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Tissue-resident memory T cells (TRM cells) have crucial functions in host defense in
mucosal tissues. They provide local adaptive immune surveillance and allow the fast
initiation of targeted adaptive immune responses in case of antigen re-exposure. Recently,
an aberrant activation in the case of immunologically mediated diseases has been
increasingly acknowledged. As the organ with the largest interface to the environment,
the gastrointestinal tract faces billions of antigens every day. Tightly balanced processes
are necessary to ensure tolerance towards non-hazardous antigens, but to set up a
powerful immune response against potentially dangerous ones. In this complex nexus of
immune cells and their mediators, TRM cells play a central role and have been shown to
promote both physiological and pathological events. In this review, we will summarize the
current knowledge on the homeostatic functions of TRM cells and delineate their
implication in infection control in the gut. Moreover, we will outline their commitment in
immune dysregulation in gastrointestinal chronic inflammatory conditions and shed light
on TRM cells as current and potential future therapeutic targets.

Keywords: tissue-resident memory T cells, intestine, inflammatory bowel diseases, infection control,
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INTRODUCTION

Coordinated processes of the immune system require a tightly regulated interplay of various
immune cell types and mediators. A particular feature of the adaptive immune system is the
generation of immunological memory following antigen exposure leading to preparedness for the
initiation of targeted immune responses in case of re-exposure. To this end, memory T cells are
generated during a primary confrontation with an antigen. After its clearing, they survive as long-
lived patrolling guards in particular compartments of the body.

Memory T cells are grouped into three main populations: central memory T cells (TCM), effector
memory T cells (TEM), and tissue-resident memory T cells (TRM) (1–4). TRM cells persist at
epithelial surfaces including the gastrointestinal tract (GIT), skin, and lung as well as in non-barrier
tissues such as the brain and the joints (3, 5–9). They are transcriptionally, phenotypically, and
functionally distinct from recirculating central and effector memory T cells (10). Due to their
localization at the interface between the host and the environment, they provide local adaptive
immune surveillance for intruding cognate antigens, positioning them in the driver’s seat for the re-
initiation of immune responses to known antigens in mucosal tissues (11). The GIT disposes over
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the largest surface of the body exposed to the external
environment. This environment has a challenging composition
including commensal, pathobiontic and sometimes pathogenic
bacteria, viruses and, parasites as well as nutritional and
potentially toxic antigens. Therefore, a closely regulated local
immune system balancing tolerance and protection is essential
and, as the first line of adaptive defence, TRM cells play a key role
in this context. This said, it is obvious that in addition to crucial
functions in infection control, dysregulation of TRM networks
may also contribute to the development of diseases such as
chronic inflammatory bowel diseases (IBD).

However, the role of TRM cells in the intestine is not
completely understood. In the following paragraphs, we will
review the current knowledge on their implication in intestinal
immune processes and also outline the putative contribution to
pathological conditions as well as translational approaches to
target TRM cells.
PHENOTYPE OF INTESTINAL TRM CELLS

TRM cells have first been described in 2009 (4) and, early on, a
specific profile of molecules associated with a TRM phenotype
was evident. More recently, Kumar and colleagues described a
transcriptional and phenotypic signature that defines both CD8+

and CD4+ TRM cells in humans and that is conserved across
individuals and in mucosal and lymphoid tissues (12).

In general, the membrane protein CD69 is used to define both
CD8+ and CD4+ TRM cells. CD69 is a type II C-lectin receptor,
which regulates, on the one hand, the differentiation of
regulatory T cells and the secretion of cytokines like IL-17, IL-
22, and interferon-g (IFN-g) and suppresses, on the other hand,
the sphingosine-1-phosphate receptor 1 (S1PR1) [(13, 14),
reviewed in (15)]. Mechanistically, CD69 interferes with the
cell surface expression and function of S1PR1, which is
essential for T and B cell egress from peripheral tissues,
secondary lymphoid organs and thymus via chemotaxis
towards S1P, which is present in high concentrations in the
bloodstream (13, 16, 17). Moreover, a decreased expression of
the transcription factor KLF2 in TRM cells leads to the
downregulation of S1PR1 (18). Together, the upregulation of
CD69 and the downregulation of KLF2 and S1PR1 promote
tissue retention of TRM cells.

However, there is also evidence that CD69 is not expressed on
all TRM cells and—depending on the tissue—is not necessary for
their generation. According to these studies, CD69 plays no
discernible role for TRM cell formation in the small intestine,
while it is essential for TRM cell development in the kidney in
mice (19, 20).

