
Ji et al. BMC Bioinformatics 2014, 15:325
http://www.biomedcentral.com/1471-2105/15/325

METHODOLOGY ARTICLE Open Access

MAE-FMD: Multi-agent evolutionary method
for functional module detection in
protein-protein interaction networks
Jun Zhong Ji1*, Lang Jiao1, Cui Cui Yang1, Jia Wei Lv1 and Ai Dong Zhang2

Abstract

Background: Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to the
understanding of biological mechanisms. With the development of computing science, computational approaches
have played an important role in detecting functional modules.

Results: We present a new approach using multi-agent evolution for detection of functional modules in PPI
networks. The proposed approach consists of two stages: the solution construction for agents in a population and the
evolutionary process of computational agents in a lattice environment, where each agent corresponds to a candidate
solution to the detection problem of functional modules in a PPI network. First, the approach utilizes a
connection-based encoding scheme to model an agent, and employs a random-walk behavior merged topological
characteristics with functional information to construct a solution. Next, it applies several evolutionary operators, i.e.,
competition, crossover, and mutation, to realize information exchange among agents as well as solution evolution.
Systematic experiments have been conducted on three benchmark testing sets of yeast networks. Experimental
results show that the approach is more effective compared to several other existing algorithms.

Conclusions: The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy while
keeping other competitive performances, so it can be applied to the biological study which requires high accuracy.

Keywords: Computational biology, Protein-protein interaction network, Functional module detection,
Multi-agent evolution

Background
With the completion of the sequencing of the human
genome, proteomic research becomes one of the most
important areas in the life science [1]. Proteomics is the
systematic study of the diverse properties of proteins to
provide detailed descriptions of the structure, function
and control of biological systems in health and disease [2],
where the analysis of underlying relationships in protein
data can potentially yield and considerably expand use-
ful insights into roles of proteins in biological processes.
That is, protein-protein interactions (PPI) can provide
us with a good opportunity to systematically analyze the
structure of a large living system and also allow us to use
them to understand essential principles. Therefore, the
analysis of PPI networks naturally serves as the basis to

*Correspondence: jjz01@bjut.edu.cn
1College of Computer Science, Beijing University of Technology, Chaoyang
District, Beijing, China
Full list of author information is available at the end of the article

a better understanding of cellular organization, processes,
and functions [3]. Since biologists have found that cellular
functions and biochemical events are coordinately carried
out by groups of proteins interacting each other in func-
tional modules (or complexes), and the modular structure
of a complex network is critical to functions, identify-
ing such functional modules (or complexes) in PPI net-
works is very important for understanding the structures
and functions of these fundamental cellular networksa. In
the last decade, some biological experimental methods,
e.g., tandem affinity purification with mass spectrom-
etry [4,5] and protein-fragment complementation assay
(PCA) [6], have already been used to detect functional
modules in PPI networks. However, there are several lim-
itations to these experimental methods, such as too many
processing steps and too time-consuming, especially
when dealing with a large-scale and densely connected PPI
network. Therefore, computational approaches based on
machine learning and datamining have been designed and

© 2014 Ji et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: jjz01@bjut.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Ji et al. BMC Bioinformatics 2014, 15:325 Page 2 of 26
http://www.biomedcentral.com/1471-2105/15/325

become useful complements to the experimental meth-
ods. Over the last decade, a variety of classic cluster-
ing approaches, such as density-based clustering [7-9],
hierarchical clustering [10-12], partition-based clustering
[13-15], and flow simulation-based clustering [16-18],
have been used for identifying functional modules in PPI
networks. In recent years, there has also been a number of
new emerging approaches [19-21], which employs novel
computational models to identify functional modules in
a PPI network. Especially, some nature-inspired swarm
intelligence algorithms have been recently applied to the
detection of functional modules in PPI networks [22-25].
Though using computational approaches to detect protein
functional modules in PPI networks has received con-
siderable attention and researchers have proposed many
detection ideas and schemes over the past few years [1],
how to efficiently identify functional modules by means
of novel computational approaches is still a vital and
challenging scientific problem in computational biology.
Agent-based methods have been previously applied to

