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Abstract: Breast cancer is the most common cancer in women worldwide. It is the most frequently
diagnosed cancer among women in 140 countries out of 184 reporting countries. Lesions of breast
cancer are abnormal areas in the breast tissues. Various types of breast cancer lesions include (1) micro-
calcifications, (2) masses, (3) architectural distortion, and (4) bilateral asymmetry. Microcalcification
can be classified as benign, malignant, and benign without a callback. In the present manuscript,
we propose an automatic pipeline for the detection of various categories of microcalcification. We
performed deep learning using convolution neural networks (CNNs) for the automatic detection and
classification of all three categories of microcalcification. CNN was applied using four different opti-
mizers (ADAM, ADAGrad, ADADelta, and RMSProp). The input images of a size of 299 × 299 × 3,
with fully connected RELU and SoftMax output activation functions, were utilized in this study.
The feature map was obtained using the pretrained InceptionResNetV2 model. The performance
evaluation of our classification scheme was tested on a curated breast imaging subset of the DDSM
mammogram dataset (CBIS–DDSM), and the results were expressed in terms of sensitivity, specificity,
accuracy, and area under the curve (AUC). Our proposed classification scheme outperforms the
ability of previously used deep learning approaches and classical machine learning schemes.

Keywords: cancer; microcalcification; convolution neural network; biomedical imaging; mammograms

1. Introduction

Cancer is a disease caused by an uncontrollable growth of abnormal cells without de-
stroying the older and damaged cells. Cancer cells grow and divide in an uncontrolled man-
ner, invading normal tissues and organs and eventually spreading throughout the body [1].
Breast cancer is categorized into (1) noninvasive/in situ and (2) invasive/infiltrating. Non-
invasive breast cancer remains in the particular location of the breast without spreading to
surrounding tissues, lobules, or ducts. Cancerous cells spread throughout the body using
the blood or lymphatic systems, destroying healthy tissue in the process called invasion.
Noninvasive breast cancer is classified as ductal and lobular. Ductal carcinomas emanate
from ducts, whereas lobular carcinomas emanate from lobules, and it does not eradicate
other tissues [2]. Ductal carcinoma in situ (DCIS) is the most general form of noninva-
sive carcinoma. It is called noninvasive because it does not disseminate apart from the
milk duct into surrounding normal breast tissues. Microcalcification is the most common
mammographic indication of DCIS. DCIS is not severe, but it can lead to invasive breast
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cancer after some time [1,3]. Microcalcifications are small size deposits of calcium, which is
brighter, compared with normal breast tissues. The size of microcalcification ranges from
100 microns up to 2000 microns [4]. They might appear isolated or in form of a cluster [4].
Isolated microcalcifications are difficult to detect due to their small size and low contrast.
Microcalcification clusters make patterns and are detectable in the early screening of breast
cancer. Microcalcification may be benign or malignant according to size, density, form,
and distribution. Benign microcalcifications are of round shape, distributed in a diffused
manner, and scattered in breast tissues. Malignant microcalcifications are distributed in
an arbitrary pattern, irregular shape, and variable density. For these reasons, even highly
experienced medical doctors need to carefully read and evaluate the mammograms, and
therefore, automated systems effectively trained to trigger the suspicious areas become
essential in clinical practice. In this paper, deep learning is used for automatic detection
and classification of three categories of microcalcification—namely, (1) benign, (2) malig-
nant, and (3) benign without callback. To reduce the training time of the deep learning
model, the region of interest (ROI) that consists of microcalcification is manually cropped.
Existing techniques of microcalcification detection exploit feature extraction and machine
learning techniques. In several studies, authors have applied various image processing
and machine learning techniques for the segmentation and detection of microcalcification.
Heinlein et al. proposed integrated wavelet transform for microcalcification enhancement
in mammograms [2]. Multiresolution decomposition-based approaches have earlier been
applied to mammograms enhancement. Mini et al. applied wavelet-based techniques for
microcalcification detection and achieved 95% accuracy on the MIAS dataset [3]. Bocchi
et al. used Radon transform-based features for shape analysis of microcalcification to detect
its malignancy by using Radon and moment-based features [4]. Papadopoulos et al. used
contrast limited adaptive histogram equalization (CLAHE), local range modification, 2D
redundant dyadic wavelet transform using linear stretching, and wavelet shrinkage tech-
nique for microcalcification enhancement [5]. Sakka et al. applied a multi-resolution-based
wavelet technique for the detection of microcalcification on the MIAS dataset [6]. The Hes-
sian matrix within a multi-resolution-based approach has been applied by Balakumarana
et al. for microcalcification detection [7]. A high 98.3% true positive ratio with a 0.9% false-
positive ratio is achieved on 100 mammograms of the DDSM dataset. Liu et al. achieved
92% sensitivity by applying probability-based fuzzy learning and weighted support vector
machines (SVMs) for microcalcification detection on digital mammograms [8].