Another important marker of TRM cells is CD103, also called
aE integrin. CD103 pairs with the b7 integrin chain and the
heterodimer binds to E-cadherin, which is expressed on
epithelial cells (21). Thus, this interaction constitutes an
independent mechanism promoting mucosal retention. It was
already shown in humans and in mice that the expression of
CD103 is more predominant in CD8+ TRM cells than in CD4+
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TRM cells (22–24). Moreover, in the human intestine, CD103 is
not necessary for the persistence of CD4+ and CD8+ TRM cells (6,
7, 22). Bergsbaken and colleagues even identified a preferential
development of CD103- TRM cells in inflammatory
microenvironments within the mouse lamina propria upon
infection with Yersinia pseudotuberculosis (Yptb) (22).

Further core phenotypic markers for human CD8+ TRM cells
in multiple mucosal and lymphoid tissues include CD49a,
CD101, and PD-1 (12), whereas CD161, a C-type lectin-like
receptor seems to be specific for CD8+ TRM cells in the human
gut (25, 26). Furthermore, the TRM-specific gene signature
includes the downregulation of lymph node homing molecules
such as CD62L and CCR7, the upregulation of specific adhesion
molecules like CRTAM, as well as the modulation of specific
chemokine receptors including an increased CXCR6 and
decreased CX3CR1 expression (12).

Several transcription factors have been implicated in the
transcriptional control of TRM cells leading to the expression of
the above-mentioned molecules. In particular, Hobit together
with Blimp-1 (PRDM1), Runx3, and Notch regulate the
differentiation and maintenance of TRM cells. Importantly,
Hobit and Blimp-1 are known to synergistically control the
expression of TRM cell-regulated genes like CD69, KLF2, and
S1PR1 (27–29). In this context, it is important to mention that
Hobit expression is restricted to tissue-resident T cells [including
TRM cells, NKT cells, and some MAIT cells] in mice (27, 30), but
not in humans. There, Hobit expression is also found in other T
cell subsets with cytotoxic phenotype (31, 32).

Importantly, several cytokines like IL-15, IL-33, transforming
growth factor-b (TGF-b), and tumor necrosis factor-a (TNF-a)
were identified to play a role in the maintenance of TRM cells
(18, 33).
TRM CELLS IN INTESTINAL INFECTION
CONTROL

Especially in the GIT, TRM cells are important in mediating fast
and effective immune responses, when necessary. Thus, they
crucially contribute to the maintenance of the local
tissue homeostasis.

During primary infection, whether viral, bacterial or parasitic,
some memory T cells acquire a TRM phenotype including
differential protein expression as described above and are
retained in the tissue, where they are able to survive long-term
(4, 34, 35). There seems to be considerable heterogeneity in
intestinal TRM populations as recently suggested by two studies
building on single-cell transcriptomics in mice (36, 37). After re-
infection with a previously encountered pathogen, the presence
of TRM cells provides a short-cut with regard to the time-
consuming processes involved in de-novo adaptive immune
responses, i.e. antigen processing by antigen-presenting cells
(APCs), APC migration to secondary lymphoid tissues, T cell
recognition, co-stimulation with subsequent activation, and
proliferation as well as recirculation and migration of effector
T cells to the infected tissue [reviewed in (38–41)]. Instead, upon
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antigen binding, TRM cells are directly able to proliferate, to
secrete pro-inflammatory cytokines such as IFN-g or TNF-a and
chemokines and to mediate cytotoxicity by secreting granzyme B
and perforin to directly eliminate infected cells (Figure 1) [(5–7,
42), reviewed in (43)].

Interestingly, TRM cells are not only generated at the site of
primary infection but also seed distant locations. However, as
shown by Sheridan and colleagues in mice, intestinal CD8+ TRM

cells developing upon oral infection with Listeria monocytogenes
are more robust and have another phenotype than intestinal TRM

cells developing upon intranasal or intravenous infection (44).
Due to the increased abundance of CD8+ TRM cells compared

with CD4+ TRM cells, the former have been examined in much
more detail in the context of intestinal infections. Yet, CD4+ and
CD8+ TRM cells share several similarities and CD4+ TRM cells
crucially contribute to recall immunity by chemokine secretion
and immune cell activation (45).

In summary, these observations suggest that TRM cells might
be important effectors of vaccination strategies in the gut.
Consistently, a recent study showed that an oral typhoid
vaccine was able to induce antigen-specific CD4+ TRM cells in
Frontiers in Immunology | www.frontiersin.org 3
the human small intestine (46). Additionally, transient
microbiota depletion-boosted immunization in mice has been
proposed as a strategy to optimize TRM cell generation upon
exposure with vaccine antigens (47).

