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Abstract Objective The presence of respiratory informa-

tion within the pulse oximeter signal (PPG) is a well-docu-

mented phenomenon. However, extracting this information

for the purpose of continuously monitoring respiratory rate

requires: (1) the recognition of the multi-faceted manifes-

tations of respiratory modulation components within the

PPG and the complex interactions among them; (2) the

implementation of appropriate advanced signal processing

techniques to take full advantage of this information; and (3)

the post-processing infrastructure to deliver a clinically

useful reported respiratory rate to the end user. A holistic

algorithmic approach to the problem is therefore required.

We have developed the RROXI algorithm based on this

principle and its performance on healthy subject trial data is

described herein.

Methods Finger PPGs were collected from a cohort of 139

healthy adult volunteers monitored during free breathing

over an 8-min period. These were subsequently processed

using a novel in-house algorithm based on continuous

wavelet transform technology within an infrastructure

incorporating weighted averaging and logical decision

making processes. The computed oximeter respiratory rates

(RRoxi) were then compared to an end-tidal CO2 reference

rate (RRETCO2
).

Results RRETCO2
ranged from a lowest recorded value of

2.97 breaths per min (br/min) to a highest value of 28.02 br/

min. The mean rate was 14.49 br/min with standard deviation

of 4.36 br/min. Excellent agreement was found between

RRoxi and RRETCO2
, with a mean difference of -0.23 br/min

and standard deviation of 1.14 br/min. The two measures are

tightly spread around the line of agreement with a strong

correlation observable between them (R2 = 0.93).

Conclusions These data indicate that RRoxi represents a

viable technology for the measurement of respiratory rate

of healthy individuals.
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1 Introduction

Respiratory rate (RR) is recognized as an important clinical

parameter which, in practice, is measured in a number of

different ways depending upon the clinical setting. The

measurement may be performed continuously—for exam-

ple using end-tidal CO2 (ETCO2) monitors, EKG-based

trans-thoracic impedance (TTI) systems, nasal thermistors,

abdominal and chest bands—or intermittently—for exam-

ple using manual counting during patient observation.

Continuous measurements involve specialized and/or

obtrusive equipment and hence RR is normally available

from these devices only when they have been specified for

another clinical purpose. In contrast, manual counting is a

methodology that clearly eludes these technological issues.

However, it is an intermittent spot check made during

patient observation and not a continuous measurement.
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Therefore, there remains a clear clinical need for an

alternative automated, continuous methodology for the

calculation of RR. An ideal solution would be one that is

continuous, non-invasive, simple to operate and unobtru-

sive to the patient.

One such technology candidate that is already currently

accepted in clinical practice is pulse oximetry. Recent

evidence indicates that the measurement of respiratory rate

from the pulse oximeter signal, or photoplethysmogram

(PPG), may be possible. Indeed, numerous groups have

previously demonstrated that respiratory-related fluctua-

tions in the PPG signal are both physiologically plausible

and their measurement, technically attainable. Technical

solutions to their measurement include: inspection of the

respiratory oscillations in the filtered PPG [7, 9, 16–19];

frequency spectra-based approaches [10, 21] independent

component analysis [22] Short-Time Fourier Analysis

(STFT) [20]; neural networks [8]; variable frequency

complex demodulation methods (VFCDM) [2, 4]; autore-

gressive models [5, 6, 11]; and approaches based on the

continuous wavelet transform (CWT) by our own group

[3, 12–15]. These studies have ranged in cohort size from 4

to 36 subjects and have comprised a wide range of subject

types including healthy adult volunteers, patients under-

going abdominal procedures, chest clinic patients, children,

and neonates. Protocols have included subjects breathing

freely, subjects asked to breathe at a specified rate or rates,

and mechanically ventilated patients. A range of RR veri-

fication signals have also been used including nasal

thermistors, facemask flowmeters, ETCO2 signals, TTI

signals, chest and abdominal bands, manual counting by an

observer and manual self-counting by the patient. Thus,

there is now a considerable body of evidence supporting

the potential feasibility of such a monitoring technology.

Despite these previous efforts, to date, a viable meth-

odology meeting the aforementioned desired criteria for a

respiratory rate monitoring device has yet to be developed.