Recently, deep learning approaches with/or without transfer learning have also been
used by various authors for object detection, microcalcification, and mass detection. Trans-
fer learning exploits the knowledge obtained from other domains in the form of pretrained
feature extraction layers, in order to overcome the need for large-size datasets in training.
In this form, the network uses the available data for either fine-tuning its training parame-
ters or the outmost classifier layer on the domain of interest. Wang et al. have applied a
context-sensitive-based deep neural network for microcalcification detection [9]. Jiao et al.
applied intensity information and deep features extracted by using a deep convolution
neural network (CNN) for mass classification [10]. Ribli et al. used a faster R-CNN deep
learning model to detect and classify breast lesions using mammograms. The highest
AUC value of 0.95 has been achieved on IN Breast dataset [11]. Arevalo et al. used a
CNN-based approach for mass classification, achieving the highest AUC of 0.82 on 736 film
mammograms [12]. Dhungel et al. applied a deep-learning-based model to analyze the
masses present in the mammograms, and 98% sensitivity was achieved [13]. Becker et al.
investigated a deep artificial neural network model for breast cancer detection on digital
mammograms and achieved 81% accuracy at its highest [14].

Focus and Contribution of the Present Study

In this study, we investigated the potential of deep learning in the automatic detec-
tion and classification of various categories of microcalcification. The traditional image
processing approach for automatic microcalcification detection consists of preprocessing,



Int. J. Environ. Res. Public Health 2022, 19, 2159 3 of 12

segmentation, feature extraction, and classification steps. These steps are indirectly in-
cluded in various layers of a deep learning model trained by a large portion of relevant data
cases. Segmentation is an important step preceding classification since feature extraction is
highly affected by the local area of operation, and the accuracy of the microcalcification
detection depends on the accuracy of its segmentation. In this medical field, Segmentation
and feature extraction become difficult due to variations in shape, directionality, contrast,
and size of images and microcalcifications, which are hidden in dense breast tissue. Con-
ventional segmentation schemes are based on stochastic modeling of image characteristics,
especially focusing on the region of interest of the mammographic image of utmost interest
to the medical expert. In contrast, deep learning avoids several inefficiencies of model-
based classification by exploiting knowledge and wishful thinking oriented from the data
themselves. Nevertheless, the classification task in deep learning does not specifically
utilize the benefits of segmentation.

In this study, we explored whether classification accuracy can be significantly en-
hanced by imposing the segmentation step in preprocessing and improving the feature
extraction stage, using deep learning models. More specifically, our methodology operates
on local windows as the regions of interest, in the form of a moving window approach
scanning the entire mammographic image. Each time, we focused on a specific region of
interest and stochastic modeling of its anatomic structure. Subsequently, we exploited a
pretrained network in the form of transfer learning, to serve as an effective feature extractor
based on a large set of image structures. More specifically, we exploited the advantages
of efficiency vs. complexity of InceptionResNetV2 adapted to the framework of our appli-
cation. Following the feature extraction on microcalcification images from this pretrained
network, we proceeded with the training of the classification layer of a deep learning model,
to assess the performance of the entire system. In order to further enhance the performance
of the deep neural network, we exploited a number of optimizers for parameter tuning
in the classification layer. We tested the proposed deep learning model on a widely used
mammogram dataset (as it is described in Section 2.1) and compared its performance with
classical machine learning schemes that perform tedious, texture-based feature extraction,
as well as other previously tested deep learning schemes that operate in a black-box form
on the data. Our model outperforms such approaches, due to (1) the appropriate restriction
of the data domain of CNN operation, extracting detailed structural features within local
windows, and (2) the appropriate design of filter concatenation in the InceptionResnetV2
model and the efficient adaptation of the output layers through optimizers.