solving certain search and optimization problems [26,27].
In such methods, an agent, a, is a computational entity
that resides in and reacts to its local environment. Dur-
ing the process of interacting with its environment and
companion agents, each agent increases its energy level
as much as possible, so that the multi-agent evolution
can achieve the ultimate goal of solving a global opti-
mization problem. As another example of nature-inspired
methods, multi-agent evolution has shown some promises
in producing low-cost, fast, and reasonably accurate
solutions to certain computational problems, such as clas-
sification [28], clustering [29,30], and social network com-
munity mining [31]. These encouraging applications are
significant motivation for our research, thus we propose
a novel multi-agent evolutionary method to detect func-
tional modules in PPI networks (called MAE-FMD) in
this paper. Based on a probability model, MAE-FMD first
employs a group of agents as a population to carry out ran-
dom walks from a start protein to other proteins in a PPI
network and finish their individual solution encodings.
Then, it randomly places these agents into an evolutionary
environment modeled as a lattice, and performs inno-
vative agent-based operations, i.e., competition, coopera-
tion, and mutation, in an attempt to increase the energy
levels of agents at each iteration. Experimental results
and related comparisons have shown that the MAE-
FMD algorithm is effective in achieving better functional
module mining results.

Method
Basic ideas
In this section, we describe a global search algorithm
based on a multi-agent evolutionary method for func-
tional module detection, which consists of two phases:

(1) the solution construction phase, and (2) the solution
evolution phase. In the first phase, each agent traverses
all the nodes of a PPI network through a random-walk
process and forms its own solution. In the second phase,
the population of agents (i.e., all solutions) are randomly
placed into an evolutionary environment for their iterative
evolutions until a predefined termination criterion is sat-
isfied. During the evolutions, an energy level is employed
to evaluate the ability of an agent to solve a problem in
the multi-agent system. The higher the energy level of an
agent, the better the quality of the corresponding solution.

Agent representation and its construction
In the MAE-FMD algorithm, each agent corresponds
to a candidate solution. An agent is encoded as a
graph with N directed edges: A = {(1 → a1),
(2 → a2), · · · , (i → ai), · · · , (N → aN )}, where i is a node
label, ai denotes the connected node from ith node in the
represented solution, and N is the number of nodes in a
PPI network. Take the PPI network shown in Figure 1(a)
as an example. It consists of eight nodes numbered from
1 to 8. Figure 1(b) gives an encoding form of its corre-
sponding agent, which can be translated into the graph
structure as given in Figure 1(c), where each connected
component provides a group of nodes, corresponding to
the same partition of the network as shown in Figure 1(a).
To obtain a feasible solution, an agent proceeds from

a start node and continuously employs a random-walk
behavior to traverse other nodes in a PPI network. At
each time step, the agent is on a node, tries to move
to a functionally related or similar node that is chosen
probabilistically from its topologically adjacent nodes, and
builds a corresponding connection. When there is no any
satisfied node, the agent will end its current traversal by
pointing to itself and then randomly select an untraversed
node in a PPI network and begin to a new traversal. This
random-walk behavior will be performed until all nodes
have been processed. Thereafter, the agent forms its solu-
tion. A main advantage of this solution is that the number
K of clusters is automatically determined by the number
of components obtained by an agent, namely, those nodes
with a connected relationships are automatically classified
into the same community during a later decoding pro-
cess. Obviously, such an encoding method does not rely
on knowing number of clusters beforehand.
During the random-walk process, an agent constructs a

solution by proceeding from a start node and moving to
feasible neighborhood nodes in a step-by-step fashion. In
each step, an agent k moves from node i to node j based
on the following probability:

pkij =

⎧⎪⎨
⎪⎩

si,j+fi,j∑
l∈Uk

i

(si,l+fi,l)
, if j ∈ Uk

i ,

0 , otherwise,
(1)



