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Graphical Abstract

Integrated single-cell RNA sequencing technologies reveal a high-resolution
immune landscape of colorectal primary tumors and liver metastasis, identify-
ing major immune cell types and distinct cell functional states of T and B cells as
well as predictions of complex cell-cell interactions.
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Abstract
The tumor microenvironment is a complex ecosystem formed by distinct and
interacting cell populations, and its composition is related to cancer progno-
sis and response to clinical treatment. In this study, we have taken the advan-
tage of two single-cell RNA sequencing technologies (Smart-seq2 and DNBe-
lab C4) to generate an atlas of 15,115 immune and nonimmune cells from pri-
mary tumors and hepatic metastases of 18 colorectal cancer (CRC) patients.
We observed extensive changes in the proportions and functional states of T
cells and B cells in tumor tissues, compared to those of paired non-tumor tis-
sues. Importantly, we found that B cells from early CRC tumor were identified
to be pre-B like expressing tumor suppressors, whereas B cells from advanced
CRC tumors tended to be developed into plasma cells. We also identified the
association of IgA+IGLC2+ plasma cells with poor CRC prognosis, and demon-
strated a significant interaction between B-cell and myeloid-cell signaling, and
found CCL8+ cycling B cells/CCR5+ T-cell interactions as a potential antitu-
moral mechanism in advanced CRC tumors. Our results provide deeper insights
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into the immune infiltration within CRC, and a new perspective for the future
research in immunotherapies for CRC.

1 INTRODUCTION

The tumor microenvironment (TME) consists of a cell
component made up of various cell types, including
immune cells, inflammatory cells, adipocytes, fibroblasts,
and vascular endothelial cells, and noncellular compo-
nents in and around the tumor.1 The cellular components
within the TME are emerging as key regulators of primary
tumor progression, organ-specific metastasis, and thera-
peutic response.2 Tumor infiltrating immune cells are the
key components,1,3 including T lymphocytes, B lympho-
cytes, myeloid cells, mast cells, and natural killer (NK)
cells, among others, which form an ecosystem that mod-
ulates all aspects of tumor development.3 Among these,
T cells are the most abundant and best-characterized
immune cells in the TME of solid tumors.1,3 The presence
of CD4+ T helper 1 (Th1) and cytotoxic CD8+ T lympho-
cytes can prevent tumor growth by targeting antigenic
tumor cells, and high densities of activated CD8+ T cells
within the tumor niche are associated with favorable
prognoses in various cancers.3 Deeper understanding
of the immune complexity of TME will help to iden-
tify advanced biomarkers, and allow for devising novel
immunotherapy strategies.4 Along this line, the single-cell
technology has rapidly become a powerful approach

for the analysis of TME, including that of colorectal
adenocarcinoma (CRC).5
CRC is the fourth leading cause of cancer-related mor-

tality worldwide, and the prognosis for CRC patients who
experience recurrence or metastasis is extremely poor.6,7
Surgery, radiotherapy, and chemotherapy have long been
the leading strategies for CRC patients. However, the
therapeutic effect has never been satisfying, especially
for advanced patients with metastatic lesions. In the past
decade, immunotherapy has emerged as a potentially
effective systemic treatment for advanced CRC patients.
So far a great focus has been placed on tumor-infiltrating
T lymphocytes (TILs) as they can directly affect prognosis
and the response to immunotherapy.8 Several studies
have demonstrated that the type, location, and density
of TILs can be used to predict the overall survival (OS)
and progression-free survival (PFS) of CRC patients via an
immune score strategy.9,10 Using single-cell technology,
Zhang et al.8 first analyzed the T-cell subpopulations,
and illustrated the distinct TIL cell landscape of CRC. Li
et al.11 and De Vries et al.12 characterized the immune cells
and depicted the immune landscape of primary colorectal
tumors and matched normal mucosa, respectively. More
recently, Zhang et al.5 used two single-cell sequenc-
ing methods to characterize the immune and stromal
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populations of CRC primary tumors in human. How-
ever, most of these studies on the TME of CRC have
largely focused on T cells or myeloid cells, whereas a
comprehensive atlas of tumor-infiltrating B cells is largely
lacking.8,12,13 Since the immune systemof the gastrointesti-
nal mucosa is chronically challenged by dietary antigens
and bacteria, and immune protection driven by antigens
in the gastrointestinal mucosa is mainly attributed to
antibody-producing B cells and plasma cells,14,15 the char-
acterization of B cells in CRC should provide new insights
into the immune ecosystem of CRC. Additionally, CRC
metastasizes to the liver in over half of patients,16 com-
pared to that of primary tumors, but the biology of CRC
liver metastasis (CLM) is currently poorly characterized.
To better understand the immune ecosystem of CRC

primary tumor, and with an emphasis on B cells, we
performed full-length scRNA-sEquation (Smart-seq2) on
∼6,000 immune cells from primary tumor (included the
center area [CT] and the invasive margin area [MT]
of tumor), adjacent normal mucosa tissues (ANT), dis-
tinct normal mucosa tissues, hepatic metastatic tumors
(Cm), and paired noncancerous tissue (Pm) of eight
CRC patients. Furthermore, to gain a comprehensive
understanding of the immune cellular landscape of hep-
atic metastases, we also performed full-length scRNA-
sEquation (Smart-seq2) on∼400 cells from paired Cm and
Pm. To verify the full-length scRNA-seq results, we uti-
lized a high-throughput platform recently developed in-
house, DNBelab C4, which is a scalable and cost-effective
approach for microfluidic droplet-based 3′ scRNA-seq
technology17 to obtain high-quality data for 10,000 cells
from various tissues in 10 CRC patients. In this study, we
found that the discrepancies in previous studies of B cells
in tumormay be due to the heterogeneity of B-cell subtypes
in cancer and noncancerous tissues.We demonstrated that
IgA+IGCL2+ plasma cells were associated with poor prog-
nosis in CRC. Paired ligand-receptor analyses demonstrate
that myeloid cells and certain B-cell subsets could regulate
multiple T-cell subsets in CRC tumor via various ligand-
receptor pairs. This study provides deeper insights into the
immune infiltration within CRC.

2 RESULTS

2.1 A single-cell transcription atlas of
CRC primary tumors and hepatic
metastases

Combining two single-cell RNA sequencing technologies
(Smart-seq2 and DNBelab C4), we investigated different
cell populations within primary tumors of 18 CRC patients
and within matching hepatic metastasis from three of

these patients (Figure 1A, Table S1, see Section 4). Specifi-
cally, for patients RC01, RC02, RC03, R01, R02, R03, LC01,
and LC02, a modified full-length Smart-seq2 method was
used to study the composition of CD45+ cells isolated from
tumors, ANT (proximal to the brim of carcinoma 3-5 cm),
and distinct normal tissues (DNT, distal to the brim of
carcinoma >10 cm). Besides, paired Cm and adjacent liver
(Pm) from patient LC02 were also included. For patients
NRC01, NR01, NLC03, NLC04, NLC05, NLC06, NLC07,
NLC08, NLC09, and NLC10, a recently developed method
based on microfluidic droplet method (DNBelab C4)17
was used to analyze the cells isolated from tumors, ANT,
DNT, Cm, and Pm. After quality control and removing
low-quality cells (see Section 4), 5,345 CD45+ single cells
(Smart-seq2) and 9,770 single cells (DNBelab C4) were
retained for subsequent analyses. The clinical information
and the numbering of cells from each patient are provided
in Table S1.
To define the major cell populations within CRC

