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Background: The USH2A gene encodes usherin, a basement membrane protein that is in-
volved in the development and homeostasis of the inner ear and retina. Mutations in USH2A
are linked to Usher syndrome type II (USH II) and non-syndromic retinitis pigmentosa (RP).
Molecular diagnosis can provide insight into the pathogenesis of these diseases, facilitate
clinical diagnosis, and identify individuals who can most benefit from gene or cell replace-
ment therapy. Here, we report 21 pathogenic mutations in the USH2A gene identified in 11
Chinese families by using the targeted next-generation sequencing (NGS) technology.
Methods: In all, 11 unrelated Chinese families were enrolled, and NGS was performed to
identify mutations in the USH2A gene. Variant analysis, Sanger validation, and segregation
tests were utilized to validate the disease-causing mutations in these families.
Results: We identified 21 pathogenic mutations, of which 13, including 5 associated with
non-syndromic RP and 8 with USH II, have not been previously reported. The novel variants
segregated with disease phenotype in the affected families and were absent from the control
subjects. In general, visual impairment and retinopathy were consistent between the USH II
and non-syndromic RP patients with USH2A mutations.
Conclusions: These findings provide a basis for investigating genotype–phenotype rela-
tionships in Chinese USH II and RP patients and for clarifying the pathophysiology and
molecular mechanisms of the diseases associated with USH2A mutations.

Introduction
Retinitis pigmentosa (RP; OMIM 226800) is one of the most common incurable ocular diseases and can
lead to severe visual impairment. It is characterized by clinical and genetic heterogeneity. Patients initially
experience night blindness and visual field constriction resulting from rod degeneration, followed by dete-
rioration of central vision owing to the loss of cone function. The global prevalence of RP is 1:3000–1:7000
[1]. Most patients have non-syndromic RP, while others suffer from associated syndromes. The most com-
mon of these is Usher syndrome (USH) [2], an autosomal recessive disorder that has a prevalence of
3.2–6.2/100000 and is characterized by sensorineural hearing loss (HL), visual impairment due to RP, and
variable vestibular dysfunction with heterogeneous clinical and genetic manifestations [3,4]. Mutations
in the Usher syndrome 2A (USH2A) gene give rise to two distinct phenotypes, USH type II (USH II) and
non-syndromic RP, which account for 55–90% [2] and 12–25% [5] of cases, respectively.

The USH2A protein sequence contains laminin epidermal growth factor and fibronectin type III motifs,
which are also observed in the basal lamina, extracellular matrix (ECM), and cell adhesion proteins. In the
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Figure 1. Pedigrees of families with non-syndromic RP or USH II

Squares and circles indicate men and women, respectively, and dark symbols represent the affected individuals. The probands are

indicated by an arrow. +, wild-type; M, mutation.

eye, both the Bruch’s membrane and interphotoreceptor cell matrix are enriched in ECM proteins, which play an
important role in cochlear hair cell development and photoreceptor maintenance [6].

With advances in the fields of genetic engineering and stem cell research, gene therapy and photoreceptor trans-
plantation have emerged as promising treatment strategies for patients with USH2A mutations [7–9]. Identifying
individuals who will most benefit from these therapies is critical for successful treatment outcomes; this can be ac-
complished by examining the association between genetic defects and clinical phenotypes. Targeted-exome sequenc-
ing (TES) based on next-generation sequencing (NGS) is a powerful, robust, precise, and cost-effective method for
detecting genetic mutations in large genomic regions. However, only a small number of studies have been published
on the USH2A mutation spectrum in Chinese RP and USH patients [10–17]. The genetic characteristics of Chi-
nese USH patients differ from those of the other populations. For example, the mutation c.8559- 2A > G in USH2A
accounts for 19.1% in a Chinese USH II cohort [10], and 26% of all Western Japanese USH patients, but was never
observed in Europeans. Furthermore, the full extent of genotype–phenotype correlations between USH2A mutations
and RP and USH II symptoms in the Chinese population has not been elucidated.

In the present study, we used NGS-based TES to investigate mutations in the USH2A gene and identified 13 novel
mutations in 5 USH and 6 RP families from China. The variants segregated with disease phenotype in the affected
families and were not detected in the healthy controls. We also examined the genotype–phenotype correlations be-
tween these novel USH2A mutations and observed clinical symptoms.