This paper is structured into the following sections: Material and methods are de-
scribed and Experimental analysis of detection and classification of microcalcification is
discussed in Section 2, followed by results and discussion in Section 3. Finally, Section 4
concludes the findings of this study.

2. Materials and Methods
2.1. Dataset Description

The performance of the proposed deep learning framework for the classification of
microcalcification was evaluated using the open, curated breast imaging subset of the
DDSM mammogram dataset (CBIS–DDSM) [15]. This is a standard version of digital
database screening mammography (DDSM), which consists of benign, benign without a
callback, and malignant cases. This study considered the detection and classification of
microcalcification into three categories—namely, benign, malignant, and benign without a
callback. Benign microcalcification represents the suspicious cancerous region that may
require further investigation by another modality such as ultrasound or biopsy. The case
of benign without a callback indicates that the region may be suspicious and should be
monitored, but it does not require further investigation at the moment. Malignant micro-
calcification indicates the suspicious regions of cancer, which requires proper evaluation,
recommendation, and treatment by the physician. This research mainly focused on the
classification of three categories of microcalcification. Cropped region of interest (ROI) im-
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ages including various categories of microcalcification were used to assess the performance
of our proposed classification scheme. These ROIs reflected all types of abnormalities, as
defined by medical experts, and the local properties of regions that be involved in our
moving window operation of the proposed detection scheme. The dataset was split into
80% for training and hyperparameter tuning and 20% for stratified testing sets based on
Breast Imaging Reporting and Data System (BIRDS) category. In total, 1547 and 326 ROI
images of the CBIS–DDSM dataset were used for training and validation, respectively.
Table 1 shows the number of ROI images from all cases, consisting of benign without a
callback, benign, and malignant types of microcalcification.

Table 1. The number of images used in each class.

Training Testing

Benign_without_callback 474 99

Benign 528 133

Malignant 545 94

2.2. Image Preprocessing

Sample images of the DDSM dataset of each category are shown in Figure 1, consisting
of squared ROI images of different sizes. These images were converted to a standard size of
299 × 299, using inter-cubic interpolation algorithms, as the convolutional neural network
(CNN) structure operated on images of the same size.
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DDSM mammography data were single-channel image sets, different from natural
color images applied in the pretrained models. However, basic image features in terms



Int. J. Environ. Res. Public Health 2022, 19, 2159 5 of 12

of edges, shapes, and other high-level features can still be extracted using pretrained
convolutional neural network-based models. In this respect, we note that the sample
DDSM image was a single-channel image, whereas the input to the InceptionResNetV2
model required a three-channel image. Thus, sample DDSM images were converted to three
channels by copying the pixel value of single-channel images to the other two channels.

2.3. Transfer Learning

A deep neural network with several hidden layers is expensive to train. Complex
models require multiple machines with expensive GPUs and still may take weeks to train
them. Transfer learning is a popular approach in deep learning in which pretrained models
are used as the starting point of the neural network model. The main field application
is computer vision and natural language processing. There are different variants of pre-
trained networks available, each with its own architecture, speed, size, advantages, and
disadvantages. Some of the most common available models include VGGNET, RESNET, or
INCEPTION [16–18].

In this study, the InceptionResNetV2 model was utilized, pretrained with the ImageNet
dataset. Mammograms as images are different from natural images due to the number
of channels, as well as the embedded complexity of their structure. Thus, the pretrained
InceptionResNetV2 was used only to obtain the feature maps for subsequent classification
purposes. The actual training of the classification scheme of microcalcification into three
categories was performed on the CBIS–DDSM dataset.

