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Abstract: Neuroendocrine tumors are a heterogeneous group of neoplasms originating from the
diffuse endocrine system. Depending on primary location and hormonal status, they range in terms
of clinical presentation, prognosis and treatment. Functional tumors often develop symptoms indi-
cating an excess of hormones produced by the neoplasm (exempli gratia insulinoma, glucagonoma
and VIPoma) and can be diagnosed using monoanalytes. For non-functional tumors (inactive or
producing insignificant amounts of hormones), universal biomarkers have not been established.
The matter remains an important unmet need in the field of neuroendocrine tumors. Substances
researched over the years, such as chromogranin A and neuron-specific enolase, lack the desired
sensitivity and specificity. In recent years, the potential use of Circulating Tumor Cells or multiana-
lytes such as a circulating microRNA and NETest have been widely discussed. They offer superior
diagnostic parameters in comparison to traditional biomarkers and depict disease status in a more
comprehensive way. Despite a lot of promise, no international standards have yet been developed
regarding their routine use and clinical application. In this literature review, we describe the analytes
used over the years and cover novel biomarkers that could find a use in the future. We discuss their
pros and cons while showcasing recent advances in the field of neuroendocrine tumor biomarkers.

Keywords: neuroendocrine tumors; biomarkers; chromogranin A; neuroendocrinology;
neuroendocrine neoplasms; microRNA; NETest; 5-HIAA

1. Introduction

Neuroendocrine tumors (NETs) are a diverse group of neoplasms. They are made
from diffuse neuroendocrine system cells, which are present throughout the human body.
The prevalence of neuroendocrine tumors ranges between 2.5 and 8.35 cases per 10,000,
with incidence rates rising in recent years [1–3]. NETs fulfill the rare disease criteria
according to the Orphan Drug Act (a condition affecting less than 200,000 people in the
United States). Neuroendocrine Tumors, along with a second subunit, Neuroendocrine
Carcinomas (NECs), are a part of a group named Neuroendocrine Neoplasms (NENs), as
per WHO nomenclature [4]. Despite a similar origin from neuroendocrine tissue, both
of them have their own distinct morphological features and genomic signatures. NETs
can be both low- and high-grade, whereas NEC are high-grade by definition. In order to
distinguish NETs from NECs, pathologists utilize tissue biomarkers of neuroendocrine
lineage such as synaptophysin, chromogranin A and somatostatin receptors, some of which
can also be used as circulating biomarkers [5]. Due to significant differences between both
groups in terms of clinical presentation, applicable biomarkers and the natural course of the
disease, this review focuses mainly on NETs. Depending on their embryonic origin (from
which part of the primary gut tube the tumor originates from), NETs can be divided into
three groups: foregut, midgut and hindgut, each with their own distinct characteristics [6].
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The primary location of the tumor, and which part of the primary gut tube the neoplasm
stems from, affects the application and clinical utility of different biomarkers. For instance,
5-hydroxyindoleacetic acid (5-HIAA) shows a higher sensitivity in midgut NENs than in
pancreatic NENs, whereas the expression of chromogranin A (CgA) is lower in hindgut
tumors, compared to midgut and foregut [7]. Biomarkers aside, embryonic origin directly
affects the diagnostic and treatment procedures, as patients diagnosed with foregut NENs
should undergo screening for MEN-1 syndrome [8]. Table 1 presents examples of primary
tumor locations falling into each category.

Table 1. Examples of neuroendocrine tumors’ primary locations of different embryonic origin.

Foregut Midgut Hindgut

Thymus Jejunum Distal 1/3 of transverse colon
Esophagus Appendix Descending colon
Bronchus Ileum Sigmoid colon

Lung Ascending colon Rectum
Stomach Proximal 2/3 of transverse colon
Pancreas

Duodenum

NETs can be divided based on their ability to release hormones (functional tumors)
or not (non-functional tumors). Neoplasms producing clinically insignificant amounts
of hormones also fall into the latter bracket. In the case of functional tumors, hormones
released into the circulation allow for utilizing them as biomarkers, as shown on Table 2.

Table 2. Functional pancreatic NET and corresponding specific biomarkers.