Studies by Bartolomé-Casado et al. revealed that both CD4+

and CD8+ TRM cells persist for years in the human small
intestine. Both undergo tissue-specific changes, which make
them polyfunctional TH1 and TC1 cells (6, 7). How this
longevity of TRM cells is ensured is not completely elucidated
so far and the question arises whether the size of the TRM

population in a homeostatic state is regulated by a continuous
supply of recirculating memory T cells or whether a well-
balanced TRM cell proliferation is sufficient for the
maintenance of the TRM cell population [reviewed in (43)].
However, low-level homeostatic cell proliferation has been
described for TRM cells, e.g. in the skin and female
reproductive tract, but not for the GIT so far (5, 48).

In contrast to the view that TRM cells are confined within
“their” tissue, Fonseca and colleagues showed that there is also
evidence for fully differentiated TRM cells in mice, which re-
differentiate and recirculate into lymphoid tissues (49).
FIGURE 1 | Profile and function of TRM cells. Left side: TRM cells develop during primary infection. The differentiation and maintenance of TRM cells is controlled by
tissue-derived signals, e.g., TNF-a, TGF-b or IL-15 and IL-33 resulting in the up- and down-regulation of different genes via activity of the transcription factors Hobit,
Blimp-1, Runx3, and Notch and the silencing of Klf2. In particular, upregulation of CD69 and CD103 and simultaneous downregulation of S1PR1 are key drivers of
TRM cell tissue retention. Other membrane molecules highly expressed in TRM cells are CD49a, CD101, PD-1, CRTAM, and CXCR6 while CD62L, CCR7, and
CX3CR1 show a decreased expression pattern in TRM cells. Right side: After re-exposure to a cognate antigen (e.g., from a pathogen, shown in purple), TRM cells
are able to initiate a fast immune response. This includes chemokine release to recruit lymphocytes (indicated as red, orange, and blue immune cells) to the site of
infection, release of pro-inflammatory cytokines (IFN-g, TNF-a) to activate other cells as well as the production of the cytotoxic effectors perforin or granzyme B.
There is also evidence for the ability of TRM cells to proliferate or to re-differentiate (indicated as green and orange cells) and to leave the tissue (orange ex-TRM cells;
for details cf. main text). TRM, tissue-resident memory T cell; TNF, tumor necrosis factor; TGF, transforming growth factor; IL, Interleukin; KLF, Krüppel-like factor;
CD, cluster of differentiation; S1PR1, sphingosine-1-phosphate receptor 1; PD-1, programmed cell death protein 1; CRTAM, cytotoxic and regulatory T-cell
molecule; CXCR, CXC-motif chemokine receptor; CCR, Chemokine receptor.
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Moreover, it was shown that CD4+ TRM cells in the skin may
have the ability to downregulate CD69 and subsequently exit the
tissue (50). Very recently, this has been demonstrated for
intestinal CD8+ TRM cells following oral Listeria monocytogenes
re-infection. Using a Hobit reporter mouse strain, Behr and co-
workers could elegantly show that ex-TRM cells appeared in the
circulation and were able to mount systemic and local immune
responses (51).

Taken together, these data show that TRM cells represent an
important switch point in recall immunity. However, the
presence of this cell type, which is able to mediate powerful
immune responses also entails the risk that dysregulation and
imbalance can lead to immune dysfunctions like allergic
disorders or chronic inflammation.
TRM CELLS IN INFLAMMATORY BOWEL
DISEASES

In recent years, the implication of TRM cells in pathological
conditions has been increasingly acknowledged. In particular,
they seem to play an important role in various cancer entities and
several immune-mediated inflammatory disorders like psoriasis,
vitiligo, psoriatic arthritis, and IBD (52–58). Whereas TRM cells
as tumor-infiltrating lymphocytes (TIL) are associated with a
better prognosis in most cancer types (e.g. ovarian cancer, breast
cancer, and gastric adenocarcinoma), CD103+ TIL in colorectal
cancer are associated with poor prognosis (56–59), suggesting
that their impact is tissue-specific.

