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Life is maintained in a sea water-like internal environment. The homeostasis of
this environment is dependent on osmosensory system translation of hydromineral
information into osmotic regulatory machinery at system, tissue and cell levels. In
the osmosensation, hydromineral information can be converted into cellular reactions
through osmoreceptors, which changes thirst and drinking, secretion of antidiuretic
vasopressin (VP), reabsorption of water and salt in the kidneys at systemic level as
well as cellular metabolic activity and survival status at tissue level. The key feature of
osmosensation is the activation of mechanoreceptors or mechanosensors, particularly
transient receptor potential vallinoid (TRPV) and canonical (TRPC) family channels, which
increases cytosolic Ca2+ levels, activates osmosensory cells including VP neurons
and triggers a series of secondary reactions. TRPV channels are sensitive to both
hyperosmotic and hyposmotic stimuli while TRPC channels are more sensitive to
hyposmotic challenge in neurons. The activation of TRP channels relies on changes
in cell volume, membrane stretch and cytoskeletal reorganization as well as hydration
status of extracellular matrix (ECM) and activity of integrins. Different families of TRP
channels could be activated differently in response to hyperosmotic and hyposmotic
stimuli in different spatiotemporal orders, leading to differential reactions of osmosensory
cells. Together, they constitute the osmosensory machinery. The activation of this
osmoreceptor complex is also associated with the activity of other osmolarity-regulating
organelles, such as water channel protein aquaporins, Na-K-2Cl cotransporters,
volume-sensitive anion channels, sodium pump and purinergic receptors in addition
to intercellular interactions, typically astrocytic neuronal interactions. In this article,
we review our current understandings of the composition of osmoreceptors and the
processes of osmosensation.

Keywords: cytoskeleton, extracellular matrix, integrin, transient receptor potential canonical channel, transient
receptor potential vallinoid channel, vasopressin

Since the concept of homeostasis of internal environment was introduced by Claude Bernard and
Walter B. Cannon about 100 years ago (Modell et al., 2015), the importance of hydromineral balance
in life processes has been extensively explored. However, the identity of osmoreceptors that can
detect changes in hydromineral balance and initiate osmotic regulation remains elusive. In this
article, we review our current understandings of this osmosensory machinery.
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OSMOSENSATION

Osmosensation requires functioning of osmoreceptors that
detect hydromineral disturbance and initiate osmoregulation
(Knepper et al., 2015). In the CNS, hypothalamic magnocellular
vasopressin (VP) neurons in the supraoptic (SON),
paraventricular (PVN), and their accessory magnocellular
nuclei (Rhodes et al., 1981) and neurons in the circumventricular
organs are considered as the main components of central
osmosensory system (McKinley et al., 2004). The central
osmosensation involves local neuronal activity, astrocytic
plasticity, blood-borne factors, direct osmotic stimuli and
autoregulation (Scott and Brown, 2010; Wang et al., 2011;
Pedrino et al., 2014); however, the essential requirements for
osmosensation are still the ability of osmosensory cells to sense
hydromineral changes.

Noteworthy is that other neurons outside of this central
osmosensory system can also sense changes in osmotic pressure,
such as oxytocin neurons in the SON and PVN (Kortus et al.,
2016) and hippocampal neurons (Arranz et al., 2014). In
addition, cognitive activity of the cerebrum can exert anticipatory
regulation of VP neuronal activity during drinking (Mandelblat-
Cerf et al., 2017). In peripheral sites, many types of tissues
and cells have the capacity of osmosensation (Pedrino et al.,
2014), typically seen in the digestive tract (Zhu et al., 2001) that
could change VP neuronal activity through medulla-mediated
viscerosensory inputs (Rinaman, 2007). Thus, osmosensation is
likely a universal feature among different tissues/cells.

The activation of osmosensory system can change thirst
and drinking, secretion of antidiuretic VP, and reabsorption
of water and salt in the kidneys (Wang et al., 2011; Danziger
and Zeidel, 2015) as well as VP gene transcription following
increase in cAMP (Arima et al., 2001), cellular metabolic activity
and survival status (Moeckel et al., 2006; Hollborn et al., 2015),
thereby helping the body and its parts to restore hydromineral
balance.