The structure of the convolutional neural network (CNN) architecture adapted in our
model is shown in Figure 2. The image was inputted to the InceptionResnetV2 model after
resizing the cropped ROIs of the original image into 299 × 299 × 1.
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The pretrained InceptionResNetV2 model on the ImageNet dataset is shown in
Figure 3. The size of input images of the InceptionResNetV2 model is 299 × 299 × 3,
and its full architecture is shown in the middle panel of Figure 3. The initial STEM operator
decoupled the input into many channels of smaller size, resulting in a cube of 35 × 35 × 384,
as shown in the left panel of Figure 3. This was followed by two InceptionResNet blocks,
each followed by its specific STEM reduction operator with appropriately designed filter
concatenations, as illustrated in the right panel of Figure 3. We used different filter con-
catenations to gradually reduce the size of the grid from 35 × 35 to 17 × 17 and then to an
8 × 8 grid. A third InceptionResNet block with average pooling on the output dimensions
provided the flattened output, which was trained for classification with SoftMax.
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In our proposed architecture (Figure 2), the flattened output of this pretrained model
was employed as input to a fully connected layer with 128 neurons, followed by an output
layer. The ReLU and SoftMax activation functions were utilized in the fully connected layer
and the output layer, respectively. In particular, the RELU activation restricted negative
values and forced many hidden layers to zero, thus providing a sparse representation. Fur-
thermore, ReLU acted as a linear activation function, facilitating the efficient optimization
of the neural network. On the other hand, the SoftMax activation in the output layer of
classification derived a multinomial probability distribution and was adjusted for three
classes—namely, benign, benign without a callback, and malignant.

The proposed CNN architecture was tested with different optimizers for the clas-
sification of microcalcifications. Different multiclass classification loss functions were
tested in general, including multiclass cross-entropy and Kullback–Leibler (KL) divergence
loss [19,20]. This study utilized Kullback–Leibler divergence as a loss function, which cal-
culates the information loss if the predicted probability distribution is used to approximate
the desired target.

2.4. Experimental Analysis

The convolutional neural network was implemented using the Tensor Flow machine
learning technique. We used transfer learning with the pretrained InceptionResNetV2
model for feature extraction and further train the classification layer. The simulation was
performed on a 3.2 GHz processor with 32 GB Memory, using Python. The experiment
was tested and validated on the DDSM dataset. The dataset was portioned into three sets
for training, testing, and validation. In total, 1547, 326, and 200 ROI images of the CBIS–
DDSM dataset were used for training, testing, and validation, respectively. In order to tune
the network parameters in an automated manner without the intervention of an operator,
various optimizers were applied in this study—namely, ADAM, ADAGrad, ADADelta, and
RMSProp [21,22]. Adam is a replacement optimization algorithm for stochastic gradient
descent used in trained deep learning models. Adam builds on the properties of ADAGrad
algorithms to provide an optimization algorithm that can handle sparse gradients in noisy-
problem environments. Faster convergence of deep learning models can be obtained using
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momentum and adaptive learning rates. The complete list of architectures is presented in
Table 2. The learning rate of various optimizers was tuned from 0.01 to 0.00001. Finally,
the learning rate set was taken as 0.0001. The exponential decay rate for the 1st and 2nd
moments for the ADAM optimizer was set to default values of 0.9 and 0.999, respectively.

Table 2. Architecture of transfer learning model (InceptionResNetV2) with various optimizers.

Optimizer Input Shape Fully Connected
Neurons

Fully Connected
Activation Function Output Output Activation

Function

Adam

299 × 299 × 3 128 Relu 3 Softmax
AdaGrad
AdaDelta
RMSProp

2.5. Performance Evaluation

A total of 1547 training and 326 testing ROI images were used in this research. The
dataset was split into training and validation set based on the BIRDS category. Each of the
positive images contained at least one biopsy-proven malignant tumor. All examples in the
dataset were taken in either CC or MLO view or both. Cranial–caudal (CC) is a view from
above, while mediolateral–oblique (MLO) is an oblique or angled view. Rectangular regions
of interest from CC and MLO views of a mammogram were extracted and then converted
into square ROI by stretching the smaller side. The performance of each CNN prediction
model was evaluated by computing the area under the receiver-operating characteristic
curve (ROC), sensitivity, and specificity, which are defined as follows [19,20]:

True Positive Rate =
True Positives

(True Positives + False Negatives)
(1)

False Positive Rate =
False Positives

(False Positives + True Negatives)
(2)

Sensitivity =
True Positives

(True Positives + False Negatives)
(3)

Specificity =
True Positives

(True Negatives + False Positives)
(4)

Accuracy =
True Positives + True Positive

(True Positive + True Negatives + False Positives + False Negatives)
(5)

ROC curves were plotted as true-positive versus false-positive rates at various thresh-
olds. The area under the curve (AUC) was used for a better understanding of ROC.