Materials and methods
Pedigrees and controls
The study was conducted in accordance with the guidelines of the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Southwest Hospital, Third Military Medical University (Army Medical Uni-
versity), Chongqing, China. Written informed consent was obtained from all participants. Detailed family history
was obtained through interviews with patients and their relatives (Figure 1). Ophthalmic examination included the
best-corrected visual acuity assessment, dilated fundus examination, colour fundus photography, fundus autofluo-
rescence (FAF) imaging, optical coherence tomography (OCT), and full-field electroretinogram (ERG). The ERG
was performed according to the standards of the International Society for Clinical Electrophysiology. Abnormal cone
function was assessed by light-adapted 30-Hz 3.0 ERG, and rod ERG abnormality was assessed by dark-adapted
0.01-Hz 10.0 ERG [18].

Audiologic assessment was also performed for each patient. The severity of HL was classified as mild (20–40
dB), moderate (41–70 dB), severe (71–90 dB), or profound (>91 dB) [19]. Vestibular function was evaluated based
on the medical history related to childhood motor development [20] and results of caloric and rotary chair tests
[21]. Five families showed congenital hearing impairment based on audiologic or vestibular function test results and
were diagnosed with USH II. Six families did not have childhood-onset hearing impairment and were classified as
non-syndromic RP families.
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A group of 200 matched control subjects was also recruited for the study; these individuals were free of any symp-
toms of HL, visual impairment, or any personal or family history of known inherited disease. All 11 pedigrees and
control subjects in the present study were from Southwestern China. Peripheral blood samples were collected from
the affected patients, their unaffected kin, and healthy control subjects.

DNA target capture and NGS
A capture panel of retinal disease (RD) genes including 103 known RD genes was developed by our group [14,22–23].
A sequence capture array (Roche NimbleGen, Madison, WI, U.S.A.) from the Beijing Genomics Institute, ShenZhen,
was used to capture the coding exons of 103 RD genes associated with hereditary blindness or for whole-exome
sequencing to identify RD-related mutations.

Filtering of detected variants
To detect the potential pathogenic variants of USH2A in the probands, we applied the filtering criteria to generate
clean reads (with lengths of 90 bp) for further analysis and then aligned them with the human reference genome in
the National Center for Biotechnology Information (NCBI) database (v.hg19; http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/) using the Burrows Wheeler Aligner Multi-Vision software package. The single-nucleotide
variants and insertions/deletions (indels) were identified using the software programs SOAPsnp and Samtools Indel
Genotyper, respectively, based on the data obtained from the NCBI Database of Single Nucleotide Polymorphisms
(http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/database/), the HapMap project (ftp://ftp.ncbi.nlm.nih.gov/
hapmap), and the 1000 Genome Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp).

PCR and Sanger sequencing
All novel mutations were validated by PCR and Sanger sequencing. DNA was obtained from the peripheral blood of
family members (Figure 1) using the QIAamp DNA Blood Midi Kit (Qiagen, Hilden, Germany). Thereafter, a familial
segregation analysis was performed by PCR and Sanger sequencing. The 200 healthy matched control subjects were
also screened for the novel variants by Sanger sequencing.

Pathogenicity assessment of novel mutations
Null variants were defined as those that were predicted to introduce a premature termination codon or affect
pre-mRNA splicing or as frameshift mutations that have been classified as pathogenic. Novel missense variants were
described as pathogenic based on their frequency in controls (<0.236%), segregation with disease, bioinformatics
analysis of their pathogenicity (using the PolyPhen2 and SIFT tools available online), and conservation [21,24].

Results
Clinical characteristics of patients
The study population comprised 11 unrelated Chinese families—six with non-syndromic RP and five with USH
II—residing in Southwestern China. All 11 families showed a genotype pattern suggesting a recessive mode of inher-
itance. The five probands with USH II had a mean age of 42.6 years (range: 23–60 years). The mean onset age was
12.4 years (range: 7–20 years). The USH II probands F2-II-1, F3-II-1, and F4-II-1 had initial symptoms of almost
simultaneous night blindness and poor hearing; F2-II-1 had experienced night blindness from the age of 12 years;
and F5-II-1 had poor hearing from the age of 20 years (Table 1). The mean age of the six RP probands at the time of
diagnosis was 39.8 years (range: 33–57 years), and the mean onset age from the time of night blindness was 21.7 years
(range: 7–39 years) (Table 1). The USH II patients tended to be younger than the RP patients at the time of symptom
onset (i.e. night blindness and poor hearing), although the two groups were diagnosed at a similar age.