MAJOR CELLULAR EVENTS EVOKED BY
OSMOTIC STRESS

Osmosensation is closely associated with the following cellular
events.

Electrochemical Events
Early studies showed that hyperosmotic stress activates stretch-
inactivated cation channels (SICs) and increases the excitability
of VP neurons (Voisin and Bourque, 2002). In contrast, short
hyposmotic stimulation inactivates the SICs, hyperpolarizes VP
neurons and thus reduces VP secretion (Kusano et al., 1999).
Further studies showed that the SICs are associated with a class
of transient receptor potential (TRP) vallinoid (TRPV) channels
since TRPV1- (Sharif Naeini et al., 2006) and TRPV4-null mice
(Liedtke and Friedman, 2003) showed reduced hyperosmotic
reactions in the organum vasculosum of lamina terminalis.

Further studies reveal that these SICs could also be stretch-
activated cation channels because hyposmotic challenges can
increase intracellular Ca2+ concentration through activation of

TRPV1, TRPV2, TRPV4 in Merkel cells from hamster buccal
mucosa (Soya et al., 2014), TRPV4 in acinar cells (Aure et al.,
2010) and in nonpigmented epithelial cells (Jo et al., 2016).
Consistently, in acute hyponatremic condition, serum VP levels
increase significantly following initial inhibition (Yagil and
Sladek, 1990), which reflects a reactivation of VP neurons
following the initial inhibition (Wang et al., 2013a,b) through
the mechanism of ‘‘resetting osmosensory threshold at the local
neural circuit’’ (Wang et al., 2011). Clearly, the activation of
these TRPV channels could occur under both hyperosmotic and
hyposmotic challenges.

In fact, many other ion channels are also involved in
osmosensation, such as TMEM63 proteins found in Arabidopsis
(Zhao et al., 2016), TRP ankyrin-1 and TRP melastatin-8
channels in Merkel cells from hamster buccal mucosa (Soya et al.,
2014) and P2X receptors that are membrane ion channels gated
by extracellular ATP (Fountain et al., 2007). Among them, TRP
canonical (TRPC) 5 channel (Jemal et al., 2014) and TRPC6
(Wilson and Dryer, 2014) were found to sense hyposmotic
stretch but not hyperosmotic stimulus. Thus, many TRP
channels are involved in and play dual role in osmosensation and
thus are not specifically bound to hyperosmotic or hyposmotic
stimulus; however, TRPC could be more selective to hyposmotic
challenge.

Plasticity of Cytoskeletal Elements
Cytoskeletal elements including actin filament and microtubule
have direct molecular association with the C-terminus of
TRPV4 revealed in co-immunoprecipitation (Goswami et al.,
2010), and thus could be important regulator of TRP channel
activity in osmosensation. Blocking actin polymerization
(Prager-Khoutorsky and Bourque, 2010) or disrupting
microtubule network (Prager-Khoutorsky and Bourque, 2015)
can block hyperosmolarity-evoked activation of osmosensory
neurons in rat brain slices. Thus, an increased interactions
between microtubule network with TRPV1 during cell shrinkage
could account for hyperosmotic activation of osmosensory
neurons (Prager-Khoutorsky and Bourque, 2015). However,
this hypothesis could not explain hyposmotic intracellular
Ca2+ increase (Aure et al., 2010; Soya et al., 2014; Jo et al.,
2016), the recovery of VP neuronal activity from hyposmotic
inhibition (Wang et al., 2013a,b) and the increased VP secretion
during volemic increase in chronic osmotic stress (Zhang
et al., 2001). Here, referring to the hearing mechanism
(Sukharev and Corey, 2004; Martinac, 2014), we propose
that if hyperosmotic activation of TRP channels is due to
a ‘‘push’’ of microtubule network (Prager-Khoutorsky and
Bourque, 2015), the hyposmotic activation of TRP channels
should be because of a ‘‘pull’’ of the network in coordination
with conformational changes in other cellular components
(Figure 1A).