Type of Tumor Secreted Hormone Incidence (New/100,000/Year)
[9]

Insulinoma Insulin 1–32
Gastrinoma Gastrin 0.5–21.5

VIPoma Vasoactive Intestinal Peptide 0.05–0.2
Glucagonoma Glucagon 0.01–0.1

Somatostatinoma Somatostatin Rare < 0.1
GRHoma GH-releasing hormone Rare

Ghrelinoma Ghrelin Unknown (>100 cases
described)

ACTHoma ACTH Rare
Pancreatic NET causing

Carcinoid Syndrome Serotonin Rare (<100 cases)

Pancreatic NET causing
hypercalcemia

PTHrP (Parathyroid
Hormone-related Peptide) Rare

Additionally, excess concentration of a given hormone is linked with symptoms spe-
cific to the disease. For example, insulinoma, an insulin-producing tumor most commonly
found in the pancreas, typically presents with hypoglycemic episodes [10]. These char-
acteristics allow for a relatively quick and accurate diagnosis, however, there are certain
limitations. Functional tumors constitute a minority of all NENs (10–40%), with some of
them being extremely rare (<100 cases described worldwide) [8]. Clinical manifestations
may change over the course of the disease and there are a number of factors that cause
similar symptoms or test results (for instance, exogenous insulin intake or Hirata’s disease
mimic insulinoma). Hormonal testing should be guided by the presence of symptoms
in an individual; screening for the disease in patients with asymptomatic disease isn’t
required [11]. On the contrary, non-functional tumors lack a specific biomarker or the
spectrum of symptoms that would allow for a quick diagnosis. The patient might not spot
any manifestations of the disease until the lesion starts infiltrating nearby tissue or the
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metastases start impairing the function of distant organs. In fact, 12–22% of patients present
at the metastatic stage, despite the slow growth of neuroendocrine tumors [3].

Over the years, researchers and physicians tried to find molecules that could help
diagnose neuroendocrine tumors early, improving patient prognosis. Due to the hetero-
geneous nature of neuroendocrine tumors, the search for a one-for-all analyte has so far
been unsuccessful. This article aims to review circulating biomarkers used in daily clinical
practice over the years, as well as to discuss the latest findings regarding the potential
future biomarkers.

2. Materials and Methods

Upon forming the topic of the review, a thorough literature search was conducted.
Initially, the guidelines of selected endocrinological societies were analyzed (Polish Soci-
ety of Endocrinology, Polish Network of Neuroendocrine Tumors, European Society for
Medical Oncology, European Neuroendocrine Tumor Society, North American Neuroen-
docrine Tumor Society). Afterwards, the PubMed database was searched using general
terms: “neuroendocrine tumors”, “neuroendocrine neoplasms”, “neuroendocrine tumor
biomarkers”, “neuroendocrine neoplasms biomarkers”, “NET biomarkers”, “NEN biomark-
ers” and “neuroendocrine biomarkers”. A second detailed search was conducted after
a review of the initial results, focusing on the substances that showed the most merit in
the guidelines and analyzed papers. Terms screened for included: “chromogranin A”,
“chromogranin B”, “granins”, “5-hydroxyindoleacetic acid”, “5-HIAA”, “neuron-specific
enolase”, “NSE”, “NETest”, “microRNA”, “Circulating tumor cells” and “CTC”, as well
as variations of the searches above combining the terms with the words “biomarkers”,
“NET” and “neuroendocrine”. The alternate spelling of certain words was accounted for
(tumor/tumour, neurospecific/neuro-specific/neuron-specific). Based on the results of the
searches mentioned above, a manuscript was drafted. When citing original research, the
number of patients involved and methodology was taken into account. In certain topics
(namely CTC and miRNA), the number of published original papers remains low because
of their novel status and recent discoveries, presenting a limitation of the review. After the
verification of search results, titles and abstracts, a thorough analysis of 265 selected papers
was conducted. The reference lists of selected papers were also analyzed and 25 additional
relevant articles were found. In total, 163 papers were chosen for the review. Included in
the total number were 6 additional articles suggested by the reviewers after the first round
of peer-review and 7 abstracts from the 19th Annual ENETS conference.

3. Discussion
3.1. Granins

In 1967, Blaschko et al. described the soluble proteins found in bovine secretory
granules, which they named chromogranins [12]. Some notable members of that group,
discovered in later years, include chromogranins A (CgA) and B (CgB, also called se-
cretogranin I), and secretogranins II (which used to be called chromogranin C), III and
IV [13]. Since their discovery, numerous articles have been published describing their
role in neuroendocrine secretion [14–17]. Elevated bodily fluid concentrations of different
granins (most notably CgA) among patients with hormonally active neoplasms have been
some of the most important observations established in that research and with far-reaching
clinical implications. Subsequently, their role as a potential biomarker of hormonally active
neoplasms (e.g., NETs, pheochromocytoma, medullary thyroid cancer and pituitary gland
tumors) has been analyzed [18–20].