primary and hepatic metastases, we first performed
graph-based cell clustering19 on these two datasets,
after removing batch effects among multiple samples
(see Section 4). Based on the expression of canonical cell
lineage markers (Figure 1C, Figure S1A and S1B), we iden-
tified seven major cell types, including four immune cell
types (T cells, B cells, myeloid cells, and mast cells) and
three nonimmune cell types (epithelial cells, endothelial
cells, and fibroblasts) (Figure 1B, Figure S1A, Table S2).
To better define the major population and subpopu-

lation of the tumor-infiltrating leukocytes, we then per-
formed graph-based cell clustering separately on these two
datasets. For immune cells from the Smart-seq2 platform,
graph-based cell clustering gave rise to 15 cell clusters (Fig-
ure 1D). T cells were the predominant immune cell type
(49%), followed by B cells (39%), myeloid cells (6%), and
mast cells (2%). An additional 4% of cells were positive for
proliferation markers, which we annotated as cycling cells
(Figure 1B). Each cluster contained cells from a number
of different patients, indicating that cell types and expres-
sion states in the TME are largely consistent across CRC
tumors and do not represent patient-specific subpopula-
tions or batch effects, although the cell-type proportions
do vary from person to person (Figure 1B). Not surpris-
ingly, when comparing tumors and matching nontumor
tissues, therewere significant differences in the proportion
of immune cells between tumor (CT andMT) and nonma-
lignant (ANT and DNT) tissues (Figure 1E,F). T cells and
cycling cells were enriched in the tumor, whereas B cells
and myeloid cells were depleted; mast cells were detected
at similar proportions in both tissue types (Figure 1E,F
and Figure S1E). In addition, the infiltration of T cells was
significantly increased in both hepatic metastatic tumors
and nontumor tissues (87.0% and 81.3%, respectively)
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F IGURE 1 Overview of the immune landscape of colorectal adenocarcinoma (CRC) tumors and nontumor samples. A, Overview of
the study design. Colon or rectum tumors and noncancerous samples were collected from 18 patients with CRC. B, Uniform Manifold
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(Figure 1E and Figure S1F), and the results were verified
by flow cytometry (Figure S1G).
For the immune and nonimmune cells from the DNBe-

lab C4 platform, graph-based cell clustering also gave rise
to 17 cell clusters (Figure S1B). Based on the expression of
knownmarkers, we found that the atlas mainly comprised
epithelial cells (EPCAM, CDH1, CD24) and nonepithelial
cells (Figure S1C). As shown in Figure 1D, the nonep-
ithelial cell lineages comprised plasma cells (JCHAIN,
MZB1), T cells (CD3G, CD3D), B cells (MS4A1, CD79A),
fibroblasts (DCN, COL1A2), and endothelial cells (GNG11,
ENG). The major immune-cell populations, including T
cells, B cells, and myeloid-lineage cells for both platforms
were qualitatively consistent, demonstrating the validity
of our data (Figure S1D).
To gain deeper insights into tumor progression and

tumor metastasis mechanisms in human CRC, we per-
formed integrative analysis by using the full-length
scRNA-seq sequences. The association analysis between
tumor, node, and metastasis (TNM) staging and distinct
cell type infiltration in CRC tumor revealed that infiltra-
tion of T cells was decreased in advanced stage CRC (stage
III and IV), in contrast, mast cells were more enriched in
advanced stage CRC (Figure 1G). This is consistent with
a previous study that found that mast cells were recruited
to cancer cells and released pro-tumor factors to promote
proliferation of cancer cells.18
Taken together, our results suggest that the proportion

of cell subpopulations in tumor tissues is significantly dif-
ferent from that of paired normal tissues in CRC, and that
liver metastases possess a distinct TME from that of pri-
mary CRC.

2.2 Heterogeneity and impairment of T
cells provide new clinical insights

T cells in discovery cohort were further reclustered and
yielded six distinct clusters (Figure 2A, Table S3). Clus-
ter_0 cells, highly expressingGZMB andNKG7, were iden-
tified as cytotoxic T cells, which are associated with T-cell
activation and cytotoxic function (Figure 2B,C). Cluster_1
cells, expressing naïve T-cell markers CCR7 and TCF7,
were characterized as naïve T cells (Figure 2B). Cluster_2
cells were identified as CD4+ T cells due to their expres-
sion of CD4 and CXCL13 (Figure S2A), which is a marker

of exhausted CD4+ T helper cells.19 Cluster_3, namely
HSP+ T cells, expressing a low level of both cytotoxic
markers and naïve markers (Figure 2B,C), were distinct
in the high expression level of heat-shock protein (HSP)
genes HSPA1A, HSPB1, and HSPE1 (Figure S2A). More-
over, HSP+ T cells were more enriched in metastatic site
than primary CRC (Figure 2A). Cluster_4 cells were iden-
tified as γδ T cells, as they specifically expressed TRDC
and TRGC (Figure 2B); these cells also highly expressed
cytotoxic markersNKG7 andGZMB. Although the exhaus-
tion markers HAVCR2 and PDCD1 showed low expression
across our dataset, in this cluster the HAVCR2 (TIM-3)
level was relatively higher (Figure 2C), which suggested
that the γδ T cells possessed cytotoxic functions and par-
tially showed the exhaustion state. Cells in Cluster_5 were
classified as cycling T cells due to their signature expres-
sion of cell proliferation genes like CKS1B (Figure 2B and
Figure S2A).
Surprisingly, the majority of Cluster_3 cells that

expressed HSPs were derived from CLM, with 21.6% and
41.8% in metastatic site Cm and Pm, respectively. HSP-
related genes have been shown to be highly expressed
in regulatory T cells (Treg) and CD4+ conventional T
(Tconv) cells in breast carcinoma compared to normal
breast parenchyma.20 Moreover, HSP70 has been shown
to promote Treg survival and immune suppression.21 To
exclude the possibility that the HSP+ T cells in our study
might just be the artifact results of stress from cell sorting
rather than a true state, we examined the expression of
HSPA1A, HSPB1, and HSPE1 in the validation cohort, and
found a similar expression pattern of these HSP genes
(Figure 2D). In addition, the presence of HSP+ T cells in
Cm tissues was also confirmed by immunofluorescence
(IF) using CD3 and HSP70 antibodies (Figure S2C).
Therefore, we supposed these HSP+ T cells were in their
true state. To elucidate whether the HSP+ T cells were
more similar to the naïve state or the cytotoxic state, and
their function, a trajectory analysis was performed on the
naïve T cells, cytotoxic T cells, γδ T cells, and HSP+ T cells
using Monocle2.22 As shown in Figure 2E, the trajectory
began with the HSP+ T cells, followed by the naïve T cells,
and then the cytotoxic T cells, and ended with the γδ T
cells, suggesting that the HSP+ cells were more similar to
the naïve T cells than the cytotoxic T cells, and with less
activity than the naïve T cells. This might be due to the
influences of the immune microenvironment in CLM.