In the context of IBDs, an important role of TRM cells has only
recently emerged. Several studies indicate that the presence and
generation of TRM cells are involved in the pathogenesis of IBDs
(Table 1). We were able to show that CD69+CD103+ cells with a
TRM phenotype are increased in the lamina propria of patients
Frontiers in Immunology | www.frontiersin.org 4
with ulcerative colitis (UC) and Crohn’s disease (CD) and that
high levels of CD4+ TRM cells in IBD patients are associated with
early relapse. In mice, we observed that the key TRM transcription
factors Hobit and Blimp-1 are essential for experimental colitis
since their absence protected from T cell transfer colitis, dextran
sodium sulphate-induced colitis and trinitrobenzene sulfonic
acid-induced colitis. Mechanistically, we could attribute this to
an adaptive-innate crosstalk mechanism including chemokine
release by TRM cells and subsequent recruitment and
differentiation of pro-inflammatory immune cells (55).
Consistent with these results Bishu and colleagues reported,
that CD4+ TRM cells are increased in CD compared with
control patients and identified these CD4+ TRM cells as the
major T cell source of TNF-a in the mucosa of CD patients.
Furthermore, these cells produced more IL-17A and TNF-a in
inflamed compared to healthy tissue (60). Bottois and colleagues
profiled two distinct CD8+ TRM cell subsets in CD, defined by
KLRG1 and CD103, which are both receptors of E-Cadherin.
CD103+CD8+ TRM cells in CD patients expressed TH17-related
genes such as CCL20, IL-22 and, IL-26 suggesting that they may
trigger innate immune responses as well as the recruitment of
effector cells. KLRG1+CD8+ TRM cells were specifically elevated
under inflammatory conditions and showed increased
proliferative and cytotoxic potential (61). Furthermore, a
recent study employing single-cell RNA-sequencing identified
changes in the transcriptional profile of CD8+ TRM cell subsets in
UC including a pro-inflammatory phenotype and increased
expression of Eomesodermin (62). Similarly, Corridoni and
colleagues reported that CD8+ TRM cells in UC express more
GZMK and IL26, suggesting that altered CD8+ TRM cells are
implicated in UC pathogenesis (63).

Yet, observations made by other groups support the notion
that the picture is more complex. E.g., Noble et al. described
reduced numbers of CD103+Runx3+ TRM cells in CD and UC.
TABLE 1 | Overview of studies on the role of TRM cells in IBD.

Organsim Key conclusions on TRM cells Ref.

Human and
Mouse

Human:
! CD69+CD103+ cells with a TRM phenotype are increased in the lamina propria of patients with ulcerative colitis (UC) and Crohn’s disease (CD)
! High levels of CD4+ TRM cells in IBD patients are associated with early relapse.
Mouse:
! TRM cells expressing Hobit and Blimp-1 are key drivers of experimental colitis due to an adaptive-innate crosstalk mechanism

(55)

Human ! Increased CD4+ TRM cell population in CD compared with control patients
! Increased production of IL-17A and TNF-a by TRM cells in inflamed compared to healthy tissue
! Major T cell source of TNF-a in the mucosa of CD patients.

(60)

Human ! Two distinct CD8+ TRM cell subsets in CD, defined by KLRG1 and CD103
! CD103+CD8+ TRM cells: express TH17-related genes such as CCL20, IL-22, and IL-26
! KLRG1+CD8+ TRM cells: specifically elevated under inflammatory conditions, show increased proliferative and cytotoxic potential

(61)

Human ! Changes in the transcriptional profile of CD8+ TRM cell subsets in UC: pro-inflammatory phenotype and increased expression of
Eomesodermin

(62)

Human ! CD8+ TRM cells in UC express more GZMK and IL26
! Altered CD8+ TRM cells may be implicated in UC pathogenesis

(63)

Human ! Reduced numbers of CD103+Runx3+ TRM cells with a probably regulatory phenotype in CD and UC: expression of CD39 and CD73,
release of IL-10

(64)

Human ! Decreased numbers of CD103+CD4+ and CD103+CD8+ T cells in active IBD
! Rise of the numbers of these cells in the remission phase up to levels comparable with healthy controls.

(65)
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They observed the expression of CD39 and CD73 on these cells
as well as the release of IL-10 suggesting that these cells have a
regulatory phenotype. They hypothesized that TRM cells
probably serve as gatekeepers by controlling the access of
mucosal antigens to germinal centers in lymphoid tissue (64).
Roosenboom and colleagues reported decreased numbers of
CD103+CD4+ and CD103+CD8+ T cells in active IBD and
found a rise of these numbers in the remission phase up to
levels comparable with healthy controls. In addition, they
observed a lower number of CD103- T cells in healthy controls
and IBD patients in remission in comparison with active CD and
UC patients (65). Importantly, this study was not specifically
designed to assess TRM cells. Thus, it seems possible that these
data are actually indicative of a change in TRM cell phenotype
similar to some of the studies mentioned above.