3.1.1. Chromogranin A

Ever since its discovery over 50 years ago, chromogranin A, a hydrophilic glycoprotein
made up of 439 amino acids, remains the most widely used NET biomarker in clinical
practice [21]. It is present in most neuroendocrine cells, as well as in neuroendocrine tumor
cells, most notably midgut and pancreatic neoplasms [22]. It has been a staple in NET
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diagnostics over the years, as noted by the guidelines from numerous scientific societies:
European Neuroendocrine Tumor Society (ENETS) [23], North American Neuroendocrine
Tumor Society (NANETS) [24], Polish Network of Neuroendocrine Tumours [8]. CgA
concentration correlates with tumor burden; the highest values are observed in metastatic
NETs [24]. Depending on the type of the tumor and location, sensitivity and specificity
range between 68–81% and 56–100%, respectively [25–27]. Similarly to 5-HIAA, its sen-
sitivity and specificity differs depending on the location; midgut tumors express CgA
most often, foregut and hindgut less so [7]. Nobels et al. demonstrated that an elevated
CgA is a valuable marker in patients with gastrinomas, pheochromocytomas, carcinoid
tumors and non-functioning pancreatic NETs. Elevated CgA levels were found in 100%,
89%, 80% and 69%, respectively [28]. A high sensitivity of CgA in gastrinoma makes it
useful for a post-treatment follow-up [29]. Additionally, CgA showcases a greater utility
in monitoring the progression of the disease and treatment response than as a diagnostic
biomarker, as revealed by a 2018 meta-analysis on the subject, and increased values of CgA
can predate radiological progression or tumor recurrence [30–32]. Recent meta-analysis of
bronchopulmonary Neuroendocrine Neoplasms (bpNEN) showed sensitivity of as little
as 35%, with 94% specificity [33,34]. Moreover, CgA concentration correlates with tumor
burden; the highest values are observed in metastatic NETs [24], in which the specificity
of 100% and sensitivity between 78 and 80% have been reported [25]. The 2015 ENETS
guidelines noted the lack of systematic empirical evidence for use of CgA in bpNEN [35].
In the wake of recent research, current guidelines state that treatment decisions should not
be based solely on CgA results [11].

Despite relatively good sensitivity and specificity in certain tumors, CgA has some
flaws. There are no standards available regarding testing and there are significant differ-
ences between the available assays (CgA can be measured in plasma and serum, using
ELISA, IRMA and RIA methods). It is therefore recommended to use the same test (prefer-
ably in the same laboratory), when comparing results [8,36]. It is noteworthy that several
factors might influence CgA concentration. Most common conditions include atrophic
gastritis, Helicobacter pylori infection, kidney failure, liver cirrhosis, inflammatory bowel
diseases, and other non-neuroendocrine neoplasms [37,38]. Additionally, certain medi-
cations may cause false-positive results by increasing gastrin secretion, namely proton
pump inhibitors and H2-receptor antagonists [39–41]. In order to adequately evaluate CgA
level, it is advised to withdraw potentially interfering medication at least 2 weeks before
the testing [42,43].

3.1.2. Chromogranin B and Pancreastatin

Other granins such as CgB have also been researched as potential biomarkers, however
their testing availability and, therefore, their clinical usefulness is limited [8]. Pancreastatin—a
product of enzymatic cleavage of CgA—has shown to retain similar sensitivity and speci-
ficity to CgA, while being unaffected by PPI treatment [44,45]. Elevated concentrations
of pancreastatin correlate with a shorter progression-free survival (PFS) and the overall
survival (OS) of patients with pancreatic and small bowel NETs, which makes it a po-
tential prognostic biomarker [46]. It seems to be especially useful in metastatic disease
and recent data suggests that it compares better to CgA in detecting the progression of
midgut NETs [47,48].