CELLULAR VOLUME

Change in cell volume is a common and remarkable
phenomenon in response to hydromineral disturbance.
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FIGURE 1 | Schematic diagram of hypothetical osmoreceptors and osmosensation. (A) Composition of osmoreceptors and osmosensation at resting
condition. Cation along with water binds with extracellular matrix (ECM) that interacts with integrins embedded in plasma membrane and spatially-conjugated with
transient receptor potential (TRP) vallinoid (TRPV) and canonical (TRPC) family channels. The ECM-integrin-TRP channel complex could bind to microtubule network
directly or through actin filaments. The integrins and cytoskeletal networks connected with TRPVs and TRPCs could be different, which would allow hyperosmotic
cell shrinkage and hyposmotic swelling to activate the two families in different manners. (B) Hyperosmotic stimulus (stim.). (Ba) Initial cellular reactions. The ECM
binding with cation and water activates TRPV-associated integrins and the ensuing conformational change of integrins leads to partial opening of TRPVs. However,
the integrin subunits binding to TRPCs could be different from that to TRPVs and show no activation during cell shrinkage. (Bb) Cellular reactions toward full cell
shrinkage. Hyperosmotic environment draws water outflow from intracellular compartment, decreases cell volume and increases the pushing force (black arrows) of
cytoskeletal network for the full opening of TRPVs. (Bc) Regulatory volume increase (RVI) following full cell shrinkage. Activation of TRPVs triggers oscillatory
cytosolic Ca2+ increase, activates mitogen-activated kinases, and installs more aquaporins on the membrane, thereby leading to a RVI, which could reduce
microtubule-associated TRPV opening but cause partial opening of TRPCs through relative volemic increase that yields a pulling force between TRPCs and
cytoskeletal network. As a result, hyperosmotic activation of osmosensory neurons occurs. (C) Hyposmotic stimulus. (Ca) Initial cellular reactions. Hyposmotic
environment decreases the activity of integrins by uncoupling ECM with integrins but initiates cell swelling, leading to complete inhibition of TRPVs. The swelling and
mild membrane tension causes partial activation of TRPCs, which could result from a pulling force (black arrows) of cytoskeletal network. At this stage, weakly
increased cytosolic Ca2+ through TRPCs could activate K+ current and thus, inhibition of osmosensory neurons occurs. (Cb) Cellular reactions toward full cell
swelling. As water increasingly gets into the cells and increases intracellular volume, increased interactions between ECM and TRPV-associated integrins cause
activation of TRPVs while further activating TRPCs. As a result, reversal of hyposmotic inhibition occurs. (Cc) Regulatory volume decrease (RVD) following full cell
swelling. As the swelling of cells proceeds, volume-/stretch-sensitive anion channels are also activated, which leads to RVD and volume reduction. Once the RVD
occurs, interactions between microtubule networks and TRPVs also increase while opening of TRPCs is partially decreased. As a result, osmosensory neurons could
show prolonged excitation or apoptotic alteration.

Hyperosmotic stress evokes cell shrinkage which could
be followed by a regulatory volume increase (RVI) while
hyposmotic challenge causes cell swelling before a regulatory

volume decrease (RVD) occurs, which have been shown
in cultured neurons (Zhang et al., 2001), astrocytes
(Eriksson et al., 1992; Evanko et al., 2004) and hepatocytes
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(Mundinger et al., 2012). Hence, we further analyze the
contribution of these volume changes to osmosensation.

Change in cell volume is an essential driving force of
osmosensation. In neurons, progressive decline in cell volume
leads to increase in neuronal activity (Figures 1Ba,Bb), and
effects of shrinking evoked by mechanical aspiration are
quantitatively equivalent to that of hyperosmotic stress in
mouse organum vasculosum of lamina terminalis neurons
(Ciura et al., 2011). Consistently, cell shrinkage evoked with
sucrose or sorbitol can also activate Swiss 3T3 cells (Lunn
and Rozengurt, 2004). By contrast, cell swelling or membrane
stretch following hyposmotic challenge can also activate TRP
channels (Figures 1Ca,Cb), such as TRPV2 in freshly isolated
cells from mouse aorta (Muraki et al., 2003), TRPV1, TRPV2
and TRPV4 in mouse odontoblasts (Sato et al., 2013), etc.
Consistently, TRPC5 channels of sensory neurons can also be
activated by intracellular application of steps of positive pressure
through the patch pipette in the whole-cell configuration (Gomis
et al., 2008). Noteworthy is that transient hyposmotic Ca2+

increase (Sánchez and Wilkins, 2004) can activate Ca2+-activated
K+ channels and that results in inhibition of cellular activity
(Ohbuchi et al., 2010) before the occurrence of RVD. Thus, cell
volume change could account for osmosensation; however, their
excitation or inhibition should be controlled by factors other than
volume change itself.