3. Result and Discussion

The proposed CNN was tested with four different optimizers—namely, ADAM, ADA-
Grad, ADADelta, and RMSProp. The parameters of the CNN were fine-tuned with each
of these optimizers, to attain high classification results. Loss, accuracy, and sensitivity
were plotted for each optimizer, with 20 epochs of training and validation, as described
in the following subsections. The smaller batch size was used to achieve better stability
and generalization of the model. Therefore, in this study, the batch size was taken as 32 for
the experiment.

3.1. Implementation of InceptionResNetV2 with ADAM Optimizer

Various parameters of the ADAM optimizer were tuned to obtain the highest classifi-
cation score. The learning rate was set to 0.0001, whereas the exponential decay rates for
first- and second-moment estimates were taken as 0.9 and 0.999, respectively. The value
of epsilon, which is a small constant for numerical stability, was set to the default value
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of 1 × 10–7. The result of Inceptionresnetv2 with ADAM optimizer is shown in Figure 4,
presenting the evaluation measures in training and validation stages.
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3.2. Implementation of InceptionResNetV2 with ADAGrad Optimizer

The learning rate of ADAGrad is a variable parameter, depending on how frequently
it is updated [21]. This learning rate and initial accumulator value of ADAGrad were tuned
as 0.0001 and 0.1, respectively. Epsilon value was set as a default value of 1 × 10–7. The
result of InceptionResNetv2 with ADAGrad optimizer is shown in Figure 5.
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3.3. Implementation of InceptionResNetV2 with ADADelta Optimizer

ADADelta is a more robust extension of ADAGrad that performs learning based on a
moving window of gradient updates, instead of accumulating all previous gradients. By
this method, ADADelta continues adjusting even after it updates the learning rate. The
learning and decay rates were initialized as 0.0001 and 0.95, respectively. Epsilon was taken
with a default value of 1 × 10–7. The result of InceptionResNetv2 with ADADelta optimizer
is shown in Figure 6.

3.4. Implementation of InceptionResNetV2 with RMSProp Optimizer

RMSProp optimizer works by maintaining a moving (discounted) average of the
square of gradients and dividing the gradient by the root of this average [22]. The learning
rate for RMSProp was initialized as 0.0001. The dividing factor (or rho) and the momentum
parameter were initialized as default values of 0.9 and 0.0, respectively. Epsilon value was
initialized as a default value of 1 × 10–7. The result of InceptionResNetv2 with RMSProp
optimizer is shown in Figure 7.
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The test results of the proposed CNN models with different optimizers are summarized
in Table 3. It is revealed that InceptionResNetV2 is an effective transfer learning model
for microcalcification classification. By analyzing the results, it can be concluded that this
pretrained model is more sensitive in detecting key elements such as edges and shapes
within a mammogram image. In this study, the inceptionResNetV2 pretrained model with
Kullback–Leibler divergence loss function and combination of various optimizers proved
an effective model for multiclass classification of microcalcification [23,24].

Table 3. Validation results of various models with a learning rate of 0.0001 and a batch size of 32,
with model names and loss functions.

Model Loss Function Optimizer Training Loss Training Accuracy

Inception ResNetV2 Kullback_Leibler_ Divergence ADAM 0.1134 0.9813
Inception ResNetV2 Kullback_Leibler_ Divergence ADAGrad 0.0212 0.9813
Inception ResNetV2 Kullback_Leibler_ Divergence ADADelta 0.1293 0.9816
Inception ResNetV2 Kullback_Leibler_ Divergence RMSProp 0.1193 0.9810

The proposed CNN model performs efficiently irrespective of the optimizers’ type.
The highest training accuracy of 98% is achieved with 0.0212 training loss. The highest
validation accuracy, AUC, sensitivity, and specificity values were 94%, 96%, 97%, and 80%,
respectively. Traditional machine learning approaches were also tested, to compare with
the results of the deep learning approach. In total, 14 second-order gray-level co-occurrence
matrix (GLCM) features were extracted, to generate texture attributes [22]. The feature
vector set was given as input to SVM and k-NN classifiers trained to classify the various
types of microcalcification. The classification performance was measured by 10-fold cross-
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validation. The classification results of SVM with RBF kernel function and k-NN classifier
are shown in Table 4.