Ji et al. BMC Bioinformatics 2014, 15:325 Page 3 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 1 The connection-based encoding of an agent. (a) PPI network; (b) Encoding of an agent; (c) Represented solution.

where si,j denotes a measure of connection strength
between two nodes i and j from the view of topology
structures, fi,j is a functional similarity score of the two
nodes i and j, and Uk

i is a set of available nodes in which
each one l (or j) is a neighborhood node of node i not
yet visited by the kth agent in the current traversal and
(si,j + fi,j) ≥ ε (ε represents a specified strength threshold
for the combination of topology and function similarities).
Given two nodes i, j ∈ V , we compute their connec-

tion strength by using the structural similarity formula as
follows [32]:

si,j =
∣∣�(i) ∩ �(j)

∣∣√∣∣ �(i)
∣∣ ∣∣�(j)

∣∣ , (2)

where �(i) is a set of the neighborhood nodes of node i,
and |�(i)| is the size of the set.
Based on the annotation information of Gene Ontology

(GO), the functional similarity measure for proteins can
be implemented. For two proteins i and j that are anno-
tated with two GO term sets gi and gj, respectively, the
functional similarity score can be calculated by [33]:

fi,j =
∣∣gi ∩ gj

∣∣∣∣gi ∪ gj
∣∣ . (3)

Agent energy level and evolutionary environment
According to the meaning of energy level mentioned
above, we are interested in searching a graph parti-
tion with the largest energy level. To guarantee highly
intra-connected and sparsely inter-connected modules,
we adopt the modularity density function [34] to compute
the energy level of an agent:

Energy(A) =
K∑
c=1

[
ec
|E| −

(
dc
2|E|

)2
]
, (4)

where K is the number of detected modules for an agent
A, ec is the number of links between nodes in cth mod-
ule, |E| is the number of all links in the PPI network,
and dc is the sum of the degrees of nodes in cth module.

During each evolutionary process, an agent will try to
increase its energy level as much as possible by sensing
and performing some reactive behaviors to survive.
To realize the local perceptivity of agents, we select the

common lattice structure used in [27,29,30] as the evo-
lutionary environment, which is more close to the real
evolutionary mechanism in nature than the model of the
population in traditional Genetic Algorithms (GAs). All
M agents in a population live in such a lattice environ-
ment. The size of lattices is m × m, where m is an integer
andm = √

M. Each agent is randomly placed on a lattice-
point and it can only interact with its neighbors. The agent
lattice can be shown as the one in Figure 2. Each agent,
who corresponds to a partition solution, can occupy a cir-
cle in the evolutionary environment, where the data in a
circle represents its position in the lattice structure, and
two agents can interact with each other if and only if there
is a line connecting them.

Figure 2 The lattice environment for the agent evolutionary.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 4 of 26
http://www.biomedcentral.com/1471-2105/15/325

Suppose that the agent located at (u, v) is Au,v,
u, v = 1, 2, . . . ,m, then the neighborhood agents of Au,v,
Neighbor(Au,v), are defined as follows:

Neighbor(Au,v) = {Au′,v,Au,v′ ,Au′′,v,Au,v′′ }, (5)

where u′ = mod(u− 1+m− 1,m) + 1, v′ = mod(v− 1+
m − 1,m) + 1, u′′ = mod(u,m) + 1, v′′ = mod(v,m) + 1.