All probands showed typical RP features in the fundi, including pigmentary changes in the peripheral and
mid-peripheral retina, attenuated arteriolar vessels, and pallor of the optic disc (Figures 2 and 3). All patients, ex-
cept for the RP F1 (F1-II-1) and RP F6 (F1-II-3) probands, had no rod or cone responses in the ERG (Table 1). In
the audiologic examination, a pure tone audiogram revealed bilateral downward-sloping moderate-to-severe HL in
all five USH II probands (Table 1). The USH2A-associated USH II and non-syndromic RP patients showed simi-
lar retinopathy. Consistent with a previous report [25], four USH II (USH II F2-II-1, F3-II-1, F4-II-1, and F5-II-2)
and two RP (RP F2-II-1 and F6-II-3) probands showed preserved central macular autofluorescence surrounded by a
high-density ring of variable diameter (hyperautofluorescent ring) in FAF images (Figures 2 and 3). The USH II F1
proband (F1-II-1) had an abnormally high signal in the fovea (central hyperautofluorescence). Three RP probands
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Table 1 Clinical manifestations of the proband patients

Proband USH F1-II-1 USH F2-II-1 USH F3-II-1 USH F4-II-1 USH F5-II-2 RP F1-II-1 RP F2-II-1 RP F3-II-2 RP F4-II-1 RP F5-II-2 RP F6-II-3

Consult age (Y);
gender

47; M 33; F 50; M 23; F 60; M 33; F 57; F 36; M 34; F 40; M 39; F

Onset age (Y);
presenting
symptom

12; night
blindness

13; night
blindness, poor
hearing

10; night
blindness, poor
hearing

7; night
blindness, poor
hearing

20; poor
hearing

28; night
blindness

16; night
blindness

11; night
blindness

7; poor vision 39; night
blindness

29; night
blindness

Onset age for
NB (Y)

12; 13; 10; 7; 45; 28 16 11 7 39 29

Deaf Moderate Severe Severe Severe Severe NO NO NO NO NO NO

Vestibular
defect

NO NO NO NO NO NO NO NO NO NO NO

BCVA (R/L) 0.03/ 0.15 0.6/0.7 0.4/0.6 0.4/0.4 0.7/0.5 0.8/ 0.8 0.7/0.5 0.4/0.3 0.1/HM 0.15/0.5 0.7/0.8

FERG findings Extinguished
rod and cone

Extinguished
rod and cone

Extinguished
rod and cone

Extinguished
rod and cone

Extinguished
rod and cone

Severely
reduced rod
and cone

Extinguished
rod and cone

Extinguished
rod and cone

Extinguished
rod and cone

Extinguished
rod and cone

Severely reduced
rod and cone

OCT Almost absent
photoreceptor
inner segment
ellipsoid band

Preserved
ellipsoid zone at
central macula
fovea

Preserved
ellipsoid zone at
central macula
fovea

Preserved
ellipsoid zone at
central macula
fovea

Preserved
ellipsoid zone at
central macula
fovea

Preserved
ellipsoid zone at
macula

Preserved
ellipsoid zone at
central macula
fovea

Absent outer
retina layers
with thinning of
the retina

Absent outer
retina layers
with severely
thinning of the
retina

Absent outer
retina layers
with severely
thinning of the
retina

Preserved
ellipsoid zone at
central macula
fovea

Clinical
diagnosis

USH2 USH2 USH2 USH2 USH2 RP RP RP RP RP RP

Comments NO Wearing
hearing aids

NO Wearing
hearing aids

NO NO NO NO L:macular
coloboma

NO NO

Abbreviations: BCVA, best corrected visual acuity; F, female; FERG, full-field ERG; L, left eye; M, male; NB, night blindness; R, right eye, Y, years.
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Figure 2. Fundus photography, FAF imaging, and foveal OCT scans of probands from the USH II families

Attenuation of retinal arterioles, atrophy of retinal pigment epithelia, and waxy pale discs can be seen in all fundus photographs.