Approximation and Projection algorithm (UMAP) plot of all cells form two experiment platforms profiled here. Each cell is color-coded by
(left to right): associated cell type, experiment platforms, and patient. C, UMAP plot, color-coded for the expression level (gray to red) of
marker genes in each cell type. D, UMAP plots show clustering results of different experimental platforms. E, Cell type distribution of tumor
and nontumor tissues as well as paired hepatic metastatic tumor and nontumor tissues in discovery cohort. F, The percentage of B cells and
cycling cells in different regions. G, Comparison of the cell distribution of T cells and mast cells and AJCC stage. NS, P > 0.05; *P < 0.05; **P <
0.01; ***P < 0.001, as determined by Student’s t-test.
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F IGURE 2 Characterization of T-cell subpopulations in colorectal adenocarcinoma (CRC). A, Uniform Manifold Approximation and
Projection algorithm (UMAP) plot of 2,571 T cells, color-coded by their associated cluster and bar plot shows distribution of cell clusters among
patients (top) or sample type (bottom). B, UMAP plot, color-coded for the expression level (gray to red) of marker genes in each cell type. C,
Heatmap showing the z-score of T-cell functional genes for each cluster. D, The expression level of heat-shockprotein (HSP) genes in discovery
cohort and validation cohort. E, The ordering of T cells along pseudotime in a two-dimensional state-space defined by Monocle2. Each point
corresponds to a single cell, and each color represents a T-cell cluster. F, Clone expansion and sharing among naïve, cytotoxic, and HSP+ T
cells. The number within the circle refers to the expansion clone number in that specific cluster. Lines connecting clusters are based on the
degree of TCR sharing, with the thickness of the line representing the number of shared TCR clones.
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As previously reported, the diversity of expanded T-
cell receptor (TCR) clones is associated with prognosis in
tumor and a greater diversity of expanded TCR clones has
been observed in activated T cells than in inactivated T
cells.23 To further confirm the activity state of the HSP+
T cells, we assembled full-length TCR α and β sequences
for 938 T cells using TRACER,24 among which 84 clones
were considered to be expanded clones consisting of more
than two cells.We analyzed the clone expansion and clonal
sharing between three αβ T-cell subpopulations: naïve,
cytotoxic, and HSP+ T cells. The number of expanded
clones in these three T subtypes were 21, 51, and 4 (Fig-
ure 2F), respectively, along the trajectory path, indicat-
ing that the HSP+ T cells were more inactive than the
naïve T cells. The results above suggest that the T cells
frommetastatic sites were less active with fewer expansion
events than those from primary sites, demonstrating het-
erogeneity between the microenvironment of metastatic
and primary sites.
The difference between T cells in tumor tissue and non-

malignant tissue can also be observed, much as previously
reported.8 For example, the naïve T cells were significantly
enriched in the nonmalignant tissue (P< 0.001), while the
CD4+ T helper cells and cycling T cells were enriched in
the tumor tissue (P = 0.0011 and 0.018, respectively) (Fig-
ure 3A). No significant difference was observed between
the center and marginal regions of tumors, nor between
adjacent noncancerous and distal noncancerous tissues
(Figure 3B).
We further asked whether the same T-cell subpopula-

tions, but derived differently from tumor or normal tissues,
had different gene expression patterns. We thus performed
a gene set variation analysis (GSVA) for cells from tumor
(CT and MT) and noncancerous (ANT and DNT) tissues,
separately (see Section 4). For the cytotoxic T cells, tumor-
derived T cells showed stronger cholesterol homeostasis
activities (Figure 3C) and significantly higher expression
levels of ACAT1, a key cholesterol esterification enzyme
(Figure 3D). This high level of cholesterol may be related
to T cells dysfunction. According to Yang et al,25 the anti-
tumor response of CD8+ T cells is associated with choles-
terol metabolism in a skin melanoma mouse model. Inhi-
bition ofACAT1 enhanced the proliferation of CD8+ T cells
and successfully delayed the growth of tumors in mice.25
It was also reported that the expression of ACAT1 could
serve as a potential prognostic marker in prostate cancer.26
To interrogate the association of ACAT1 level with prog-
nosis in CRC, we performed survival analysis and found
that high ACAT1 expression is related to poor disease-free
survival in colon adenocarcinoma and rectum adenocar-
cinoma cohorts from The Cancer Genome Atlas (TCGA)
cohort (Figure 3E). Therefore, ACAT1 may be a potential
prognostic marker for CRC.

For the naïve T cells, the proportion of this cell type
in tumors was significantly lower than in nontumor (Fig-
ure 3A), but strong proliferative activities (G2M check-
point and E2F targets), allograft rejection activities, as well
as strong IFN-γ and IFN-α responses were observed. This
indicates that the naïve T cells in the TME may be more
similar to activated T cells than the naïve T cells in adja-
cent normal tissues.
Finally, comparison of gene expression between early

and advanced T cells revealed that the cytolytic molecule
GZMA highly expressed in T cells derived from early CRC
tumor (Figure 3F and Figure S2B). Upregulated GZMA in
CRC (from TCGA) was also found to be associated with
longer PFS (P= 0.036) (Figure 3G). Therefore, impairment
of T-cell-meditated immune response and enrichment of
mast cell could be a factor for poor prognosis of CRC.
Taken together, we observed the distinct T-cell immune

profiles of CRC tumor and normal tissues. Addition-
ally, the same T-cell subpopulations possessed different
expression patterns in several pathways depending on
their origins of either tumor or normal tissues.

2.3 Landscape of the heterogeneity and
diversity of B cells in tumor
microenvironment

In this study, a large number of B lymphocytes were
found in tumor tissues, less than T lymphocytes, and
accounted for 30.6% of all immune cells in primary CRC
(Figure 1C). To further understand the heterogeneity of B
cells and their immunological properties, we performed
refined clustering of B cells, and identified three subpop-
ulations of MS4A1+ B cells and three plasma cell subsets
(Figure 4A and Figure S3A, Table S4). Two of the B-cell
subsets were designated as tissue-resident memory B cells
as they showed the hallmark CD69 and CD44 expression
(Figure S3B).27
Two of the plasma cell subpopulations (Cluster_2

and Cluster_3) highly expressed IgA-related genes
(IGHA1/2) (Figure 4A,B). Immunoglobulin κ constant
(IGKC) was highly expressed in Cluster_2, also des-
ignated as IgA+IGKC+ cells. Cluster_3, also classified
as IgA+IGLC2+ cells, were distinguished in the high
expression of Ig lambda (IGL) genes (IGLC2 and IGLC3),
but low expression of IGKC. IgAs are a class of antibodies
that are mainly distributed in mucosal areas, such as the
gastrointestinal tract, respiratory tract, and genitourinary
tract, and play an important role in preventing pathogen
colonization.28 IGKC has been found to be associated with
favorable prognosis in breast cancer, CRC, and non-small
cell lung cancer.29,30 The third one, Cluster_5 plasma
cells (IgG+), expressed immunoglobulin heavy constant
gamma genes (IGHG1-4), indicating that they specifically
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F IGURE 3 Interregion comparisons of T-cell subpopulations. A, The percentage of cells in different T-cell subpopulations in tumor and
nontumor tissues. B, The percentage of cells in different T-cell subpopulations in different dissection regions. C,Differences in pathway activities
between tumor and nontumor T subtypes as scored per cell by GSVA. The t-values from a linearmodel corrected for patient of origin are shown.
D, The expression of ACAT1 in cytotoxic T cells from tumor and nontumor tissues. E, Survival analysis based on the expression status of ACAT1
(normalized by CD3G) in TCGA COAD and READ. F, GZMAwas highly expressed in T cells from early CRC tumor. G, Survival analysis based
on the expression status of GZMA. NS, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001, as determined by Student’s t-test.
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F IGURE 4 A distinctive landscape of B-cell subpopulations in colorectal adenocarcinoma (CRC). A, Uniform Manifold Approximation
and Projection algorithm (UMAP) plot of 1940 B cells, color-coded by their associated cluster and bar plot shows distribution of cell clusters
among patients (top) or sample tissue origin (bottom). B, UMAP plot, color-coded for the expression level (gray to red) of marker genes in each
cell type. C, The percentage of IgG plasma cells in tumor and nontumor tissues. D, The percentage of IgG plasma cells in tumor and nontumor