Evolutionary operators
In the above evolutionary environment, computational
agents will compete or cooperate with others so that they
can gain higher energy level. To simulate the evolution
phenomenon in a more natural way, each agent can only
sense its local environment, and its behaviors of compe-
tition and cooperation can only take place between the
agent and its neighborhood agents. That is, an agent inter-
acts with its neighborhood agents, and useful information
is transferred among them. In such a way, the information
can be gradually diffused to the whole lattice environment
so that the global evolution of the agent population is real-
ized. To achieve this purpose, three basic operators are
designed for detecting communities in a PPI network.
1) Competition operator. Suppose that the opera-

tor is performed on the agent located at (u, v), Au,v =
((1 → a1), (2 → a2), . . . , (N → aN )), and Hu,v =
((1 → h1), (2 → h2), . . . , (N → hN )) is another
agent with the highest energy level among the neighbor-
hood agents of Au,v, namely, Hu,v ∈ Neighbor(Au,v) and
∀A′ ∈ Neighbor(Au,v), then Energy(A′) ≤ Energy(Hu,v). If
Energy(Au,v) ≥ Energy(Hu,v),Au,v is a winner, so it can still
live in the original lattice; otherwise it will die as a loser,
and its lattice-point will be occupied by Hu,v. Hu,v has two
candidate strategies to occupy a lattice-point, and it ran-
domly selects one of them with a probability po. Let r(0, 1)
be a uniform random number generator, the value range
of which belongs to (0,1). If r(0, 1) < po, occupying strat-
egy 1 is selected; otherwise occupying strategy 2 is carried
out. In the two occupying strategies, Hu,v first generates
its clone agent Cu,v = ((1→ c1), (2→ c2), . . . , (N→ cN )),
and then Cu,v is placed on the lattice-point to be occupied.
Let si,ai + fi,ai = Ali and si,hi + fi,hi = Hli, i =

1, 2, . . . ,N , namely, the connection strengths of Au,v are
Al1,Al2, . . . ,AlN , and the connection strengths of Hu,v
are Hl1,Hl2, . . . ,HlN , respectively. If a node has no other
nodes to be pointed in addition to point to its own,
then we call it a breakpoint. In fact, a breakpoint rep-
resents the segmentation of two different modules in a
PPI network with N directed edges. To distinguish break-
points, we set si,ai = −∞ only when i = ai in an agent
encoding.
Strategy 1. For the connection with the lowest strength

in Hu,v, Hlj = Min(Hl1,Hl2, . . . ,HlN ), if Alj > Hlj then cj
is replaced with aj (j = 1, 2, . . . ,N) in the new agent.

Strategy 2. Each Ali of Au,v is respectively compared
with the corresponding Hli of Hu,v. If Ali > Hli, then
ci = ai in the new agent.
In the following, we take a PPI network with 8 nodes as

an example to illustrate these operators. A schematic dia-
gram of a competition operator is given in Figure 3, where
A= ((1 →6), (2 →2), (3 →7), (4 →8), (5 →5), (6 →5),
(7 → 2), (8 → 8)) is an agent to participate in a competi-
tion, H = ((1 → 1), (2 → 4), (3 → 7), (4 → 8), (5 → 5),
(6 → 5), (7 → 1), (8 → 8)) is its neighborhood agent
with the highest energy level and Energy(H) ≥ Energy(A),
and A1 and A2 are two new agents produced by the com-
petition operator where a shape represents a change in
the encoding of the clone agent of H . Assumpting that
Al1 > Hl1,Al7 > Hl7 and Hl1 = Min(Hl1,Hl2, · · ·,Hl8),
A1 is the result of Strategy 1 where the link (1 → 1)
is replaced with (1 → 6) while A2 is that of Strategy 2
where the two links (1 → 1) and (7 → 1) are respectively
replaced with (1 → 6) and (7 → 2).
In fact, the two strategies in this operator are designed

to play similar roles. More specifically, Strategy 1 only
replaces the worst connection of a winner with the bet-
ter information of a loser while Strategy 2 is in favor of
reserving all advantaged information of a loser.
2) Crossover operator. Suppose that two parent agents

are F1 = ((1 → f1), (2 → f2), . . . , (N → fN )) and
F2 = ((1 → f ′

1), (2 → f ′
2), . . . , (N → f ′

N )) which
will randomly produce a child agent C1 = ((1 → c1),
(2 → c2), . . . , (N → cN )) by making use of their connec-
tion information and the corresponding crossover strate-
gies. To obtain offsprings of the two parent agents, the
rules of crossover operator are as follows.
Alternating link crossover rule. The rule works as fol-

lows: first it chooses a link from the first parent at random;
secondly, the link is extended with the appropriate link
of the second parent; thirdly, the partial tour created in
this way is extended with the appropriate link of the first
parent, etc. This process is repeated until traversing all
the nodes in a PPI network. During the generation of a