The volume change, ion channel activity and cellular signaling
process can form a feedback loop. For example, RVD depends
on cation influx following membrane tension during hyposmotic
cell swelling as shown in astrocytes and kidney cells (Hua
et al., 2010). The influx of Ca2+ in turn triggers a series of
cellular signaling events, such as activation mitogen-activated
protein kinases (MAPKs) including c-Jun NH2-terminal kinase,
p38 MAPK and extracellular signal-regulated protein kinase 1/2
(Horiguchi et al., 2011; Shi et al., 2011). The last kinase is known
to activate TRP channels (Ebner et al., 2006; Dine et al., 2014).

Osmosensation also involves some osmotic/volemic rebalance
machineries, such as aquaporin (AQP)4 (Benfenati et al., 2011;
Mola et al., 2016) that mediates water transport and volume
alteration, volume-/stretch-sensitive anion channels that release
organic osmolytes and Cl− from cytosolic compartment to regain
volemic and osmotic balance in swollen cells. Additionally, other
membrane transport organelles, such as sodium pumps, Na-K-
2Cl cotransporters and sodium-hydrogen exchanges, are also
involved in the rebalance of osmolytes across cell membrane (Jia
et al., 2016). By changing osmotic gradients, these machineries
can sensitize or desensitize the osmoreceptors.

In the CNS, astrocytes are the major target of osmotic
disturbance and show remarkable volume changes (Evanko et al.,
2004) relative to neurons (Aitken et al., 1998). Importantly,
astrocytes can influence neuronal activity through multiple
approaches (Wang and Zhu, 2014; Hertz and Chen, 2016;
Wang and Parpura, 2016). For instance, β-alanine release from
astrocytes (Pasantes-Morales et al., 1994) can inhibit astrocyte
GABA transporters and thus inhibits VP secretion through
increasing extracellular GABA (Wang et al., 2013a); coordinated
D-serine metabolism between astrocytes and magnocellular
neurons along with exhaustion of β-alanine and taurine in the

SON can increase NMDA receptor activation, and participate
in the recovery of VP neurons from hyposmotic inhibition
(Wang et al., 2013b). Thus, astrocytes are important osmosensory
cells not only by co-expression of TRPV channels and AQP4
(Benfenati et al., 2011; Mola et al., 2016; Iuso and Križaj, 2016)
but also by astrocytic plasticity-associated neuronal effects (Hou
et al., 2016; Jia et al., 2016).

HYDRATION STATE OF EXTRACELLULAR
MATRIX (ECM)

Hydrated gel on plasma membrane is the first cellular component
to be influenced by hydromineral disturbance. It has been
reported that remodeling of glycocalyx can change membrane
rafts and the actin cytoskeleton (Zeng and Tarbell, 2014) that
in turn modulates TRP channel activity (Prager-Khoutorsky
and Bourque, 2015). This hydrated gel has strong binding
capacity with cation and water, and thus contributes to osmotic
regulation. On cell surface of the SON, there are also abundant
polysaccharide-enriched neural cell adhesion molecule and the
glycoprotein, tenascin-C (Pierre et al., 2001). These extracellular
matrix (ECM) can decrease inter-membrane adhesion mediated
by neural cell adhesion molecule (Loers et al., 2014) and thus
should share the common effects of ECM on other tissues
in osmosensation, such as endothelial cells (Tarbell et al.,
2005), cartilage cells (Likhitpanichkul et al., 2005), hepatocytes
(Mundinger et al., 2012), kidney cells (Shestopalova et al., 2008)
and neurons (Arranz et al., 2014).