However, this cumulative body of evidence strongly sug-

gests the possibility that deriving both pulse oximetry and

RR from a single combined sensing system may represent

an effective solution. A technological approach providing

these metrics from a single sensor would yield tremendous

clinical utility in an efficient manner. Therefore, the pur-

pose of this study was to develop a robust algorithm to

extract respiratory rate from a standard pulse oximetry

system. To this end, we have further developed our CWT-

based methods to a point where they are now incorporated

within a fully-functional algorithm tailored to mimic

operation on a monitoring hardware platform. This paper

emphasizes the holistic approach to the development of an

algorithm which will provide a robust determination of

Respiratory Rate of clinically relevance to the end user.

This requires a strong pre-processing module feeding into a

core method of information extraction (the Analysis

Engine), from which a value is determined and fed into a

post-processing methodology fit for purpose. Particular

emphasis in the algorithmic design has been placed on the

weighted averaging and logical decision making processes

required to determine the validity of the computed rate and

its use in updating the respiratory rate that would be

reported to the clinical end-user. The algorithm has been

developed using patient data from a wide range of clinical

settings and healthy volunteer data. As part of the algo-

rithm validation process we have tested its performance on

data from a large-scale, in-house study of healthy adult

volunteers. Results from this study are reported herein.

2 Methods and materials

2.1 The respiratory rate algorithm

The ‘‘text-book’’ depiction of the PPG signal used in pulse

oximetry for the computation of oxygen saturation (SpO2)

is one where a repeating smooth, double-humped, cardiac

‘pulse’ waveform sits on top of a large constant baseline

component (often called the DC component). This is

depicted in Fig. 1a. However, in practice this is often not the

case and, in fact, both the cardiac pulse and baseline com-

ponents can vary quite significantly over time. This varia-

tion is caused by a variety of factors including, for example:

vasomotion/compliance effects, changes in venous pooling

related to heart rate/cardiac output variations, blood pres-

sure changes and, of course, respiratory modulations. In

standard pulse oximetry, these variations are commonly

filtered out to isolate the cardiac (arterial) pulse component

for the purpose of determining SpO2. However, we can

exploit these variations to measure RR from the PPG signal.

Respiratory activity may cause the PPG to modulate in

three fundamental ways. These are:

(1) Baseline (DC) modulation: Changes in venous return

secondary to changes in intrathoracic pressure throughout

the respiratory cycle cause a baseline DC modulation of the

PPG signal. During inspiration, decreases in intrathoracic

pressure result in a small decrease in central venous pres-

sure increasing venous return. The opposite occurs during

expiration. As more blood is shunted from the low pressure

venous system at the probe site and the venous bed cycli-

cally fills and drains, the baseline is modulated accordingly

(Fig. 1b).

(2) Pulse amplitude modulation: Decreased left ven-

tricular stroke volume, due to changes in intrathoracic

pressure during inspiration, leads to decreased pulse

amplitude during this phase of respiration (Fig. 1c).

(3) Respiratory sinus arrhythmia (RSA): This is a vari-

ation in heart rate that occurs throughout the respiratory
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cycle. Specifically, it has been well-documented that heart

rate increases during inspiration and decreases during

expiration. The presence of RSA is influenced by several

factors including age, disease status, and physical fitness.

While the precise mechanisms of RSA remain controver-

sial, in general, it is a result of autonomic nervous system

activity fluctuation during respiration Fig. 1d.

For the purposes of RR computation, we do not filter out

the respiratory effects on the PPG; rather these erstwhile

‘‘artefacts’’ become useful signals. The extraction of respi-

ratory components is particularly challenging as they are

generally more subtle in form (i.e. of lower amplitude and

less well defined) than the cardiac pulse signal components

used in the determination of SpO2. In addition, the three

main respiratory modulations described in the previous

section may be present in varying degrees across the patient

population. In fact for some patients only one modulation

type may be clearly observed; while in other patients two

types may be detected; still other patients can be observed to

exhibit all three types of modulation. This is a critically

important point, and answers the question why many pre-

vious methods, which have focused on deriving respiratory

rate from a single modulation type, have failed to make it

to a commercial implementation. A further challenge is

that respiratory components often appear concurrently

with a range of other low frequency artifact due, for exam-

ple, to patient movement, vasomotion or blood pressure

changes. Extraction of respiration information from the PPG

therefore requires significantly advanced signal processing

capabilities coupled with a full awareness of the character of

respiratory modulations within the PPG.