USH II F1-II-1: Central hyperautofluorescence can be seen by FAF imaging, whereas the photoreceptor inner segment ellipsoid

band is absent from the OCT scan. USH II F2-II-1, F3-II-1, F4-II-1, and F5-II-2: A hyperautofluorescent ring can be seen by FAF

imaging, and a preserved photoreceptor inner segment ellipsoid band in the area was detected within the hyperautofluorescent

ring in the OCT scan. USH II F5-II-3: The non-affected family member showed normal fundus and FAF; the OCT scan showed an

intact photoreceptor inner segment ellipsoid band and regular structure in the macular. The white arrow indicates the OCT scanning

direction.
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Figure 3. Fundus photography, FAF imaging, and foveal OCT scans of probands from non-syndromic RP families

The fundus photograph shows the typical retinopathy of RP. RP F1-II-1: FAF imaging revealed completely preserved autofluores-

cence except for slightly higher autofluorescence surrounding the macula; a complete photoreceptor inner segment ellipsoid band

was detected in the OCT scan. RP F2-II-1 and F6-II-3: A hyperautofluorescent ring and preserved photoreceptor inner segment

ellipsoid band in the fovea can be seen by FAF imaging and OCT scanning. RP F3-II-2, F4-II-1, and F5-II-2: Severely decreased

autofluorescence and absent outer retinal layers with thinning of the retinal pigment epithelium/Bruch’s membrane complex band

were observed by FAF imaging and OCT scanning. RP F6-II-1: The non-affected family member showed normal fundus and FAF;

the OCT scan showed an intact photoreceptor inner segment ellipsoid band and regular structure in the macular. The white arrow

indicates the OCT scanning direction.
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Table 2 USH2A mutations identified by NGS analyses

Family Proband PhenotypeGene
Exon or
Intron Nucleotide change

Amino acid
change Mutation type1 SIFT/Polyphen22

Reported or
Novel

USH-F1 II -1 USH II USH2A EX41 c.7698 T>A p.Y2566X Nonsense; het N.P Novel

USH2A EX13 c.2802 T>G p.C934W Missense; het N.P Reported

USH-F2 II -1 USH II USH2A EX54 c.10695 T>A p.Y3565X Nonsense; het N.P Novel

USH2A EX2 c.449 T>G p.L150X Nonsense; het N.P Novel

USH-F3 II -1 USH II USH2A EX6 c.1004 T>A p.L335X Nonsense; het N.P Novel

USH2A EX9 c.1644+4A>G Splicing; het N.P Novel

USH-F4 II -1 USH II USH2A EX63
c.13049 13062delAGCCTC
CAGAGTTG

p.T4350Sfs*34
Deletion; het N.P Novel

USH2A EX59 c.11524 A>G p.I3842V Missense; het 0.263/0.015 Novel

USH-F5 II -2 USH II USH2A EX28 c.5572+1G>A Splicing; het N.P Reported

USH2A EX41-42 EX41-42del Deletion; het N.P Novel

RP-F1 II -1 RP USH2A EX70 c.15178 T>C p.S5060P Missense; het 2.222/0.771 Reported

USH2A IN43 c.8682-1G>T Splicing; het N.P Novel

RP-F2 II -1 RP USH2A EX62 c.12241 C>T p.R4081W Missense; het 4.484/0.720 Reported

USH2A IN22 c.22+3 A>G Splicing; het N.P Novel

RP-F3 II -2 RP USH2A IN42 c.8559-2 A>G Splicing; het N.P Reported

USH2A EX9 c.3500 T>G p. L1167R Missense; het 3.774/0.986 Novel

RP-F4 II -1 RP USH2A EX26 c.5266 G>A p.V1756I Missense; het 0.079/0.005 Reported

USH2A EX13 c.2339 G>T p.C780F Missense; het 10.752/0.999 Novel

RP-F5 II -2 RP USH2A EX34 c.6628 C>G p.P2210A Missense; het 5.236/0.1 Reported

USH2A IN22 c.22+3 A>G Splicing; het N.P Novel

RP-F6 II -3 RP USH2A EX55 c.10859 T>C p.I3620T Missense; het 3.774/0.977 Reported

USH2A EX63 c.12880delA p.I4294Lfs*21 Deletion; het N.P Novel

1Mutation type: het, heterozygous; hom, homozygous.
2SIFT/Polyphen2: N.P (not predicted).

(RP F3-II-2, F4-II-1, and F5-II-2) had widespread, severely diminished autofluorescence corresponding to retinal pig-
ment epithelial atrophy. The RP F1 proband (F1-II-1) had the most fully preserved autofluorescence, with a slightly
higher signal surrounding the macula.