Taken together, TRM cells are undoubtedly involved in the
pathogenesis of IBDs. However, different observations have been
made with regard to their function and mechanisms. While these
seem tobe conflicting onfirst view, it is likely that they rather derive
from different approaches to a complex issue. For example,
considering that TRM cell generation may occur following any
recognition of a cognate antigen by a naïveT cell, it is also clear that
—depending on co-stimulatory signals and the nature of the
surrounding environment—different forms of T cell memory
may be imprinted. Thus, it is not surprising that regulatory as
well as pro-inflammatory TRM phenotypes have been described
depending on the markers chosen to identify the cells. In
consequence, the reduction of regulatory-type TRM cells is
actually not at all contradicting other observations, such as
perturbed TRM cell phenotypes in IBD or increased pro-
inflammatory TRM cell populations. Yet, further investigations
are necessary to answer the remaining open questions.
TRM CELLS AS POTENTIAL THERAPEUTIC
TARGETS IN INFLAMMATORY BOWEL
DISEASES

Based on the above-mentioned reports TRM cells seem to be a
promising therapeutic target to treat UC and CD.

Specific approaches in that regard are still lacking and would
require the identification of unique targets on or in TRM cells as
well as the selection of appropriate targeting strategies. However,
the mechanism of the monoclonal anti-b7 integrin antibody
etrolizumab, which blocks the aEb7 and a4b7 integrin
heterodimers might in part be explained by effects on TRM

cells. For example, this antibody has been shown to block the
retention of CD8+ T cells from patients with UC in a humanized
in vivo cell trafficking model suggesting that it might also reduce
the retention of TRM cells in the gut (66). Moreover, post-hoc
analyses of the successful phase II trial in UC showed that
patients with high expression of CD103 were more likely to
respond to etrolizumab therapy (67, 68). Etrolizumab recently
completed an ambitious phase III trial program in UC, in which
only two out of three induction trials and no maintenance trial
Frontiers in Immunology | www.frontiersin.org 5
reached the primary endpoint. However, the drug was efficient in
several important secondary endpoints and was similarly
effective as infliximab and adalimumab, underscoring its
biological activity and warranting further research (69–72).
Phase III trials in CD are still ongoing with promising results
in an exploratory cohort (73, 74).

As mentioned above, the downregulation of S1PR1 is a
hallmark of TRM cells. In this context, it is tempting to
speculate, which effect the class of S1PR modulators including
ozanimod, etrasimod, and amiselimod, which are currently also
investigated for application in IBDs might have on intestinal T
cells (75, 76). While it is evident that they lead to sequestration of
naïve T cells and TCM cells in secondary lymphoid organs (77),
one could also assume that they reduce recirculation of T cells
from the tissue driving the retention of local non-TRM T cells.

Some of the drugs already in use in IBD might also partly
affect TRM cells in the gut. For instance, the anti-a4b7 integrin
antibody vedolizumab that blocks T cell homing to the gut via
MAdCAM-1 might reduce the recruitment of pre-TRM cells and,
thus, prevent the seeding of new TRM cells [reviewed in (78)].
The anti-IL-12/23 antibody ustekinumab is thought to block the
generation and differentiation of TH1 and TH17 cells [reviewed in
(79)]. This will certainly also affect TRM cells with a TH1 or TH17
phenotype, e.g. the de-novo generation of such cells might be
reduced or established TRM cells might be subjected to plasticity
due to an altered cytokine balance (80, 81). Another drug
routinely used in UC is tofacitinib, which inhibits the Janus
kinase (JAK) pathway (mainly JAK1 and JAK3) and, thus,
abrogates signaling of numerous cytokines (82, 83). This also
affects IL-15, which is known to participate in the maintenance of
TRM cells (18, 33, 84). In the skin, it has already been shown that
targeting CD122, a subunit of the IL-15 receptor, is a potential
treatment strategy for tissue-specific autoimmune diseases
involving TRM cell such as vitiligo (85).

Collectively, research on TRM cells as a therapeutic target is
still in its infancy. However, several currently used and developed
drugs, particularly etrolizumab and S1PR1 modulators, might
interfere with TRM cells and it is likely that the coming years will
reveal further details on their suitability for treating IBD.
CONCLUDING REMARKS

Over the last decade, TRM cells have emerged as an important cell
population in mucosal tissues controlling the initiation of
secondary immune responses. Multiple efforts have led to a
precise characterization of their phenotype and implication in
infection control. Moreover, they have been increasingly
associated with pathological conditions, in the case of the GIT,
particularly with IBD. Although not all questions are already
resolved, TRM cells seem to control important steps in the
pathogenesis of chronic intestinal inflammation and, thus,
represent a potential target for future IBD therapy. Further
research is necessary to better define their pathogenetic
contributions and to develop targeted therapeutic approaches.
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