3.2. 5-Hydroxyindoleacetic Acid

5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, has been one of the
longest used biomarkers in neuroendocrine tumors, since 1956 [49]. Serotonin is produced
by enterochromaffin cells, most commonly located in the small intestine. It serves a
purpose in regulating gastrointestinal tract motility [50]. Elevated levels of serotonin can be
observed in neuroendocrine tumors, most commonly of midgut origin. Serotonin-secreting
neuroendocrine tumors manifest as carcinoid syndrome. Originally, the term carcinoid was
invented by Oberndorfer in 1907 and has been used to describe all NETs [51]. Currently
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use of the term “carcinoid” is discouraged, due to the confusing terminology applied to
it over the years. Serotonin is produced by 70% of all neuroendocrine tumors, with the
percentage of serotonin positive gastric and pulmonary NETs reaching as low as 10–35%.
Monitoring serotonin itself is challenging, due to fluctuations in its secretion over time
as well as differences between individuals, therefore its metabolites, such as 5-HIAA, are
preferred [52]. 5-HIAA can be measured both in serum and urine, although the latter
is more broadly used. Urine samples need to be collected over a 24 h period, protected
from light and added with an acidic compound to ensure stability [53]. The sensitivity
of 5-HIAA in diagnosis and monitoring is quite low, around 35%, and strongly depends
on serotonin secretion [54]. 5-HIAA urine concentration has shown a positive correlation
with the severity of carcinoid syndrome [55]. Higher values are also observed in patients
with metastatic midgut NETs, compared to non-metastatic patients, notably with liver
metastases. Moreover, 5-HIAA could be a marker of a biochemical response to somatostatin
analog treatment and may be useful in the early detection of recurrence post-surgery [21].
Despite a specificity of up to 100% in some trials [25], there are several factors limiting
5-HIAA use in daily clinical practice. Tryptophan-rich food, such as peanuts, bananas,
chocolate, coffee and tea, as well as certain medication (e.g., diazepam and phenobarbital),
might lead to false-positive results, therefore patients undergoing tests need to adhere to
dietary restrictions [56]. In addition, 24 h urine collection is impractical, when compared
to liquid biopsy due to a prolonged testing period and the requirement of additional
equipment and preparation. The clinical usefulness of 5-HIAA is restricted to serotonin-
producing tumors (i.e., manifesting as carcinoid syndrome), which applies to just a fraction
of neoplasms.

3.3. Pancreatic Polypeptide, Neuropeptide Y and Peptide YY

Another circulating biomarker, described in literature as secreted by an NEN, is pan-
creatic polypeptide (PP). It belongs to the same group of peptides as Peptide YY (PYY)
and neuropeptide Y (NPY). PP is a 36-amino-acid molecule involved in the regulation
of the digestive tract function and food metabolism (i.e., increasing hepatic insulin sen-
sitivity) [57]. Used on its own, PP has a low sensitivity of 41–63% for pNET and 18–53%
for gastrointestinal NET [58]. Higher levels are associated with pancreatic tumors and
metastatic disease. When used together with CgA, the test can detect NEN with a sensitivity
of 84–96% [59]. Peptide YY is very similar to PP, with 18 of its 36 amino acids located in
the same positions. PYY cells were found in gastrointestinal NEN tissue, most commonly
in rectal NEN, where its presence has been associated with a worse prognosis [60,61].
The data on its use as a circulating biomarker are lacking. Another 36-amino-acid-long
peptide is Neuropeptide Y. The elevated plasma levels of NPY have mostly been the focus
of research in pheochromocytomas, neuroblastomas and gangliomas [62,63]. In one study
by Allen et al., elevated levels of NPY were present in 6 out of 22 gastrointestinal NETs [64].
Whereas PP has some potential applications as a circulating NET biomarker, the utility of
PYY and NPY is limited.

3.4. Neuron-Specific Enolase

In 1965, Moore and McGregor discovered a protein currently known as neuron-specific
enolase (NSE) [65]. NSE is a glycolytic enzyme present in neurons and neuroendocrine
cells in the central and peripheral nervous system. Elevated concentrations of NSE in
body fluids can be found not only in septic shock and post-traumatic states, but also in
conditions associated with cell proliferation, such as neoplasms [66,67]. The latter property
was hoped to be useful in detecting NETs, however, research shows that NSE is elevated
in just 19% of G1NET and 54% of G2NET cases. Therefore, it seems to be unreliable as a
single diagnostic biomarker for well-differentiated tumors, however it can be of added
value to CgA in G2NET cases [8,68]. NSE concentrations are significantly higher in NECs
with a sensitivity of 63% in large cell neuroendocrine carcinoma (LCNEC) and 62% in small
cell neuroendocrine carcinoma (SCNEC) [68]. Moreover, NSE may be useful as a predictor
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of long-term survival in NEN cases and, thanks to its dependence on cell turnover, it is
associated with malignant forms with a higher grading [69].

3.5. NETest

In 2007, a National Cancer Institute summit meeting on NETs was held. It was
deemed that the currently available biomarkers have severe limitations and it is crucial
to develop universal biomarkers for early diagnosis [70]. It has been widely discussed
that molecular methods might describe an entity as dynamic and diverse as an NET in
a much more adequate way than a single substance [71]. Therefore, in the last couple
of years, researchers started moving towards complex multianalyte assays that utilize
statistical algorithms.