An overlay of FAF and OCT images (Figures 2 and 3) revealed that the hyperautofluorescent ring represented a
boundary between the relatively preserved photoreceptor inner segment ellipsoid band and diseased retinal tissue.
A high degree of correlation was observed between the lateral extent of the preserved ellipsoid band over the central
macula and ring diameter or width along the same OCT scanning plane. The central hyperautofluorescence (USH
F1-II-1) showed a near-absent photoreceptor inner segment ellipsoid band by OCT, and the severely decreased aut-
ofluorescence (RP F3-II-2, F4-II-1, and F5-II-2) reflected an absence of the outer retinal layers with thinning of the
retinal pigment epithelium/Bruch’s membrane complex band.

Identification of USH2A gene mutations
The targeted NGS data for the 11 patients with non-syndromic RP and USH II were analyzed based on our genetic
variation pathogenicity assessment [14,22–23]. After variant calling and data filtering, we identified 10 compound
mutations in five USH II patients and 11 compound mutations in six RP patients; the new splice-site mutation c.22+3
A>G was detected twice in RP F2 and RP F5 (Table 2). These compound mutations included non-synonymous sub-
stitution, splice-site, point-nonsense mutation, frameshift deletion, and large-fragment deletion. In all, we identified
21 USH2A mutations, of which 13 have not been previously reported. The variants were confirmed by Sanger se-
quencing (Figures 4 and 5).

In the five USH II families, ten different USH2A compound mutations were recorded, of which eight mutations,
including four nonsense, one splice-site, one missense, one deletion, and one large-fragment deletion, were newly
identified (Table 2). All USH II patients harbored two truncating mutations or one non-truncating and one truncating
mutation.

Two variants that might be associated with the disease were present in USH II F1; these included the novel non-
sense mutation c.7698 T>A in exon 41 and the previously reported c.2802 T>G missense mutation in exon 13 [16].

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. USH2A mutations associated with USH II confirmed by Sanger sequencing

The deletion of exons 41 and 42 of the USH2A gene was detected (last image, right, bottom row). Arrows indicate mutations in the

pathogenic genes. Abbreviation: het, heterozygous.

The former mutation leads to a tyrosine substitution in codon 2566 (p.Y2566X), causing premature termination of
USH2A mRNA translation. The USH II F2 family harbored the two novel nonsense mutations c.10695 T>A and
c.449 T>G. The former was a tyrosine substitution at codon 3565 that introduced a premature termination codon
(p.Y3565X), whereas the latter involved a leucine substitution at codon 150, a termination codon (p.L150X). In USH
II F3, proband F3-II-1 was found to carry the novel compound heterozygous mutations c.1004 T>A and c.1644+4
A>G. The former led to the substitution of leucine with a termination codon at codon 335 (p.L335X), generating

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 5. USH2A mutations associated with non-syndromic RP confirmed by Sanger sequencing

Arrows indicate mutations in the pathogenic genes. Abbreviation: het, heterozygous.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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a truncated USH2A protein; the latter was a splice-site mutation that was predicted to create an ectopic splice site.
In USH II F4, the novel heterozygous compound USH2A mutations c.13049 13062delAGCCTCCAGAGTTG and
c.11524 A>G were identified in proband F4-II-1. The former mutation in exon 63 caused a threonine-to-serine sub-
stitution at codon 4350 that was expected to cause a frameshift and premature termination of translation after the
insertion of 34 irrelevant amino acids starting from serine at position 4350 (p.T4350Sfs*34). The c.11524 A>G mis-
sense mutation in exon 59 led to the substitution of valine for isoleucine at codon 3842 (p.I3842V). In USH II F5, the
compound heterozygous mutation c.5572+1 G>A and a large-fragment deletion in exons 41–42 (EX41–42del: 964
bp deletion) of USH2A were identified in proband F5-II-2; the former is a known splice-site mutation [26]. In the six
non-syndromic RP families, we identified 12 different USH2A compound heterozygous mutations, of which six muta-
tions, including three splice-site, two missense, and one deletion, were novel (Table 2). Among the six non-syndromic
RP families, four (RP F1, F2, F3, and F5) had similar genotypes with one missense and one splice-site mutation. In
RP F4, proband F4-II-1 had two missense mutations, whereas in RP F6, proband F6-II-3 carried one missense mu-
tation and a truncation. The two new splice-site mutations c.8682−1 G>T and c.22+3 A>G were each predicted to
introduce an ectopic splice site. The previously reported splice-site mutation c.8559-2 A>G was detected in proband
F3-II-2 [10,14,20]. An online splice-site prediction software program indicated that this variant would abolish the
splice acceptor site in exon 43, resulting in the skipping of this exon. The two new missense mutations c.3500 T>G
and c.2339 G>T were predicted to be pathogenic. The c.3500 T>G mutation in exon 9 led to the substitution of
leucine with arginine at codon 1167 (p. L1167R). The other mutation, c.2339 G>T in exon 13 led to the substitution
of cysteine with phenylalanine at codon 780 (p.C780F). The new truncating mutation c.12880delA was predicted to
result in a frameshift and premature termination of translation after a 21-amino acid insertion starting from leucine
at codon 4294 (p.I4294Lfs*21).