10 of 20 WANG et al.

secreted IgG antibodies (Figure 4B). IgG+ plasma cells
were significantly enriched in tumor tissues and their
infiltration level gradually decreased along the center to
the periphery of the tumor (Figure 4C). In the validation
cohort, we also identified four plasma-cell subtypes
including IgA+IGKC+, IgA+IGLC2+, IgG+, and IgM+

plasma cells, and a group of plasma cells with unique
profile of immunoglobulin variable region genes, which
resided only in normal tissue from an individual patient
(Figure S4A,B). The infiltration of IgG+ plasma cells was
also found to be higher in tumor in validation cohort
(Figure 4D), but the difference was insignificant. This may
be due to the biases associated with the two platforms
(Smart-seq2 and DNBelab C4), which led to loss in certain
cell populations in validation cohort. Consistent with
the results in the discovery and validation cohorts, FACS
analysis showed the abundance of IgG+ plasma cells in
the CRC tumor tissues (Figure S4C).
B-cell receptor (BCR) diversity of infiltrating B cells is

important for TME. It has been previously reported that in
some cancers the BCR light chain diversity of infiltrating
B cells in the tumor region was significantly higher than
the B cells in the nontumor region.31 Interestingly in our
study, theBCR light chain showedhigh diversity and abun-
dance in both tumor and nontumor tissues; however, these
two tissues did not differ significantly fromeach other (Fig-
ure 4E). This can be explained by the fact that the immune
systemof the gastrointestinalmucosa is influenced or com-
plicated by antigens from the gastrointestinal microbiota
and food intake.15,16 Wenext askedwhether therewere spe-
cific types of BCR genes expressed only in the tumor tissue
of CRC. Although most of the light chain variable region
genes (IGLV genes and IGKV genes) were not uniquely
expressed in B cells in the tumor region, the abundance of
each variable region genes in tumor and nontumor regions
was indeed different (Figure 4F). The variable region genes
that showed significant differences in abundance between
tumor andnormal regions, such as IGLV2-8, IGLV3-25, and
IGLV2-14 (Figure 4F), might be associated with antitumor
antibodies or with disordered gastrointestinal microbiota
in CRC.32
In summary, we provided a landscape of B lymphocytes

in CRC, and found the different cell components in dif-
ferent regions. Furthermore, we found a set of BCR light
chain variable region genes expressed differentially in the
tumor region, which should help to gain deeper insight
into the humoral immunity and the relationship between
gastrointestinal microbiota and tumor progress for CRC.

2.4 Various B-cell subtypes execute
different antitumor responses in CRC

Infiltrating B cells are commonly observed in a variety
of tumor tissues,33–35 yet their reported correlation with
patient outcomes has been inconsistent.34,36,37 For exam-
ple, the infiltration of MS4A1+ B cells and plasma cells
in tumor lesion was related to favorable prognosis in
breast cancer, non-small cell lung carcinoma, melanoma,
and CRC.30,38–40 However, other studies have shown
that increased infiltration of MS4A1+ B and plasma cells
is associated with poor prognosis in epithelial ovarian
cancer and invasive ductal breast cancer41,42 We hypoth-
esized that this inconsistency may be due to the presence
of distinct B-cell subpopulations performing distinct
biological functions masked by bulk analysis. To reveal
the association of different B-cell subtypes with CRC
prognosis, the features of B-cell subtypes were quantified,
and the relationship between these features and the CRC
prognosis was analyzed in a CRC cohort from TCGA. The
results showed that CRC patients with higher levels of
IgA+IGLC2+ plasma cells tended to have poor prognoses
(Figure 5A and Figure S3D). Conversely, high cycling
B-cell (Cluster_4) scores were associated with prolonged
survival. These results indicate that B-cell subpopulations
may indeed have distinct roles in the antitumor response in
CRC.
We next compared the expression profiles of tumor-

derived and normal tissue-derived B-cell subsets
IgA+IGLC2+ plasma and cycling B cells. For IgA+IGLC2+
plasma cells, allograft rejection, interferon-alpha response,
interferon-gamma response, and inflammatory response
were enhanced in the tumor-derived cells, indicating
the involvement in promoting inflammatory responses
in tumors. However, angiogenesis and activation of
IL-6-mediated JAK/STAT3 signaling was also observed
in these cells. According to a previous study, activa-
tion of angiogenesis in tumor-derived cells has been
shown to be associated with poor CRC prognosis.43
In addition, The IL-6-mediated JAK/STAT3 signaling
pathway is closely related to the formation of inflam-
matory bowel disease and diverse human solid tumors,
including CRC.47,48 For cycling B cells, stress-related
responses including reactive oxygen species pathways,
unfolded protein responses, and ultraviolet responses
were activated in the tumor-derived cells, and so was
the enhancement of cell proliferation-related pathways
(Figure 5C).

tissues from validation cohort. E, Frequency of B cells expressing immunoglobulin (Ig) light chain variable genes in B-cell population. Only 56
genes having expression across 20 B cells (1%) were selected to compare the frequency between tumor and nontumor region. F, The calculated
enrichment score in tumor of 56 light chain variable genes in (E). Enrichment score in tumor = [frequency in tumor region] − [frequency in
nontumor region]. NS, P > 0.05; *P < 0.05; **P < 0.01; ***P <0 .001, as determined by Student’s t-test.
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F IGURE 5 Characterization of B-cell subpopulations in colorectal adenocarcinoma (CRC). A, The Kaplan-Meier overall survival curves
of TCGACRC patients grouped by the mean expression of feature of IgA+IGLC2+ plasma cells and cycling B cells. B, Violin plot comparing the
gene expression of B cells from early and advanced CRC tumors from discovery cohort (left panel) and Zhang et al. (right panel). NS, P > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001, as determined by Student’s t-test. C, Differences in pathway activities between tumor and nontumor B-cell
subtypes as scored per cell by GSVA. The t-values from a linear model corrected for patient of origin are shown; dn, down; UV, ultraviolet; v1,
version 1; v2, version 2.