We propose that during hyperosmotic stress, ECM binds
with excessive cation, buffers osmotic stress, reduces membrane
stretch (Figure 1Ba) while accelerating water efflux to reduce
intracellular volume (Figure 1Bb), and thus increases the
interactions between integrin, actin filament and microtubules
(Sims et al., 1992; Martinac, 2014). During hyposmotic
challenges, ECM binds with fewer cation and water, which
allows excessive water to get into the cell and increases
intracellular volume, and thus decreases the pushing/opening
force of microtubules on TRPV channels (Prager-Khoutorsky
and Bourque, 2015), resulting in stretch-inactivation of TRPVs
(Figure 1Ca). These proposals are supported by the finding
that in hyaluronan synthase HAS3−/− slices, spontaneous
epileptiform activity in the CA1 hippocampus was blocked
by hyperosmotic stress (Arranz et al., 2014). This is likely
because excessive cation introduced by the hyperosmotic
solution, not bound to ECM in HAS3−/− slices, quickly diffuses
into intracellular space through the Na-K-2Cl cotransporter 2
(Konopacka et al., 2015) and other osmolyte transport organelles
(Jia et al., 2016), and thus increase cellular volume and interrupt
the interactions between TRPV channels and cytoskeletal
elements. In the same experiment, hyposmotic solution induced
spontaneous epileptiform activity in the CA1 hippocampus,
which was blocked upon returning to normoosmotic solution
(Arranz et al., 2014). The hyposmotic reaction could result from
fast water influx and swelling-evoked RVD, while the blocking
effect of normoosmotic solution could be due to osmotic
restoration of cell volume, similar to the effect of hyperosmotic
solution (Arranz et al., 2014).
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Considering the involvement of other TRP channels in
osmosensation, we further propose that hyposmotic volume
increase could increase the pulling force of microtubules on
TRPC channels that could increasingly open TRPC channels
(Figure 1Cb) following the increases in membrane stretch
(Gomis et al., 2008) and compensate for the reduced excitatory
effects of closing TRPV channels, resulting in hyposmotic
activation of osmosensory cells.

Hydration state of ECM could also function through altering
extracellular space (ECS). Without ECM binding in hyaluronan
synthase HAS3−/− slices, hyperosmotic stress increased ECS in
brain slices by attracting more water efflux in exchange of ion
influx, while hyposmotic challenge reduced ECS by promoting
more water influx (Arranz et al., 2014). The increased ECS
also decreases cellular apposition and reduces inter-neuronal
interactions in the CA1 hippocampus, which is a condition
known to reduce VP neuronal activity in the SON; the increased
cellular apposition due to reduced ECS can increase junctional
coupling and mutually excitatory influence between adjacent
cells (Tweedle and Hatton, 1977; Tweedle et al., 1993), thereby
increasing neuronal activity and their synchronization (Hatton,
1990; Theodosis et al., 2008).

INTEGRINS

In extracellular to intracellular signal transduction, integrins play
a critical role as an ECM receptor in whole body including
the hypothalamus (Ablooglu et al., 2007; Gao et al., 2007)
and the SON (Seidah et al., 1991). It has been reported that
TRPV1 receptor is co-expressed with integrin subunits that
bind fibronectin (Jeske et al., 2009); GM1 ganglioside binds to
TRPC5 by the mediation of integrin (Wu et al., 2007). Thus,
integrins are the mediator of ECM regulation of TRP channel
activity in osmosensation.

It is known that active integrin complexes are specifically
enriched for proteins associated with microtubule-based
functions; active integrins establish an environment to
stabilize microtubules at the cell periphery (Byron et al.,
2015). Moreover, the activation of membrane integrins
elicits actin cytoskeleton reorganization (Jin et al., 2011) via
integrin-linked kinase (O’Meara et al., 2013). Thus, osmotic
conformational alterations of integrins could change TRP
channel activity.

This proposal is supported by the following evidence.
Silencing integrin β1 expression reduces RVD of the
adherent cells (Sørensen et al., 2015). Interrupting an integrin
β3/Src/ClC-3 signaling pathway influences the hyposmotic
activation of volume-regulated chloride channels (Zeng et al.,
2014). Deletion of the integrin alpha1 subunit inhibited the
intracellular Ca2+ transients of chondrocytes to hyposmotic
stress ex vivo and in vitro (Jablonski et al., 2014). Thus, integrins
are the key components in relaying ECM signals under various
osmotic conditions.