Figure 3 Competition operator.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 5 of 26
http://www.biomedcentral.com/1471-2105/15/325

candidate agent, once a link is chosen which would pro-
duce a cycle into the partial tour, the next link will be
selected randomly from the links of those untraversed
nodes in the corresponding parent.
The schematic diagram of the alternating link crossover

rule is shown in Figure 4, where F1 = ((1 → 6), (2 → 8),
(3 → 7), (4 → 4), (5 → 5), (6 → 5), (7 → 4), (8 → 8))
and F2 = ((1 → 6), (2 → 2), (3 → 7), (4 → 8), (5 → 5),
(6 → 5), (7 → 7), (8 → 8)) are two parent agents, and
C1 = ((1 → 6), (2 → 2), (3 → 7), (4 → 8), (5 → 5),
(6 → 5), (7 → 4), (8 → 8)) is an offspring agent. In gen-
erating a candidate agent, the links (1 → 6), (5 → 5),
(7 → 4) and (8 → 8) are selected from the first parent
while the other links from the second parent, and each
shape represents a starting point of a new subtour in the
candidate agent.
Alternating chunk crossover rule. Based on this rule,

an offspring is constructed from two parent agents as fol-
lows: first it takes a random length subtour of the first
parent; then this partial tour is extended by choosing a
subtour of random length from the second parent; next
the partial tour is constantly extended by taking subtours
from alternating parents till up to the length of the solu-
tion. For each subtour, the random length range is 1 to
the remaining digits of the constructing solution. In gen-
erating a candidate agent, if a link is chosen which would
produce a cycle into the partial tour, the next link will
be selected randomly from the links of those untraversed
nodes in the corresponding parent. Different length sub-
tours from two parent agents are alternatingly chosen to
construct a child agent.
Figure 5 gives an illustrative diagram of an alternating

chunk crossover rule, where F1 = ((1 → 5), (2 → 5),
(3 → 8), (4 → 4), (5 → 5), (6 → 6), (7 → 4), (8 → 6))
and F2 = ((1 → 2), (2 → 3), (3 → 3), (4 → 7), (5 → 5),
(6 → 6), (7 → 5), (8 → 6)) are two parent agents, and
C1 = ((1 → 5), (2 → 5), (3 → 8), (4 → 4), (5 → 5),
(6 → 6), (7 → 5), (8 → 6)) is an offspring agent. In
generating a candidate agent, we assume that the sizes of
four chunks are respectively determined as 3, 2, 2 and 1

Figure 4 Alternating link crossover operator.

by four random functions, and chunk 1 and chunk 3 are
selected from the first parent while the other two chunks
from the second parent. The new agent is alternatively
constructed by means of the subtours of different parents,
where shapes represent the same meaning as in Figure 4.
Obviously, the crossover operator has the function of a

random search, which is performed on an agent and its
neighborhood agents to achieve the purpose of cooper-
ation with a crossover probability pc. More specifically,
if r(0, 1) < pc, then the algorithm performs the two
crossover operators. Otherwise, it skips these operators.
Once a child agent has higher energy level than its par-
ent agent after performing crossover operators, the initial
agent with lower energy level will be replaced with the
child agent.
3) Self-adaptive mutation operator. In addition to