Analysis of mutation pathogenicity
Of the 21 identified mutations, 13 have not been previously described; of these, 10 mutations, including four nonsense
and three splice-site mutations, two deletions, and one large-fragment deletion, were null variants (Table 2). The
remaining three mutations were missense mutations that were predicted to be pathogenic based on the following
evidence. First, they were not detected in the 200 healthy control subjects and were not in any of the public or our
internal variant databases that together comprise the data from approximately 20000 individuals. Second, they are
located within the functional domains of the USH2A gene. Third, an in silico analysis of the three variants predicted
that they are detrimental mutations (Table 2). Finally, the variants co-segregated perfectly with the disease within
the affected families according to a recessive pattern of inheritance (Figure 1), as determined by PCR and Sanger
sequencing (Figures 4 and 5).

Mutation spectrum in the USH2A protein
The distribution of these mutations did not significantly differ between the two kinds of RDs; the mutations were
rather scattered over the whole sequence (Figure 6). Although the new splice-site mutation c.22+3 A>G was detected
twice in our study, the most common reported mutation c.8559- 2A>G in Chinese USH II patients was also detected
in our non-syndromic RP F3 family, and the mutations p.I4294Lfs*21 and p.T4350Sfs*34 were located in the same
exon 63. We consider that the mutations identified in our study, including the new ones, do not suggest the presence
of a mutation hotspot in the USH2A gene in the population examined. Nevertheless, larger clinical trials may help
further unravel the genetic architecture of the Chinese population.

Discussion
In the present study, we performed genetic diagnosis for USH II and non-syndromic RP cases arising from mutations
in USH2A in 11 unrelated Chinese families by NGS and consequently identified 21 associated mutations, of which 13
were novel and definitively pathogenic. We also found that the USH II patients exhibited visual and hearing symptoms
at an earlier age and had an earlier disease onset than the non-syndromic RP patients. Overall, our results demonstrate
the clinical and genetic heterogeneity of USH II and non-syndromic RP are associated with USH2A mutations.

Molecular genetic testing can inform diagnosis, prognosis, and risk assessment for patients and their family mem-
bers. USH2A mutations are present in most cases of USH II and non-syndromic RP. There are two isoforms of
USH2A—a 170-kDa short isoform translated from 21 exons and a 580-kDa long isoform translated from an ad-
ditional 51 exons. The former is the 5202-amino acid transmembrane usherin protein [27]. To date, approximately
1200 variants/mutations in the USH2A gene have been reported in patients with USH II or RP (see the USH2A mu-
tations database: http://www.lovd.nl/USH2A). Owing to the large size of the USH2A gene, the Sanger sequencing
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Figure 6. Predicted cellular distribution of the detected mutations

USH2A gene encodes a transmembrane protein. Mutation p.S5060P is predicted in the membrane bound protein, other mutations

are distributed in the exocytoplasmic region.

of individual variants is costly and time-consuming. The targeted NGS technology enables massive coverage in the
detection of DNA variants in inherited disorders—which is important for diagnostic purposes—with high efficiency
at a relatively low cost.