An NETest is an example of one such method. It is based on evaluating a tumor’s gene
expression, i.e., its “biological signature”. After performing a liquid biopsy and isolating the
mRNA (messenger RNA), the cDNA (complementary DNA) is synthesized. Subsequently,
PCR and gene analysis is performed, and the results are subjected to machine-learning
algorithms. The resulting score is given on a scale from 0 to 100% (the normal score cut-off
is 20%) [72].

The NETest has shown excellent diagnostic parameters in multiple trials, with both
sensitivity and specificity exceeding 90% [73–76]. In the multicenter study published in
2021, Modlin et al. analyzed two cohorts of patients over 5 years. The first group focused on
the NETest evaluation and was made up of 1684 NETs compared with 731 controls, whereas
the second group was comparing an NETest with CgA and comprised 922 NETs versus
348 controls. In the described setting, the NETest identified 98% pheochromocytomas, 94%
siNET, 91%panNET, 88%bpNET, 80% gastric NET and 79% NETs of the appendix. The
NETest was more effective in diagnosing and monitoring NETs than CgA [77]. In a different
trial, an NETest was able to detect progression 1 year before imaging methods [78]. Unlike
CgA, factors such as PPI treatment and gastritis have no bearing on the results [79].

Overall, the NETest fits the criteria of an optimal biomarker thanks to its outstand-
ing diagnostic properties, prognostic and predictive value that outperforms traditional
analytes [80–83]. Among largely promising results, the NETest too has some potential
downsides. Its cost-effectiveness is relatively unknown, and the question remains whether
it can be widely introduced. On top of that, there are very few laboratories that are able to
perform NETest analysis (i.e., Wren Laboratories in the USA and Sarah Cannon Molecular
Diagnostics in Great Britain) [83].

3.6. microRNA

microRNAs (miRNA) are a group of small (22 nucleotides in length on average), non-
coding RNA molecules that promote or suppress posttranscriptional gene expression [84].
Despite being discovered in 1993, their clinical applications only started gaining traction in
the last few years [85]. miRNAs can be identified both in solid tissue as well as in body
fluids (inter alia plasma, serum, saliva, CSF and urine). They can be secreted in autocrine,
paracrine and endocrine ways (although the exact mechanisms are unknown) [86]. Such
properties allow for an identification using a liquid biopsy and potentially making them
useful as disease biomarkers [87]. Altered miRNA levels in body fluids are associated
with numerous diseases (cardiovascular, gastrointestinal, renal, psychiatric, neoplasms
etc.) [88–90]. In cancer, miRNAs can promote metastases, regulate angiogenesis and cell
metabolism, as well as influence immune evasion and the response to certain treatment
methods [87]. It is clear that miRNA dysregulation plays a crucial role in carcinogenesis
and understanding the processes behind it might improve diagnosis and the treatment of
oncological patients in the future [91].

miRNA have been extensively researched in most common neoplasms, e.g., ovarian
cancer, lung cancer and colorectal cancer [92–94]. In comparison, little is known about cir-
culating miRNA in NETs. The altered expression of over 100 miRNAs have been described
in NETs [95]. So far, no universal target molecule for NETs has been identified, possibly
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due to the diverse nature of neuroendocrine neoplasms and the fact that many miRNAs
are tissue-specific [96]. Moreover, different molecules seem to be expressed in blood and
tumor tissue, although some can be detected in both compartments [97]. Malczewska et al.
summarized in their systematic review that in panNETs, miR-1290 is absent in tumor
tissue, while miR-21 and MiR-133a seem to be present in both. In siNET, miR-7-5p, miR-31,
miR-96, miR-133a, miR-182, miR-183, miR-196a and miR-215 can be traced in both blood
and tumor tissue, while circulating miRNAs include additionally miR-21, miR-22, miR-150,
miR-200a, miR-21, miR-133a and miR-144. Only miR-21 and miR-133a have been described
as circulating miRNAs in both locations (the former also presents in lungs) [98].