the behaviors of competition and cooperation, an agent
can also increase its energy level by using a self-adaptive
mutation operator, which depends on the degree of its
evolution and controls the number of digits to bemutated.
The mechanism of the self-adaptive mutation operator is
denoted as:

n = ceil
(
N

li
2·r

)
, (6)

where n is the number of mutation digits, li is the num-
ber of continued stagnation steps for ith agent, and r is the
maximum step length at which an agent might have the
same energy level. It is not difficult to find that n is not
only associated with the encoding length of an agent (net-
work size), but also related to the evolutionary process of
the agent. More specifically, the larger the network scale,
the more the number of potential mutations. On the other
hand, the longer the stagnating time of an agent evolution,
the more the number of potential mutations.
Based on a mutation probability pm, n connection ele-

ments of an agent A = ((1→a1), (2→a2), . . . , (N→aN ))

are randomly selected when r(0, 1) < pm, and then

Figure 5 Alternating chunk crossover operator.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 6 of 26
http://www.biomedcentral.com/1471-2105/15/325

they are mutated by replacing with other nodes possibly
connected in the corresponding module.
Figure 6 gives an illustration diagram of a mutation

operator, where D= ((1 → 6), (2 → 2), (3 → 7), (4 → 8),
(5 → 5), (6 → 5), (7 → 2), (8 → 8)) is an original
agent, its mutation number n =2,M =((1 → 6), (2 → 2),
(3 → 7), (4 → 2), (5 → 5), (6 → 5), (7 → 4), (8 → 8))
is the mutated agent in which two elements are replaced
randomly, and shapes represent the changes in the encod-
ing of the new agent. Essentially, the mutation operator
realizes a local search, which only performs a small pertur-
bation on some elements (node connections) of an agent
encoding. If a mutation operator can increase the energy
level of the current agent, the initial agent with lower
energy level will be replaced with the new agent.
In the light of an energy level function, MAE-FMD algo-

rithm employs competition, crossover andmutation oper-
ators to continually realize good information exchange
among agents and improve the energy levels of a group of
initial agents. During the competition process, if the cur-
rent agent is winner, then it will be kept alive. Otherwise,
the neighborhood agent with the highest energy level will
be selected, and improved by combination with advan-
taged information of the current agent, then it replaces
the current agent. Meantime, whether crossover opera-
tors or mutation operators, once they can produce new
agents with higher energy level, the initial agents with
lower energy level will be replaced with the new agents. By
means of the three operators, the evolutionary process will
gradually converge to a solution with the largest energy
level which corresponds to the initial module structure of
the PPI network.

Post-processing
After a number of iterations, we can obtain a solution with
the largest energy level. That is, the preliminary modules
are generated by the multi-agent evolutionary method.
To improve the detection quality, we adopt two post-
processing strategies based on topological and functional
information to produce final modules. The first step is
merging the similar preliminary modules in light of func-
tional annotation information. A merging module results
from two or more preliminary modules which are close

Figure 6 Self-adaptive mutation operator.

in view of function. The similarity S(MS,MT ) between
two modules MS and MT is measured by the functional
similarity score defined as:

S(MS,MT ) =

∑
i∈MS ,j∈MT

S(i, j)

min(|MS|, |MT |) , (7)

where

S(i, j) =
⎧⎨
⎩

1 if i = j
fij if i �= j, and (i, j) ∈ E.
0 otherwise

(8)

Two modules with the highest similarity are iteratively
merged until there are no such two modules whose simi-
larity is larger than the merging threshold λ.
To exclude some too sparsely connected nodes and very

small clusters generated above, we perform the filtering
step based on the topological density of PPI network sub-
graphs. The density of subgraphs of functional modules is
measured by:

Ds = es
ns · (ns − 1)/2

, (9)

where ns is the number of nodes and es is the number of
interactions in a subgraph s of a PPI network. Let δ be a
threshold value, those clusters with Ds < δ and |s| < 2
will be filtered from clusters generated above. By such two
post-processing strategies, the preliminary modules are
refined from the topological property and functional sim-
ilarity, and the potential functional modules hidden in the
PPI networks are generated.