To explore the association between TNM-stage and B-
cell activity, we conducted differential expression anal-
ysis for B cells from early and advanced CRC tumors
(Figure S3E). An antiproliferative protein gene BTG1 was
highly expressed in infiltrating B cells of the early CRC
tumor (Figure 5B). Pre-B lymphocyte protein 3 gene
(VPREB3), which is thought to be involved in B-cell mat-
uration and development,41 was also upregulated in early
CRC tumor (Figure 5B). Moreover, the B-cell marker
MS4A1 was upregulated, and the plasma cell marker
JCHAIN was downregulated in early CRC tumor (Figure
5B). TCL1A and BTG1, which are highly expressed in B
cells from early CRC tumor (Figure 5B and Figure S3E),

are reported as tumor suppressors in cervical cancer and
CRC, respectively44–46. In addition, plasma cellsweremore
abundant in advanced CRC and vice versa (Figure S3C).
These results indicate that B cells from early CRC tumors
are pre-B like cells and may have antitumor capabilities,
while B cells from advanced CRC tumors fully develop into
plasma cells.
Taken together, these analyses of the B-cell subpopula-

tions in CRC expand our understanding of B-cell activities
during the progression of CRC. Prognostic correlation
analysis revealed a link between two B-cell subsets and
prognosis, which provides a useful clue for the clinical
treatment of CRC.
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2.5 Transitions in cell-cell interactions
in the CRCmicroenvironment reshape
immune capability

The immune microenvironment formed by the interac-
tion between immune cells affects the occurrence and
progression of tumor cells.43 We used CellPhoneDB47 to
analyze the interaction between immune cells in CRC
(See Section 4). By comparing the interaction network
between tumor tissues and nontumor tissues, we found
that the communication of myeloid cells with other
immune cells was significantly increased in tumor tissues
(Figure 6A,C). This suggests that myeloid cells may act as
hub for regulating the immune responses in CRC tumors.
Interactions of IgA+IGLC2+ plasma cells, γδ T cells, and
cycling T with other immune cells also increased, while
interactions of the CD4+ T cells with the myeloid cells and
most T cells decreased (Figure 6A,C). It can, therefore,
be hypothesized that immunoregulatory functions in
CRC primarily depend on the myeloid cells and B cells
rather than on the CD4+ regulatory T cells. Comparing
cell-cell interactions for early and advanced CRC tumors
indicates that cell-cell interactions were more complex,
and the B lymphocytes interaction increased in advanced
CRC tumors (Figure 6B). Notably, IgA+IGLC2+ plasma
cells, which were associated with poor prognosis in CRC,
showed a significant interaction with the myeloid cells
and cytotoxic T cells in advanced CRC tumors.
TILs sense tumor antigens and are activated by antigen-

presenting cells to become the primary final effectors of
tumor cell death.48 The ability of T cells to fight tumors
depends on their invasive site and the balance between cos-
timulation and immune suppression.49 To reveal how the
state of T cells is regulated by other immune cells in CRC,
we evaluated the expression of immune response, immune
stimulation, inhibition, and chemokine-related genes of T
cells in tumor and adjacent normal tissues, as well as the
interactions between T cells and other immune cells (Fig-
ure S5A). In CRC tumor infiltration sites, CD28-CD80 cos-
timulation signaling was observed in the myeloid cell-T
cell interactions (Figure 6D). Interestingly, CD48-CD244
interactions were also enriched in the myeloid cell-T cell
and B cell (B0 and B1)-T cell interactions. Previous studies
have shown that CD244 is associated with T-cell exhaus-
tion in tumors.50 CD52 is a regulatory molecule that binds
to SIGLEC10 and inhibits T-cell activation.51 In our study,
B cells (B0, B1, and B4) and myeloid cells expressing CD52
tended to interact with and inhibit various SIGLEC10+ T
cells (Figure 6D). The CCL8/CCR5 signaling axis is known
to recruit CCR5+ T cells.52 In our study, IGLC2+ plasma
cells and cycling B cells (B3 and B4) expressing CCL8
interacted with CCR5+ T cells in CRC (Figure 6D). These

results indicate that the myeloid cells exhibit both proim-
mune and immunosuppressive activities in CRC, and the
IGLC2+ plasma cells and cycling B cells in CRC can recruit
CCR5+ T cells to tumor lesions.
Moreover, nonimmune cells were obtained in valida-

tion cohort. To further investigate cell-cell interactions
between immune/stoma cell and epithelial cells, we
inferred the interactions between epithelial cells and
immune cells as well as stroma cells. First of all, we
grouped epithelial cells into five subtypes according to
cell distribution in sampling site and their transcriptome
profile (Figure S5B-D). Epi1 and Epi2, mainly from tumor
tissue, show lower expression of metallothionein genes
(Figure S5C). Previous study reported that metalloth-
ionein genes were downregulated in CRC tumor tissue.53
Epi1 consisting of cluster 2 and 4 of epithelia also showed
higher cell cycle, epithelial-mesenchymal transition
(EMT), invasion, and metastasis score (Figure S5D),
which indicated that Epi1 may be malignant cell. In tumor
microenvironment, epithelial cells show fewer potential
interactions with immune cells compared with normal
tissue (Figure 6D). We found that endothelial cells from
normal tissue would receive stronger angiogenic stimu-
latory signals from epithelia cells through VEGF and its
receptor FLT1/NRP1/KDR. Epithelia cells in tumor show
a lower activation of tumor necrosis factor signaling from
B cells. Several interaction pairs were found only between
epithelial cells and B cells in tumor tissue, including
SIRPA-CD47 and NRG1-ERBB3 (Figure 6E), which were
related to immune escape and EMT-related metastasis.
In total, epithelial cells may regulate endothelial cells to
form the microvessel in nontumor tissue, and B cells in
CRC may contribute to progress of tumor.
Taken together, these results suggest that myeloid cells

and B cells play a critical role in CRC immune regulation.
The antitumor response of T cells in CRC tumors was acti-
vated and conversely attenuated by myeloid cells in the
TME. This reflects “accelerator” and “brake” mechanisms
of the immune system in CRC.

3 DISCUSSION

It has been widely accepted that TME, and in particular its
immune response, is crucial for the modulation of tumor
progression and responsiveness to therapy.4 Here, we
present a comprehensive single-cell transcriptomic atlas
of 5,345 immune cells isolated from multiple sites of eight
CRC patients, providing a rich resource for understanding
the multidimensional characterization of immune cells in
CRC.
T and B lymphocytes are the predominant infiltrating

