining Oads
species on Al-C2N could be eliminated with CO molecules, which required overcoming
the energy barriers of only 6.6 kcal/mol. Overall, Al-C2N is expected to be a promising
catalyst for NO reduction with CO.
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