Li et al. analyzed over 700 circulating miRNAs aiming to differentiate pancreatic
cancer from NETs and benign pancreatic conditions. In that setting, the expression of
miR-1290 was higher in the pancreatic cancer group vs. the NET group (81% sensitivity
and 69% specificity), although no comparison has been made between NETs and other con-
ditions. Several other miR showed statistically significant results (miR-628-3p, miR-550 and
miR-1825), however, their diagnostic parameters were of lower value than miR-1290 [99].
Additionally, miR-375-3p distinguishes a low-grade lung NET from non-neuroendocrine
lung tumors showing over 90% sensitivity and specificity [100]. miR-375 and miR-133a
have been discussed as a biomarker of patient survival due to the down-regulation in
tumor metastases of siNET, however, both as tumor tissue biomarkers) [101,102]. miR-375
seems to be particularly interesting, as it has been localized in enteroendocrine cells and
has been described as an endocrine system modulator and marker of neuroendocrine
differentiation [103,104]. miR-29b is a member of the miR-29 family, which has been re-
searched as a biomarker for several cancers, including lung and ovary [105]. Özdirik et al.
described a correlation between miR-29b and CgA levels, though no relation to OS has
been shown [106]. Recently, the overexpression of 13 selected circulating miRNAs has been
described in NENs and medullar, in comparison to healthy subjects. It was the first study
in which a set of circulating miRNAs was identified that could represent a tumor signature
for NEN diagnostics [107].

An expert consensus suggests that circulating miRNAs will be of use as a NET
biomarker. However, as with most multianalytes, due to their complex nature, any poten-
tial tests will have to be based on mathematical algorithms in order to make them clinically
viable [49]. A recent study by Nanayakkara et al. described a machine-learning algorithm
utilizing a panel of 17 miRNAs that determines 15 NEN types with 98% accuracy. With
further research, more refined algorithms will become available [96]. Another problem
limiting potential clinical applications has been the unknown influence of treatment on
miRNA expression. Somatostatin analogs change the patterns of circulating miRNA; the
exact mechanisms of that process are poorly understood [108,109].

3.7. Circulating Tumor Cells

In neoplasms, as the tumor grows, certain cells split away from the lesion and enter
circulation. These circulating tumor cells (CTC), if certain conditions are met, can settle
down in a new location and form metastases [110]. The phenomenon has been described
in the 19th century already by Thomas Ashworth, however, it took over 100 years until
researchers began to understand the process behind it [111]. The first trials that focused on
the isolation and identification of these cells were conducted in the late 20th century, and in
2004 CellSearch was approved by the United States Food and Drug Administration (FDA)
as the first device for CTC analysis (at the time for use in breast cancer) [112]. Since then,
multiple technologies were developed for detection in peripheral blood, utilizing CTC’s
distinct physical properties, immunoaffinity or direct analysis with fiber-optic arrays [113].

In NETs, CTC were detected for the first time in 2011. In a study published by
Khan et al., 21% of panNETs and 43% of midgut NETs had detectable CTC. It is important
to note however, that all subjects had metastatic disease at the time of the analysis [114]. In
the 2013 follow-up study, 49% of patients in the group of 176 had at least one detectable
CTC and the association between the presence of CTC and shorter PFS and OS has been
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described [115]. Additionally, in 2016, research of 138 metastatic NET patients (primary sites
included bronchopulmonary pancreas, midgut, hindgut and unknown primary location)
was published. A low CTC count and CTC decrease post treatment had a favorable
prognosis over a high CTC count, which correlated with a shorter OS [116]. Similar
observations have been published in 2019 by Hsieh et al. in the study of Asian NET
patients [117]. An effect of CTC presence on the effectiveness of somatostatin analog (SSA)
treatment has been evaluated in the CALM-NET trial; patients with no detectable CTC
might be more likely to respond positively to the treatment [118].

Despite promising results, studies mentioned above have certain limitations. The
patients included have been diagnosed with NETs of different primary locations (foregut,
midgut and hindgut tumors), therefore their biological features might differ. Moreover,
different treatment methods (SSA included) might have affected the CTC expression and,
therefore, the results [119]. The biomarker issue aside, recent findings suggest that a
qualitative and quantitative assessment of CTC may be equally important. Mutations
present in CTC reflect the genomic aberrations found in tumor tissue, making liquid biopsy
a useful option in cases where standard biopsy might not be possible or for tracking
changes in a tumor’s genomic landscape. Monitoring these changes can also be useful in
establishing mechanisms of resistance to certain forms of treatment [120].

NETs are generally indolent tumors; about a fifth of the patients present with metas-
tases at diagnosis [121]. In mouse models of aggressive tumors, such as breast or pancreatic
cancer, CTC have been detected even at the early stage of the disease [122]. However, the
question remains whether the same can be applied to NETs given CTC’s limited sensitivity
in tumors with more metastatic potential. What is more, CTC’s potential uses as prog-
nostic or predictive biomarkers require further research. With the lack of a large cohort,
multicenter studies remain an important unmet need.