In the present study, we identified 13 novel mutations in the USH2A gene. The six non-syndromic RP fami-
lies were the carriers of one new mutation, with the others being previously known variants. In RP F1, the novel
c.8682-1 G>T splice-site mutation was present in combination with the reported missense mutation c.15178 T>C.
The c.15178 T>C, p. (Ser5060Pro) mutation was previously reported to be specific to non-syndromic RD along with
c.2332 G>T, p. (Asp778Tyr); c.3724C>T, p. (Pro1242Ser); c.4378 G>A, p. (Gly1460Arg); c.8546 G>T, p. (Gly2849Val);
c.6904 6920dup17, p. (Gln2307Hisfs*25); and c.12580 T>C, p. (Cys4194Arg) [25]. Indeed, in our study, the proband
showed only retinal symptoms, although additional clinical and experimental data are needed to confirm the
RD-specific nature of these alleles. The c.10859 T>C missense mutation in non-syndromic RP F6 has also been
detected in a Japanese non-syndromic RP patient. In our study, the patients with this mutation showed similar charac-
teristics. In RP F3, the splice-site mutation c.8559-2A>G has been described in Japanese [19,20] and Chinese [10,14]
USH II patients; however, this mutation is a frequent founder variant in Japanese USH II patients [20] and the most
common mutation in Chinese USH II patients [10]. We have previously reported the presence of this mutation in com-
bination with c.9570+1 G>A, another splice-site variant, in a USH II family [14]. However, in the present study, this
mutation was detected in a non-syndromic RP F3 family. Ten different USH2A compound mutations were recorded
in the five USH II families, of which eight were newly identified. The c.2802 T>G mutation (p.C934W) is the second
common USH2A mutation in Chinese USH II patients [10]. It has also been observed in a Chinese family in which
the proband and his son showed typical USH II features, while the proband’s daughter suffered from RP without
deafness or vestibular dysfunction, despite having the same genotype as the affected son [16]. These findings suggest
that different mutations in a gene can give rise to distinct phenotypes and that the same gene mutation can also result
in variable phenotypes. Perhaps the polygenetic/modifier genes, such as gene PDZD7 or other undetected modifier
genes, play a role in the disease phenotypes. Those unknown modifier genes could be pivotal contributors specific
to non-syndromic RD, or complete USH II [2]. The other reported mutation, c.5572+1G>A, has been detected in
a Scandinavian USH II patient [26]. USH2A gene encodes a transmembrane protein, which has a two-membrane
structure domain in both the N and C terminals (Figure 6). The defect in the usherin protein from congenital muta-
tions may lead to the disorder of the connecting cilium in the photoreceptors and the hair bundle of auditory sensory
cells, causing disease.
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Few studies have been conducted on the visual prognosis and genotype–phenotype correlations in retinal degen-
eration arising from USH2A mutations. A Japanese study demonstrated that patients with USH2A-associated USH
II showed an earlier decline in visual function and had a higher cumulative risk of visual impairment than those with
non-syndromic RP [5]. Complete loss of the USH2A protein function predisposed subjects to USH II, but residual
protein function could cause RP without HL. A Chinese study arrived at a similar conclusion; truncating mutations
predicted to have severe functional consequences were more highly represented in USH II than in non-syndromic
RP patients, who often carried partial protein-truncating mutations [13]. Another recent Chinese study reported that
the USH II patients with two null mutations of USH2A had an early onset age of HL [10]. Additionally, the patients
harbouring two null mutations of USH2A had more severe HL than the patients carrying two missense mutations. In
contrast, no statistically significant difference was observed in the onset age of the visual defect among patients with
different kinds of mutations. However, a study in the U.K. showed that the USH2A-associated USH II cases exhibited
similar retinopathy to the USH2A-associated non-syndromic RP cases, although the audiological phenotype differed,
and some USH2A mutations were predominantly associated with non-syndromic retinal degeneration (i.e. they were
RD-specific) [25]. Consistent with the above reports, the USH II patients in our study had a younger age of onset of
symptoms and similar retinopathy to the USH2A-associated non-syndromic RP patients. We also showed that FAF
imaging is a clinically useful tool for assessing the status of retinal pigment epithelial cells, while OCT scanning shows
the preserved photoreceptor inner segment ellipsoid band in the residual region within the normal FAF.

Our study has some limitations. First, the study population was relatively small. Second, we did not conduct
a longitudinal study comparing visual impairment and retinopathy between the USH2A-associated USH II and
non-syndromic RP patients, which was necessary for a more accurate clinical assessment and for elucidating
genotype–phenotype correlations. Nonetheless, we identified 13 novel USH2A mutations in 11 Chinese USH II or
non-syndromic RP families by gene panel-based NGS. Our findings expand the spectrum of known USH2A muta-
tions and related clinical phenotypes in the Chinese population. We also demonstrated that the USH2A-associated
USH II patients are younger at the time of symptom onset than the non-syndromic RP patients. Collectively, these
findings provide a basis for a more accurate diagnosis of USH and non-syndromic RP and the application of gene
therapy to diseases associated with USH2A mutations.
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