Table 4. Validation result of various models with a learning rate of 0.0001 and a batch size of 32 with
InceptionResNetV2 Model and Kullback_Leibler_ Divergence loss function.

Model Loss Function Optimizer Loss Accuracy AUC Sensitivity at
Specificity 0.8

Inception ResNetV2 Kullback_Leibler_Divergence ADAM 0.21 0.93 0.95 0.96
Inception ResNetV2 Kullback_Leibler_Divergence ADAGrad 0.67 0.93 0.93 0.93
Inception ResNetV2 Kullback_Leibler_Divergence ADADelta 0.28 0.94 0.96 0.97
Inception ResNetV2 Kullback_Leibler_Divergence RMSProp 0.32 0.92 0.95 0.95

SVM(RBF Kernel function) - - - 0.91 0.90 91
k-NN 0.89 0.88 0.89

The outcomes of the present study were compared with the results of existing ap-
proaches, in order to illustrate the benefits of adopting segmentation in preprocessing and
efficient optimizers in the classification, as illustrated in Table 5. Ribli et al. achieved the
highest AUC value of 0.95 with a faster R-CNN deep learning model, to detect and classify
breast lesions using mammograms on IN Breast dataset [11]. Arevalo et al. utilized CNN for
mass classification, achieving the highest AUC value of 0.82 on 736 film mammograms [12].
Dhungel et al. achieved 98% sensitivity with a deep learning model for the detection of
masses present in the mammograms [13]. Becker et al. achieved 81% accuracy with a deep
artificial neural network model for breast cancer detection on digital mammograms [14].
As demonstrated by Table 5, the proposed deep learning model performs better than
counterpart existing models.

Table 5. Comparison of the proposed model with existing techniques.

Article Model Accuracy (%) AUC Sensitivity (%)

Ribli et al. [11] faster R-CNN 0.92 0.95 96
Arevalo et al. [12] CNN 0.90 0.82 85
Dhungel et al. [13] CNN 0.92 0.93 98
Becker et al. [14] CNN 81 0.89 87

Proposed DL model with ADAM Inception ResNetV2 0.93 0.95 0.96
Proposed work DL model with ADAGrad Inception ResNetV2 0.93 0.93 0.93
Proposed work DL model with ADADelta Inception ResNetV2 0.94 0.96 0.97
Proposed work DL model with RMSProp Inception ResNetV2 0.92 0.95 0.95

In the present study, we utilized InceptionResNetV2 with four different optimizers,
for the classification of an openly available mammogram dataset including three classes.
A future step of this research could potentially be the examination of more classes, i.e.,
normal mammogram images, as well as other types of abnormalities.

4. Conclusions

An effective deep-learning-based approach was proposed and utilized to classify the
three important categories of breast tissue cancer, as benign without a callback, benign,
and malignant microcalcification, using mammograms. Manual feature extraction of
abnormal ROI was avoided using deep learning approaches. In our case, the pretrained
InceptionResNetV2 model was used for automatic feature extraction in local regions of
interest. Various optimizers including ADAM, ADAGrad, ADADelta, and RMSProp were
also used to fine-tune the parameters of the InceptionResNetV2 pretrained model. The
highest training rate of 98% and validation accuracy of 94% were achieved with ADADelta
optimizer with a learning rate of 0.001. During training, the highest training rate of 98% and
validation accuracy of 94% were achieved with ADADelta optimizer with a learning rate of
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0.001. In the testing phase, 97% sensitivity, 80% specificity, 94% accuracy, and 96% AUC
were achieved with our proposed classification scheme, outperforming the performance of
previously used deep learning approaches and classical machine learning schemes.
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