We have developed a powerful signal processing meth-

odology that can extract respiratory information from the

PPG in a robust manner. This is embodied within our

respiratory rate algorithm which optimizes the extraction of

respiratory information from within the PPG signal. This is

achieved by deriving a series of characterizing signals (based

on the modulations of the PPG signal through the respiratory

cycle described above) which are optimally configured to

enhance respiratory information content. These are fed into

the main Analysis Engine which processes the characteriz-

ing signals in order to determine a respiratory rate. The

Analysis Engine incorporates advanced signal processing

techniques based on CWT methods. The wavelet transform

of a signal x(t) is defined as:

Tða; bÞ ¼ 1
ffiffiffi

a
p

Z

þ1

�1

xðtÞw� t � b

a

� �

dt ð1Þ

where w*(t) is the complex conjugate of the wavelet

function w(t), a is the dilation or scale parameter of the

wavelet, b is the location parameter of the wavelet and

x(t) is the signal under investigation: this may be the PPG

or secondary signals derived from the PPG. In our work,

tunable wavelets are employed which allow us to control

the geometry of the time-scale Heisenberg partitioning in

wavelet space [1].

An important, and often overlooked, part of the design

of an RR algorithm is the process of converting the cur-

rently computed rate (i.e. the one computed at the present

time from the most recent section of signal) to the reported

rate (i.e. the one seen by the clinician on the monitor

screen). This is a critical design step in any physiological

monitoring algorithm for commercial use. We have a

separate Rate Reporting Module within the algorithm

which uses the current rate determined by the Analysis

Engine to update the respiratory rate reported to the end

user. This is performed using a weighted averaging and

logical decision making process. This is explained in more

detail as follows and shown schematically in Fig. 2.

Every 5 s a respiratory rate is derived from the previous

45-s segment of infrared PPG. (This is the optimal segment

length found through a detailed parametric analysis of a

wide variety of data from range of clinical settings and

healthy volunteer data.). These current rates are averaged

further with the previously displayed rate, and pass through

additional logic before displaying a final reported rate to the

user. The weighted averages are based on a number of

metrics calculated during the pre-processing and analysis

phases. In general, increased noise for a given measurement

results in a lower relative weight in the weighted average.

The weights in the weighted average reflect the quality of

(a)

(d)

(b)

(c)

Fig. 1 Modulations of the PPG due to respiration (modulation

through two complete respiratory cycles shown). a PPG showing

unmodulated cardiac pulse waveforms. b Baseline modulation

(cardiac pulses riding on top of baseline shown dashed). c Amplitude

modulation (cardiac pulses amplitudes varying over respiratory

cycle). d RSA (pulse period varying over respiratory cycle)
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the data over which a measurement was taken and are

derived from both the signal and the transform of the signal.

The algorithm then goes through state machine driven logic

to determine whether the newly computed rate should be

reported to the user. The state machine is shown in Fig. 2. A

brief description of each state is given as follows:

2.1.1 Post rate

In this state the value is displayed to the user. An internal

metric is calculated that quantifies the total averaging time

for the current RR estimate. (In general, averaging

increases as confidence decreases). If the total averaging

time exceeds a time T2 of 2 min, the current RR estimate is

cleared from the user display and the internal RR is reset to

0.

2.1.2 Blank out display

In this the algorithm is still maintaining internal averaging

of the RR estimate, however, the averaging time is too long

to display an accurate measure to the user. The algorithm

will remain in this state until the internal averaging time

goes below a threshold T1 of 90 s, at which point the rate

will be displayed.

2.1.3 No post

In this state all prior (averaged) history of the Respiration

Rate value is ignored. The Respiration Rate value is only

reported to the user when the confidence metrics are all

below predetermined thresholds. These thresholds get more

lenient as time progresses. NO POST is the start-up state

and in order to post on the first measurement from the

analysis portion of the algorithm the confidence must be

very high. As time progresses the confidence threshold

decreases as more and more data is averaged in.

Note that in all states described above, the entire algo-

rithm is reset (returns to NO POST) if the oximeter algo-

rithm reports a pulse rate or SpO2 of zero (i.e. a dropout) or

the sensor is disconnected. The use of a state machine

driven logic allows the algorithm to optimize the reporting

of a stable rate which is robust to noise while retaining

optimal accuracy.

2.2 Study details

2.2.1 Subjects

Subsequent to IRB approval, the study was conducted

within the clinical laboratory at Covidien’s Respiratory and

Monitoring Solutions facility in Boulder, CO, USA. A

cohort of 139 healthy adult volunteers were recruited for

the trial (58 Male and 81 Female). Participants ranged in

age from 18 to 67 years with a mean age of 35 years and

standard deviation of 12 years. Body mass indices ranged

from 17 to 51 with a mean of 25 and standard deviation of

5. Heart rate was monitored during the trial and these

ranged from 43 to 113 beats per min with a mean of 66

beats per min and standard deviation of 10 beats per min.