Integrin involvement in osmosensation is related to the
following approaches (Figure 1A). (1) Contacts between ECM
and integrin are a prerequisite of osmotic cellular responses, such
as hyperosmotic enhancement of spontaneous quantal release of

neurotransmitter (Kashani et al., 2001) and glutamine uptake in
response to hyposmotic and hyperosmotic exposure (Low and
Taylor, 1998). (2) There are direct interactions between TRPV4,
alpha2 integrin and the Src tyrosine kinase Lyn (Alessandri-
Haber et al., 2008) and co-expression of the TRPV1 receptor
with integrin subunits that bind fibronectin in sensory neurons
(Jeske et al., 2009). (3) Activated integrins could stabilize
microtubules at the cell periphery (Byron et al., 2015) to form
an integrin- TRPV-microtubule complex (Goswami et al., 2010)
through eliciting actin cytoskeleton reorganization (Jin et al.,
2011).

Under different osmotic conditions, signaling process
modulated by integrin-ECM contacts is either activated
or inhibited in a time-dependent manner. For example,
upon hyposmotic stimulation, more water retains in the
interstitial tissues at the initial stage, which gives rise to a
disjoining force and places the integrin-ECM bonds under
mechanical tension, thus accelerating their dissociation and
inactivating integrins (Halperin and Kröger, 2012). Once cell
swelling occurs, the increased cell volume pushes membrane
out-bound expansion and leads to increases in integrin/ECM
contacts, which causes the activation of integrins as shown
in the volume regulation of skeletal muscles (Low and
Taylor, 1998) and hepatocytes (Mundinger et al., 2012).
Resultantly, cells experience an initial inhibition and subsequent
activation.

CONCLUDING REMARKS

Osmosensation is a complex cellular process involving
coordinated interactions between extracellular and intracellular
processes, particularly involving ECM, integrins, actin filament,
microtubule and TRP channels. (1) Increased ECM-integrin
interactions during hyperosmotic stress could directly activate
TRPV channels by conformational change-associated ‘‘gate’’
opening through actin reorganization (Jin et al., 2011).
This external signal could work coordinately with increased
interactions between microtubule network and TRP channels
during hyperosmotic shrinkage (Prager-Khoutorsky and
Bourque, 2015) to push TRP channel opening (Figure 1B).
(2) Prolonged hyperosmotic stress promotes VP gene
transcription and translation and RVI (Figure 1Bc) while
maintaining ECM-integrin-associated gate opening. (3) Early
hyposmotic tension causes mild conformational change in
integrins-TRP complex, inhibition of TRPV channels by their
uncoupling with microtubule network and the ‘‘leakage’’ of
these channels (Muraki et al., 2003; Sato et al., 2013; Jo et al.,
2016) including ATP. ATP activation of purine-associated
opening of TRPC and other TRP channels (Goel et al., 2007;
Soya et al., 2014) can quickly reverse this initial inhibition
and lead to cytosolic Ca2+ increase. The opening of TRPC
channels is likely achieved by a pulling force exerted by actin-
microtubule network (Figure 1C). (4) Further cellular swelling
increases ECM-integrin interaction and activation of TRPVs
while triggering RVD which further strengthens the activation of
TRPVs even activity of TRPCs could be reduced (Figure 1Cc).
Certainly, the buffer effects of ion-transporting organelles,
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AQPs, and volume-/stretch-sensitive anion channels on osmotic
gradients can modulate the osmosensation by changing the
osmotic gradients across the membrane. Moreover, hyposmotic
effects on cell volume (Lohr and Yohe, 2000) and VP secretion
(Yagil and Sladek, 1990) are largely rate-dependent, and thus
the large buffering capacity of the body can account for the
resistance of brain to osmotic maladaptation (Go, 1997; Verbalis,
2010).

Further studies should address the structural and functional
relationship between ECM-integrin bonding and cytoskeletal
elements as well as the temporal association between TRP
channel activation and cell volume change during osmotic
stimuli in osmosensory neurons. Moreover, the relationship
between instant VP release from pre-existing VP pool and
delayed transcription of VP gene (Arima et al., 1999, 2010)
should be clarified. Worth noting is also that the osmotic
responses of SON cells (Tweedle and Hatton, 1977) are much
faster and stronger than PVN cells (Gregory et al., 1980). It
is interesting to further explore potential differences in their

histology and the functioning of the osmoreceptors. Lastly,
interactions between local and systemic osmotic factors should
be clarified as well. Answering these challenging questions would
shed more light on a variety of medical and biological etiologies
that are currently not well understood yet.
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