cell types in the CRC immune ecosystem. In this study, we
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F IGURE 6 Cell-cell communication in the colorectal adenocarcinoma (CRC) tumor microenvironment. A and B, Network of potential
cell interactions in tumor and normal tissues (A) as well as in early and advanced CRC tumors (B). Width of lines indicates the number of
ligand-receptor pairs between the indicated cell types (interactions with fewer than 20 ligand-receptor pairs are not shown). C, The difference
of number of interaction pairs in different cell types between tumor and nontumor. NS, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001, as
determined by Student’s t-test. D, Overview of selected ligand-receptor interaction pairs in tumor and nontumor tissues. P-value is indicated
by the size of the circle; color indicates the interaction score, which refers to the mean total of all individual ligand-receptor partner average
expression values. E, Network of potential interactions between epithelial cells and immune cells or stoma cells in validation cohort. Width of
lines indicates the number of ligand-receptor pairs between the indicated cell types. F, Overview of selected ligand-receptor interaction pairs
in tumor and nontumor tissues in validation cohort.
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focused on the heterogeneity between different sampling
sites. The distribution of different types of TILs varied
between tumor and normal tissues. In particular, the
proportion of the naïve T cells in tumor tissues was signifi-
cantly lower than in normal tissues, whereas the cycling T
cells exhibited the opposite distribution pattern, indicating
that T cells in tumor tissuesweremore likely to be activated
and be in the proliferation stage. Hepatic metastasis is the
dominant metastatic site for patients with CRC.54 We doc-
umented that the T cells in hepatic metastatic sites were
highly abundant, considering the limitation of sample size,
we validated the existence of HSP+ T cells by immunoflu-
orescence (Figure S2C). In addition, these HSP+ T cells
were characterized by the naïve and inactive features, as
well as HSP genes, which were reported to be related to
T-cell suppression in many studies.21,55 Stimulating these
hepatic metastasis-derived T cells from their naïve state to
the activated statemay be a potential strategy to treat CRC-
associated liver metastatic disease. Also, in the present
study, the tumor-derived cytotoxic T cells showed signif-
icantly enhanced expression of cholesterol homeostasis-
related genes and higher expression of ACAT1. Therefore,
blocking cholesterol synthesis enzymes (such as ACAT1)
in the T cells in tumor tissues may facilitate treatment of
CRC.
B cells are a dominant immune cell type in CRC that

up to now have only been studied to a very limited
extent, and with incompatible opinions on their role in
tumor progression. In this study, we for the first time
identified six subtypes of B cells in CRC and provided a
comprehensive transcriptomic profile, and we suggested
that the previous conflicting results on B-cell effects on
tumors may be due to the diversity in the roles for the
B-cell subtypes. Importantly, we identifiedMS4A1+ B cells
and plasma cells that expressed different Ig isotypes (IgA
and IgG). IgG-secreting plasma cells were dominant in
the tumor center and decreased progressively from the
tumor center to normal adjacent tissue. Previous studies
have shown that higher levels of ex vivo IgG responses
to tumor-associated antigens were related to shorter
recurrence-free survival (RFS) in breast cancer, whereas
IgA levels were not significantly associated with RFS.56
Beyond this, several studies have demonstrated that
IgG was expressed in various cancer cell types and was
involved in the development and growth of tumor cells
including in CRC, LNCaP prostate cancer cells, breast,
liver, and lung cancers.57–59 These results imply that the
blockage of IgG might be a targeted therapy of CRC. Two
B-cell subpopulations (IgA+IGLC2+ plasma cells and
cycling B cells) were found to have opposite effects on
CRC prognosis, as the former correlated with poor patient

survival, whereas the latter correlated with favorable
patient survival. According to cell-cell communication
analysis, the highly proliferative IGLC2+ plasma cells and
cycling B cells were associated with a better prognosis and
may recruit CCR5+ T cells via CCL8 in CRC tumors.
As for the myeloid cells, these cells were shown to be

involved in T-cell exhaustion and activation through differ-
ent ligand-receptor interactions, such as CD48-CD244 and
CD28-CD80. Thismay also be attributed to the heterogene-
ity of myeloid cells. As for the mast cells, we found that
they accumulated more in advanced CRC tumors, which
supports the previous finding that mast cells promote CRC
growth.18 However, the role of mast cells and their interac-
tion with colon cancer cells is still poorly understood. Fur-
ther study on mast cells will contribute to our understand-
ing of its function and immune mechanism in tumors.
Using the validation cohort, we elucidated the intercel-

lular interactions between epithelial cells and immune and
other stroma cells in the TME of CRC. Angiogenic stimu-
latory signals were found to be higher in endothelial cells
from normal tissue, which indicates that vascular formed
around tumor may facilitate metastasis of tumor cells.
The SIRPA-CD47, CXCL12-DPP4, and NRG1-ERBB3 inter-
actions were found betweenMS4A1+ B cells and epithelial
cells in tumor. It has been suggested that blockade of the
SIRPα-CD47 checkpoint may provide a potential new way
to treat cancer.60 In addition, CXCL12 inhibits DPP4 and
accelerates EMT andmetastasis in breast cancer,41 and the
inhibition of ERBB3 signaling suppresses EMT of hepato-
cellular carcinoma.42 The B cells in CRCmay also facilitate
immune escape andmetastasis of tumor, and this provides
a potential target for the treatment of CRC.
Our study suggests that the antibody-producing cells in

TME of CRC were mainly B cells and plasma cells. This
is consistent with increasing evidences that link the gas-
trointestinalmicrobiota and the CRC progression.61–63 Our
single-cell analyses provide a new perspective for the rela-
tionship, as we profiled the BCR in both tumor and non-
tumor regions for CRC patients. While we are unable to
assign specific BCRs to the antigens from gastrointestinal
microbiota, it is reasonable to speculate that the TME of
CRC is coconstructed by gastrointestinal microbiota and
tumor. The relationship between the immune repertoire of
CRC and the gastrointestinal microbiota needs to be fur-
ther explored, which is essential for the development of
novel immune therapies for CRC.
In summary, our study highlights the diverse pheno-

types of immune cells, in particular the B cells, in the
CRC microenvironment. This immune-cell atlas adds to
the resources for identifying clinically relevant predictive
markers for immunotherapy.
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4 METHODS

4.1 CRC patients and tissue samples

This study was approved by the local ethics committee
of Guangdong Academy of Medical Sciences and Gen-
eral Hospital (License No. 2017233H [R2]) and complied
with all relevant ethical regulations. All patients signed
informed consent forms before recruitment.
Fourteen male and four female patients who were

pathologically diagnosed with CRC at the Guangdong
Academy of Medical Sciences and General Hospital were
enrolled in this study. Their ages ranged from 30 to
83 years, with a median age of 61. Among these patients,
two were diagnosed at stage I, four at stage II, nine at stage
III, and four at stage IV. One patient (NR01) with rectal
cancer had received neoadjuvant chemoradiation therapy
before tumor resection, all other patients had not received
radiotherapy or chemotherapy prior to tumor resection.
The available clinical characteristics of these patients are
summarized in Table S1.
Human tissue specimens were collected at the time

of surgery resection under the supervision of a qualified
pathologist. For each patient, three types of fresh tissues
were collected during the operation, including primary
tumor tissue, adjacent noncancerous tissue (to the brim of
matched tumor 3-5 cm), and DNT (to the brim of matched
tumor ≥10 cm). Then, two representative areas of the
tumor center (CT) and the invasive margin (MT) were
selected and cut from the primary tumor tissue. For patient
LC02 andNLC08, liver metastases (Cm) and adjacent non-
cancerous tissues (Pm, to the brim ofmatched tumor 3 cm)
of the liver were also collected. All collected samples were
kept on ice-cold RPMI-1640 medium (Invitrogen) before
processing.