3.8. Circulating Tumor DNA and Cell-Free DNA

Circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) are a novel tool that
can be used to describe NETs molecular features. Whereas ctDNA are fragments of DNA
derived from a tumor and found in the circulation, cfDNA are a broader term and also
include fragments of nucleic acid that do not originate in a tumor. The main source
of circulating tumor DNA seems to be the apoptosis, although the exact mechanism of
releasing ctDNA into the body fluids remains unclear [123]. The principle behind this test
is the identification of circulating DNA and its molecular rearrangements, which may affect
treatment choices [124].

The presence of ctDNA was first reported in 1948 by Mandel and Metais, who detected
cell-free nucleic acids in the blood of cancer patients [125]. Since then, ctDNA has been
widely studied as an alternative for tissue biopsies in malignancies, however, the data
about its use in NETs remains scarce. A relative lack of known, unique to NEN, neoplasm-
promoting mutations presents a significant limitation for the use of ctDNA [126,127].

Some of the upsides of circulating nucleic acid analysis include the simplicity of
obtaining the material and minimally invasive monitoring of the tumor during therapy
by liquid biopsy. The risk of false negative results seems to be the main limitation of this
method, due to variable amounts of DNA that tumors may release into circulation [124,128].

It has been reported that the presence of ctDNA in body fluids is linked to the local-
ization of the primary tumor and metastatic lesions [129–132]. Oversoe et al. described
elevated levels of cfDNA in panNET and siNET patients compared to healthy controls [133].
Tumors with liver metastases and a high proliferative index and necrosis, features which
are often characteristic of NEC, are associated with a high ctDNA concentration [131].
Boons et al., described a correlation between the presence of ctDNA and a higher grad-
ing [132]. On the contrary to NECs, NETs (which are generally slow growing tumors)
have a lower cell loss index and ctDNA release and can often be ctDNA negative [130].
Quantitative analysis of ctDNA may also be useful to assess tumor volume and in an
early diagnosis of relapse after surgery and as a predictive factor of response to treat-
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ment [134–137]. OS and PFS appear to be significantly worse in ctDNA-positive than in
ctDNA-negative patients [130].

Another important aspect of cfDNA analysis is the possibility of methylation pat-
tern analysis. Abnormal distribution of DNA methylation has been described in early
carcinogenesis and may be helpful in the detection, monitoring and treatment response
prediction [138]. A number of studies have been performed describing in NET tumor tissue
methylation patterns compared to healthy controls [139–142]. Mettler et al. analyzed the
cfDNA characteristics of 63 NEN patients in comparison with healthy controls. A higher
cfDNA concentration and hypomethylation patterns have been found in advanced NEN
and their association with tumor burden and a worse prognosis has been described [143].

Although the sensitivity of ctDNA may be lower than the currently used analytes,
it is a highly specific biomarker, which can be especially useful in rare diseases [130,144].
Moreover, in the qualitative analysis of ctDNA, both copy number alterations and point
mutations in DNA is clinically relevant, namely for screening patients who are eligible for
targeted therapies. However, the application of ctDNA in NETs requires further study [145].

3.9. Other Potential Biomarkers and 19th Annual Enets Conference Abstracts

Some other areas of interest in the field of NET biomarkers have been described in
recent years that are not covered in detail by this review, e.g., long non-coding RNA and
tumor-infiltrating platelets. However, the data on these remains scarce [146,147]. In a recent
report, Hinterleitner et al. described elevated levels of platelet-expressed synaptophysin
(pSyn) in NEN compared to healthy donors. A high expression of pSyn was shown to
correlate with a shorter PFS, higher tumor stages, the presence of metastases and a higher
tumor proliferation rate [148].