These parameters are listed in Table 1.

NO POST
(RR not displayed, 
no prior history)

POST RATE
(RR displayed to

user)

Metrics are all below a 
set of thresholds.  Thresholds get more lenient

as more data is averaged into the RR calculation 

Excessive Averaging /Holding 
(> T2 )

BLANK OUT DISPLAY
(RR not displayed,
history maintained)

Oximetry Dropout
Or

Sensor Disconnect

Averaging < T1

Oximetry Dropout
Or

Sensor Disconnect

Post/No Post Decision Logic

Fig. 2 Schematic of the state machine driven logic to determine whether the respiratory rate should be reported to the user

Table 1 Participant characteristics

Variable Mean SD Min Max

Age (yr) 35 12 18 67

BMI (kg/m2) 25 5 17 51

HR (bpm) 66 10 43 113

Yr years, BMI body mass index, HR heart rate, bpm beats per min
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All participants were apparently healthy and free of

known, overt cardiovascular, pulmonary, and metabolic

diseases. Of those included, a small number had pre-

existing conditions such as asthma, sleep apnea, thyroid

issues, depression, hypotension and hypertension. Further

study exclusion criteria were as follows: (1) Contact

allergies that may cause a reaction to standard adhesive

materials found in the sensors used, (2) Abnormalities

that may prevent proper application of the pulse oxim-

eter probe, and, (3) Previous injury or co-morbidity to

fingers or hands that may alter blood flow and vascular

supply.

2.2.2 Protocol

The data were acquired using a standard Nell-1 oximeter

OEM module with a Nellcor Max-A disposable probe

attached securely to the index finger of the right-hand.

The Nell-1 module is a standard oximeter board which

can be found in many of the multiparameter montoring

machines found in hospital. The RROXI algorithm works

from the native device sample rate of 75.7 Hz of this

board. The board has a low pass filter at 5.5 Hz with full

DC retained for oximetry purposes. A Datex-Ohmeda

CardioCap/S5 device was used to record an end-tidal

CO2 signal from the patient using a nasal cannula. Once

the subject was comfortable with the equipment, the PPG

signal was acquired over a duration of approximately

8 min while subjects were asked to relax and breathe

naturally.

Data integrity was ensured through training of study

personnel prior to data collection and explicit documenta-

tion of compliance with study procedures during all data

collection. All study devices were used according to

specification and all sensors were placed properly accord-

ing to the device manuals and study instructions. Data were

acquired using commercially available pulse oximeter

boards with fully validated firmware and embedded soft-

ware. Trained study personnel observed all data collection

and documented adherence on an individual Case Report

Form for each subject. Case Report Forms were subse-

quently monitored by a Clinical Research Associate to

verify completeness and accuracy prior to the incorporation

of the data into analysis. Data analysis was performed in

accordance with documented procedures and reviewed for

accuracy by a Data Review Board.

2.2.3 Statistical analysis

All data are presented as mean ± standard deviation.

Pearson-product moment correlation coefficients were

employed to determine the relation between RRoxi and

RRETCO2
.

3 Results

We examined the performance of RRoxi against a widely

used continuous respiratory rate technology, RRETCO2
,

derived from the end-tidal CO2 signal. RRETCO2
was used

as the gold standard reference signal in the study.

Figure 3 shows the distribution of the respiratory rates

during the study. The histogram plot is comprised of

12,600 RRETCO2
data points observed every 5 s from the

gold standard ETCO2 signal over the whole study popu-

lation. RRETCO2
ranged from a lowest recorded value of

2.97 br/min to a highest value of 28.02 br/min. The mean

rate was 14.49 br/min with standard deviation of 4.36 br/

min. RRETCO2
did not report a rate for 3.6% of the data due

to poor signal quality or the machine recalibrating.

Figure 4 shows a plot of RRoxi against RRETCO2
. The

data is tightly spread around the line of agreement and a

strong correlation between the two measures can be

observed in the plot (R2 = 0.93). The least square line can

be seen to be close to the ideal 1:1 slope. Figure 5 contains

a histogram of the differences between RRoxi and RRETCO2
.

RRETCO2
reported a rate 96.4% of the time. RRoxi reported

a rate 96.2% of the time. (The overlap of non-reporting

times for the two RR’s was 0.5%.). The mean difference

between the rates was -0.23 br/min with a standard

deviation of 1.14 br/min. The root mean square deviation

(RMSD) was 1.16 br/min (comprising mean error and SD

to give a measure of total error).