4.2 Preparation of single-cell
suspensions

Two methods were used to prepare single cell suspension.
For patients RC01, RC02, RC03, R01, R02, R03, LC01,

LC02, NR01, NLC03, and NLC04, cancerous tissues and
noncancerous tissues, collected from the primary surgical
or liver metastatic specimens, were mechanically and
enzymatically disaggregated into single-cell suspensions,
following previously published methods.64,65 Briefly,
after the tissue dissection, each tissue was washed with
HPBS twice and cut into small pieces (0.2-0.5 mm3) with
scissors, resuspended in RPMI-1640 medium (Invitrogen)
containing 10% fetal bovine serum (FBS; GIBCO) and
digested into single-cell suspensions with 1 mg/mL type
I collagenase (GIBCO, #17100017) and 0.5 mg/mL type

IV collagenase (GIBCO, #17104019) at 37◦C for 2 hours,
flick every 30 minutes. After dissociation, cell suspensions
were serially filtered with a 40 μm cell strainer (BD) and
centrifuged at 500 × g for 5 minutes, the supernatant
was discarded and the cell pellet was resuspended with
1 mL of freezing buffer (90% FBS with 10% DMSO). Cells
were then transferred into a Nalgene Mr Frosty Cryo 1◦C
freezing container (Thermo Fisher Scientific, #5100-0001)
and placed at −80◦C for 12 hours before being transferred
to liquid nitrogen for storage.
For the other patients, cancerous tissues and noncancer-

ous tissues were separately cut into approximately 1-2mm3

pieces in the DMEM medium (Biosharp) with 10% FBS
(GIBCO), and enzymatically digested with MACS tumor
dissociation kit (Miltenyi Biotec) for 30 minutes on a rotor
at 37◦C, according tomanufacturer’s instruction. After dis-
sociation, cell suspensions were serially filtered with a
40 μm cell strainer (BD) and centrifuged at 400 × g for
8 minutes, then the supernatant was discarded and the cell
pellet was resuspended in red blood cell lysis buffer (Solar-
bio) and incubated on ice for 2 minutes to lyse red blood
cells. Afterwashing twicewith 1×PBS (Invitrogen), the cell
pellets were resuspended in 2mL 1× PBS containing 0.04%
bovine serum albumin (Sangon Biotech, A600903). Quan-
tification of cell yields was performed by both Trypan blue
dye exclusion staining counted with a hemocytometer and
a handheld automated cell counter based on the Coulter
principle (Scepter 2.0, Millipore). The final cell concentra-
tion was adjusted to 1,000 cells/μL for single-cell library
preparation.

4.3 Single-cell RNA-seq process for CRC
patients (Smart-seq2)

For Patient RC01, RC02, RC03, R01, R02, R03, LC01, and
LC02, single-cell RNA-seq were performed by the Smart-
seq2 platform. The cryopreserved single-cell suspensions
from the above eight patients were placed in a 37◦C water
bath for rapid recovery and washed twice with 1× PBS,
then single-cell suspensions were stained with antibod-
ies against CD45 (antihuman CD45, BD Biosciences) for
FACS sorting. Single cells of different subtypes of immune
cells were sorted into 72 × 72-microwell chips (WaferGen
Biosystems) with lysis buffer (10% Triton X-100 0.5 nL,
40 U/μL RNase inhibitor 1.25 nL, 10 μM Oligo-dT primer
12.5 nL, 10mMdNTPmix 12.5 nL, and spike-inRNAs 10 nL,
nuclease-freewater 13.25 nL) dispensed into everymicrow-
ell on the chip.
We prepared single-cell transcriptome amplifications

by the MIRALCS method following a modified Smart-
seq2 protocol.66 The External RNA Controls Consortium
(ERCC) spike-in mRNAs (1:50,000 , Ambion, Life Tech-
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nologies) were added into the lysis buffer as the exogenous
spike-in control before the reverse transcription. We quan-
tified the amplified cDNA products of each single cell by
SmartChip real-time PCR with the values of cycle thresh-
old, melting temperature, and Agilent Bioanalyzer 2100.
The single-cell samples with high quality after amplifi-
cation were extracted by an automatic extractor from the
chip to a 96-well plate and then used for library construc-
tion. We prepared the libraries according to the MIRALCS
method,66 but cyclized the libraries into ssDNA libraries
at the last step. Each single-cell sample was labeled with
a barcode. All single-cell samples were sequenced by a
BGISEQ500 sequencer with 100-bp single-end reads.

4.4 Single-cell RNA-seq process for CRC
patients (DNBelab C4)

For Patients NRC01, NRC02, NR01, NLC03, NLC04,
NLC05, NLC06, NLC07, NLC08, NLC09, and NLC10,
single-cell RNA-seq were performed by the DNBelab
C4 platform. The DNBelab C Series Single-Cell Library
Prep Set (MGI, #1000021082) was utilized as previously
described.17 In brief, single-cell suspensions were used for
droplet generation, emulsion breakage, beads collection,
reverse transcription, and cDNA amplification to generate
barcoded libraries. Indexed single-cell RNA-seq libraries
were constructed according to the manufacturer’s proto-
col. The sequencing libraries were quantified by QubitTM
ssDNA Assay Kit (Thermo Fisher Scientific, #Q10212).
DNA nanoballs (DNBs) were loaded into the patterned
nano arrays and sequenced on the ultra-high-throughput
DIPSEQ T1 sequencer using the following read length:
30 bp for read 1, inclusive of 10 bp cell barcode 1, 10 bp cell
barcode 2, and 10 bp unique molecular identifier (UMI),
100 bp of transcript sequence for read 2, and 10 bp for
sample index.

4.5 Comparing IgG+ plasma cells from
different tissue sites by flow cytometry

Single cells from fresh primary tumors, adjacent non-
cancerous tissue, and distal noncancerous tissue were
obtained. After blocking with Fc Receptor Blocking Solu-
tion (Biolegend Cat #422301), cell surface staining was per-
formed in FACS buffer containing antibody cocktails (anti-
CD45, anti-CD38, anti-CD19) on ice for 1 hour. For detec-
tion of total IgG, cells were stained for both surface IgG
and intracellular IgG. The intracellular IgG was strained
by using an Intracellular Fixation and Permeabilization
Buffer Set (BD Biosciences Cat #558126) according to the
manufacturer’s protocols.

4.6 HE and IF staining of hepatic
metastatic tumor in CRC patients

Human tissue specimens were provided by Guangdong
Academy of Medical Sciences and General Hospital. The
specimens were collected within 30 minutes after the
tumor resection and fixed in formalin for 48 hours.
Dehydration and embedding in paraffin was performed
following routine methods. Specimen slices were cut
from paraffin-embedded tissue blocks with a microtome,
deparaffinized and rehydrated. For HE staining, the slices
were sequentially immersed in HE. For IF staining, the
slices were further processed, including antigen retrieval,
blocking of endogenous peroxidase, primary antibody
incubation (included CD3 epsilon antibody [1:200, Affinit
#DF6594] and HSP70 antibody [1:200, Affinit #AF5466]),
secondary antibody incubation (included Alexa Fluor
647-labeled goat anti-rabbit IgG [H+L], [1:200, Beyotime
#A0468], and FITC-labeled goat anti-rabbit IgG [H+L]
[1:200, Beyotime #A0562]), and nuclear staining (DAPI).
Finally, the slices were sealed with mounting medium for
imaging. Images were taken on a LSM800 (Carl Zeiss) con-
focal microscope with 100× oil immersion lens.