The 19th Annual ENETS Conference took place in March 2022. Some of the research
presented during the conference focused on NEN biomarker development. La Salvia et al.
presented an analysis of extra-pancreatic NETs metabolomics profile, some of which can
be used as independent prognostic biomarkers. Some of the findings have already been
published in a peer-reviewed journal [149,150]. Another interesting finding has been
the analysis of Copy Number Alterations (CNAs) in cfDNA. The method utilizes whole-
genome sequencing of cfDNA (its ctDNA fraction, precisely) in material acquired by liquid
biopsy. CNAs found in analyzed material showed a sensitivity and specificity for NENs of
62% and 86%, respectively [151]. Garcia Alvarez et al. analyzed the plasma of panNETs
and giNETs prior to the start of Lenvatinib. High levels of angiopoietin 2 (Ang2) and low
levels of fibroblast growth factor 2 (FGF-2) resulted in a better response to treatment, which
may point to them being useful as predictive biomarkers [152]. One study focused on
ctDNA in NEN and its clinical utility for monitoring. The lack of identifiable ctDNA in
patients with stable disease has been described, which may help in selecting a group of
patients with no need for intensive monitoring [153]. Serum Activin A has been researched
as an alternative to NT-proBNP in CHD patients, however, its diagnostic parameters for
the detection of CHD have been subpar [154]. Schalin-Jantti et al. presented an analysis of
clinical factors (CF) and novel plasma proteins (NPP) in G1 and G2 SI-NET patients using
data mining and machine learning methods. The study focused on establishing a multi
biomarker strategy for NET. The combination of CF and NPP allowed for the identification
of stable and progressive disease subgroups [155]. This research is yet another example of
how useful machine learning might be in advancing patient care. Finally, a study focusing
on an NETest have been presented by van Treijen et al. showing its function in predicting
treatment response and individualizing treatment decision [156]. The latter conclusion is
especially important as the individualization of therapy has been a major talking point
during the 19th Annual ENETS Conference.

4. Conclusions

Over the years, multiple NET biomarkers have been researched, developed and
used. From simple substances secreted by the tumor to complex mathematical algorithms,



J. Clin. Med. 2022, 11, 5542 10 of 17

there is a wide range of biomarkers to choose from. Despite this, there is still an unmet
need for the development of widely available and accurate NET biomarkers. Experts
specializing in NETs agree that the currently used analytes have several limitations and that
multianalyte panels based on the genetic signature of the tumor should be the course of
future research [49]. Describing different aspects of a disease as complex and heterogeneous
as NET based on a single substance is insufficient. In comparison, utilizing mathematical
algorithms allows for a more comprehensive depiction of the state of the disease (thanks
to the numerous variables that are included, instead of just a single one) [157]. In a
recent study, Kidd et al. described the potential expansion of the NETest, improving its
statistical parameters even further [158]. This is yet another advantage of machine learning
algorithms; With new discoveries, they can be tweaked for even more accurate analysis. A
question often raised is the cost effectiveness of the new biomarkers [159]. Measuring a
single substance is markedly less expensive than molecular tests, however, a more efficient
biomarker will allow for a decreased spending on imaging and treatment [80].

As shown by this review, there is still room for improvement in the field of NET
biomarkers. A number of analytes, such as miRNA, CTC and NETest have shown promising
results, however, their use in daily clinical practice is currently limited by either their low
availability or lack of standardization.

Out of the potential biomarkers mentioned above, the NETest offers superior diagnos-
tic parameters compared to traditional analytes and has been shown to detect progression
and disease recurrence quicker than imaging methods. It is also useful in the assessment of
the response to radioisotope treatment and radicality of surgical intervention. As stated in
the recently published guidelines of the Polish Network of Neuroendocrine Tumours, the
use of an NETest in everyday clinical practice will enable the optimal inclusion of the test
in the management algorithms in the Polish population of patients with NEN [8].

However, with the NETest limited availability, there is still place for traditional ana-
lytes. In accordance with the updated guidelines of the Polish Network of Neuroendocrine
Tumours, we advise utilizing CgA for monitoring during treatment and as a prognostic
biomarker in colorectal NEN [8,160]. In small intestine and pancreatic NEN, measuring
CgA has a utility before introducing treatment and for monitoring. Additionally, in pa-
tients diagnosed with small intestine NEN, bronchopulmonary NEN or when suspecting
carcinoid syndrome, it is recommended to measure 5-HIAA in urine (at least two samples,
collected over 24 h period each) [8,161,162]. Though not a NET biomarker sensu stricto,
the N-terminal prohormone of brain natriuretic peptide (NT-proBNP) should be measured
for the diagnosis and monitoring of carcinoid heart disease in carcinoid syndrome pa-
tients [163]. In patients presenting with symptoms characteristic of functional NETs, we
recommend measuring the hormones linked with the suspected syndrome (as shown on
Table 2). As discussed earlier in this review, medical decisions shouldn’t be taken solely on
the basis of change in biomarker concentration, due to their several limitations.

To summarize, despite the recent advances in the field of NET biomarkers, novel
analytes have not yet been introduced into wider use. Some of them (such as an NETest)
show a lot of promise and with a wider availability, they offer a significant improvement
over traditional analytes. Until they become a routine tool in NET diagnostics, biomarkers
such as CgA and 5-HIAA can still be a helpful option in select cases.
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