4 Discussion

The main finding of this study is that the algorithm

developed is able to robustly calculate respiratory rate from

Fig. 3 Distribution of respiratory rates (RRETCO2
) of subjects during

the trial
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a standard pulse oximetry system during spontaneous

breathing in healthy adults. Importantly, this was accom-

plished using a single sensor. Thus, these results demon-

strate a unique, clinically useful approach to monitoring

multiple respiratory variables in a continuous, non-inva-

sive, and easy to use manner.

The drive to develop a viable technology has gained

increasing momentum over recent years as more sophisti-

cated signal processing methods have been developed.

Despite previous efforts to date, a viable methodology

satisfying the aforementioned desired criteria for a respi-

ratory rate monitoring device has yet to be developed. The

success of this endeavor requires the following three

components: (1) the recognition of the multi-faceted

manifestations of respiratory modulations within the PPG

and the complex interplay between them; (2) the imple-

mentation of appropriate advanced signal processing

techniques to take full advantage of this information; and

(3) the post-processing infrastructure to deliver a clinically

useful reported respiratory rate to the end user.

Studies reported in the literature generally fail to prop-

erly address one or more of the above criteria, and most fail

to address any of these criteria. In fact, many investigators

concentrate on a single modulation type (i.e. RSA, pulse

amplitude, or baseline). We note also that others have

attempted to implement a CWT-based method, but it

appears that the implementation differs greatly from our

own. Chon et al. [2] reported CWT-based RR results for

pulse amplitude and RSA components separately (i.e. not a

combined measure). Fleming and Tarassenko [6] appear to

have manually selected an optimal modulation transform,

and report a mean error of 1 br/min from a limited study of

7 subjects. In addition to the CWT implementation itself,

these studies fail to incorporate the pre- and post-process-

ing components of our CWT algorithm which are signifi-

cant and necessary part of its infrastructure to ensure

optimal performance.

Recognizing the above three tenets, we have developed

an algorithm for the derivation of respiratory rate from

signals available on a standard, commercially available

pulse oximeter hardware platform. The oximeter-derived

respiratory rate, RRoxi, was derived from data collected

from a 139 healthy subject cohort and compared to a ref-

erence rate, RRETCO2
. We found excellent agreement

between the two with an RMSD of 1.16 br/min (mean

difference of -0.23 br/min). It is worth also restating

(from the Introduction) that the algorithm has been devel-

oped using a wide range of in-hospital patient data and

healthy subject data (including various sensor sites and

patient positions, breathing protocols, patient disease states

and a wider range of respiratory rates), and so is not tuned

specifically for healthy subjects. This was done to mitigate

against overtraining on healthy subject data and to ensure

that the algorithm has the ability to cope with as wide a

range of situations in the field as possible. Note that we

inspected the subject case review forms (CRFs) to deter-

mine whether any of the 139 subjects had a pre-existing

respiratory problem and found that 6 had asthma. We

examined their individual results and found that their

RMSD’s ranged from 0.4 to 1.3 and that they did not

appear to exhibit different behaviour from the rest of the

population.

5 Conclusions

Currently, pulse oximeters use the differential absorption

of red and infrared light between oxygenated hemoglobin

and deoxygenated hemoglobin to provide a measure of

oxygen saturation; heart rate is also provided. These

devices do not currently measure respiratory rate, and will

Fig. 4 RRoxi against RRETCO2

Fig. 5 Distribution of differences between RRETCO2
and RRoxi

50 J Clin Monit Comput (2012) 26:45–51

123



only detect inadequate respiration after hypoxia has

occurred. Due to the nonlinear relationship between SaO2

and PaO2, where SaO2 may drop dramatically at first with

little change in SaO2 [23], and the significant increases in

circulatory times that may be exhibited during extreme

monitoring conditions such as during hypotension, hypo-

perfusion and hypothermia [24], pulse oximetry is often

considered a lagging indicator of evolving respiratory

complications, thus limiting its efficacy in this domain. The

combination of pulse oximetry with respiratory rate using a

single sensor, may provide earlier indication of evolving

respiratory compromise. We believe the RRoxi algorithm

would provide this earlier indication by offering the

capability to monitor respiratory rate via a sensor that is

routinely attached to patients in many clinical situations,

thus potentially enhancing patient safety with combined

respiratory rate and arterial oxygen saturation monitoring.
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