4.7 Acquisition of single-cell gene
expression matrices and cell clustering

Raw reads were cleaned using Cutadapt (Version 1.15)
and mapped to hg38 using STAR (Version 020201). Gene
expression levels of each cell were quantified using RSEM
(Version 1.3.0) and combined in R (Version 3.5.1). Cell
clustering was accomplished by the Seurat R package
(Version 3.0.1).67 Cells with less than 500 genes (TPM > 1)
or over 20% TPM derived from the mitochondrial genome
were removed, after which 5345 cells remained. Only
protein-coding, TCR, and IG genes were used for cluster-
ing, and genes expressed (TPM > 1) in less than three cells
were discarded. TPM matrices from each patient were
log-normalized, and 2,000 variably expressed genes were
selected using Seurat’s FindVariableFeatures function. To
remove batch effects, TPM matrices of different patients
were integrated by Anchors, using the FindIntegrationAn-
chors and the IntegrateData functions from the Seurat
R package. To reduce dimensionality, variably expressed
genes were summarized by principle component anal-
ysis. The t-distributed Stochastic Neighbor Embedding
algorithm loses global structure due to a focus on local
information,68 and as such we chose the Uniform Man-
ifold Approximation and Projection (UMAP) algorithm
to visualize the data.69 The top 10 principle components
(PCs) were used as input to the RunUMAP function with
default settings. The top 10 PCs were used as inputs in the
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FindClusters function with the “resolution” parameter
set to 1.0 to find clusters. Cell clusters in the resulting
two-dimensional representation were annotated to known
biological cell types using canonical marker genes (Fig-
ure S1A). Of note, very few lymphocytes (∼4%) were
positive for cell proliferation markers. We therefore opted
not to correct our gene expression matrices for effects of
cell cycle. To better identify T-cell and B-cell subtypes, we
extracted T cells and B cells and ran Seurat, respectively.
Parameters were the same as introduced previously, except
resolution was adjusted to 0.6 for T cells.
For DNBelab C4 data, raw sequencing reads were

filtered and demultiplexed using PISA (Version 439
0.2; https://github.com/shiquan/PISA). The filtered reads
were aligned to hg38 genome using STAR and sorted by
sambamba (Version 441 0.7.0). Cell versus geneUMI count
matrix was generated using PISA. Cells with less than 500
genes (UMI > 1) or over 25% UMI derived from the mito-
chondrial genome were removed, after which 9,770 cells
remained. The clustering parameter was similar to Smart-
seq data, with PC usage set to 20.
We used harmony (https://github.com/immuno

genomics/harmony) to integrate the data from two
platforms with 20 PCs.

4.8 Identifying marker genes

We used the Seurat’s FindAllMarkers function to identify
marker genes for each cluster. This function contrasted
cells from each cluster to all other cells of that cluster. The
“RNA” assay and the “Wilcox” test were used for the func-
tion. Marker genes found by the FindAllMarkers function
were required to have an average expression in that clus-
ter that was >1.5-fold higher than the average expression
in the other clusters, and a detectable expression in >15%
of cells from that cluster.
Marker genes of main cell types (Table S2), T-cell sub-

types (Table S3), and B-cell subtypes (Table S4) were iden-
tified separately as described above.

4.9 Cell developmental trajectory

Cell lineage trajectory of T cells was inferred by using
Monocle2.22 We first used the “relative2abs” function in
Monocle to convert TPM into normalized mRNA counts
and created an object with parameter “expressionFam-
ily = negbinomial.size” following the Monocle2 tutorial.
We used the “differentialGeneTest” function to derive
differentially expressed genes from each cluster and genes
with q-value< 1e-5were used to order the cells in a pseudo-
time analysis. After the cell trajectories were constructed,

differentially expressed genes along the pseudotime were
detected using the “differentialGeneTest” function.

4.10 TCR analysis

We used the TraCeR70 method to assemble TCR sequences
for T cells. TraCeR can identify rearranged TCR chains and
calculate their TPM values. After assembly, we arranged
the productive TCR chains of every T cell by their TPM
values. For example, if two TCRα chains were assembled
in one single cell and were both productive, the chain with
the higher TPM was defined as TCRα1, while the chain
with the lower TPM being defined as TCRα2. Nonproduc-
tive TCR chains were excluded. The same arrangement
was deployed on TCRβ. We kept cells with at least one pair
of productive TCRα and TCRβ chain for subsequent analy-
sis. We used a strict standard to define TCR clones: cells
with the same TCRα1 and TCRβ1 were considered to be
one TCR clone, while the expanded clones were defined
as clones with at least two cells sharing the same TCRα1
and TCRβ1 in a given cell population.

4.11 GSVA and differential activities of
pathways

Pathway analyses were predominantly performed on the
50hallmark pathways described in themolecular signature
database. To assign pathway activity estimates to individ-
ual cells, we applied GSVA71 using standard settings, as
implemented in the GSVA package (Version 1.30.0). Dif-
ferential activated pathways between cells from tumor and
nontumor tissues were tested using the generalized linear
model from the Limma package (Version 3.38.3), and
P-values were Benjamini-Hochberg-corrected. Pathways
with adjusted P-value < .05 were considered to be signif-
icantly differentially activated. Tumor features, cell cycle,
EMT, invasion, and metastasis, were quantified using
genes involved in these pathways by GSVA (Table S5).

4.12 Survival analysis

The TCGAprovisional datawere used to evaluate the prog-
nostic effect of gene sets derived from specific cell clusters.
The provisional gene expression and survival data of the
TCGAwere accessed using CBioPortal. We used Limma to
perform differential expression gene analysis for each clus-
ter and defined genes with more than two-fold increase
in expression in one cluster compared to the other clus-
ters as “signature genes.” For the signature gene sets of
each cluster, we calculated a “gene signature score” for

https://github.com/shiquan/PISA
https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
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each patient using fold-change values for each gene in the
signature to weigh genes in calculations of the average.
Then, patientswere grouped into high- and low-expression
groups by the median value of the “gene signature score.”
To correct for clinical covariates including age and histo-
logical grade, we performed multivariable analyses using
Cox proportional hazard survivalmodels to obtain the haz-
ard ratio and adjusted P-value.

4.13 Cell-cell interaction analysis

To analyze cell-cell interactions between different cell
types, we used CellPhoneDB47 to identify significant
ligand-receptor pairs within early and advanced CRC. The
cell type-specific receptor-ligand interactions between cell
types were identified based on specific expression of a
receptor by one cell type and a ligand by another cell type.
The interaction score refers to the mean total of all indi-
vidual ligand-receptor partner average expression values
in the corresponding interacting pairs of cell types. The
expression of any complex’s output by CellPhoneDB was
calculated as the sum of the expression of the component
genes.

4.14 Statistics and reproducibility

Box plots were generated using the ggplot2 package (ver-
sion 3.2.0) and default parameters. Hence, the boxes span
the interquartile range (IQR; from the 25th to the 75th per-
centiles), with the centerline corresponding to themedian.
The upper whisker extends from the hinge to the largest
value no further than 1.5× IQR from the hinge (where
IQR is the distance between the first and third quartiles).
The lower whisker extends from the hinge to the smallest
value at most 1.5× IQR of the hinge. Data beyond the end
of the whiskers are called “outlying” points and are plotted
individually. Each data point is displayed in the box plots.
Comparisons of cell ratios between two groupswere per-

formed using unpaired two-tailed t-tests.
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