Algorithm description and complexity analysis
The procedure of the proposedMAE-FMD algorithm is to
carry out initialization, agent random-walk and solution
construction, multi-agent evolution, post-processing, and
output of detected modules. The detailed pseudocode is
shown in Algorithm 1.
Based on the description of Algorithm 1, the complex-

ity of MAE-FMD can be simply analyzed as follows: Let
the maximum number of a node degree be n1 in a PPI
network, and the maximum number of nodes be n2 in a
module. In the initialization process, computing connec-
tion strengths (similarities) and the number of common
neighbors for all pairs of nodes is time-consuming. For
each node, since the number of its maximum neighbor-
hood nodes is n1, the computing complexity of its all
available connection strengths is n1, thus the time com-
plexity isO(n1 ·N). In the agent random-walk and solution
construction process, the time complexity isO(M ·N ·n1).
In the multi-agent evolution process, the time complexity
is O

(
K ·n22+T ·(M+4M·N+4M·N+M·N+K ·n22+M

) ≈
O

(
T · (

K · n22 + M · N))
. Generally speaking, K · n2 ≥

N , however,O(K · n2) ≈ O(N). Thus, the time complex-
ity of the multi-agent evolution process can be simplified



Ji et al. BMC Bioinformatics 2014, 15:325 Page 7 of 26
http://www.biomedcentral.com/1471-2105/15/325

as O(T · (n2 + M) · N). In the post-processing and output
process, the time complexity is O(K2 + K)) ≈ O(K2).
Thus, the overall complexity of MAE-FMD is aboutO(n1 ·
N) + O(M · N · n1) + O(T · (n2 + M) · N) + O(K2).
Becausemost PPI networks are small-world and scale-free
networks, n1 � N , n2 < N ,K � N . Moreover, we usu-
ally select a constant (e.g, 100) as the population size of
agents, which is far less than the number of nodes in a
large-scale PPI network. Therefore, the time complexity
of MAE-FMD can be decreased to O(T · (n2 + M) · N)

(n2 < N for all PPI networks, M � N for a large-scale
PPI network), which is better than that of most existing
typical algorithms with O(N2). Especially for a large-scale
complex network with near uniform community size, the
efficiency of MAE-FMD is very promising for detecting
modules in PPI networks.

Algorithm 1: MAE-FMD.
Input: Graph G(V, E): a PPI network, |V | = N ;
Output: C: the set of modules, |C| = K ;
1. Initialization:

Set parametersM, ε, R, po, pc, pm, λ and δ ;
*M: Number of agent population (m × m) *
* ε: Strength threshold of connections *
* R: Maximum step length with same energy level *
* po: Occupation probability, pc: Crossover probability *
* pm: Mutation probability *
* λ: Merging threshold value *
* δ: Filtering threshold value *
Compute connection strengths for all pairs of nodes
in G(V, E);

2. Agent random-walk and solution construction:
For k=1 to M
{Randomly select a node as its start node, i = 1;
While i ≤ N do
{Move to the next node according to Eq. (1) or
an unprocessed node up to now;
i = i + 1; } }

3. Multi-agent evolution:
Compute the energy values of initial agents by Eq. (4);
S+
0 = argmaxk:1···M Energy(Ak)
t = 1, r = 0;
While r < R do
{Randomly place M agents into the lattice environment;
Perform competitive operation by po;
Perform collaborative operation by pc;
Perform self mutation operation by pm;
Compute the energy values of agents by Eq. (4);
S+
t = argmaxk:1···M Energy(Ak)
If (S+

t = S+
t−1) then r = r + 1 ;

else r = 0;
t = t + 1; }

4. Post-processing:
If (S+

T remains unchanged in R iterations)
Then merge and filter the corresponding clusters.

5. Output:
Return Functional Modules for the PPI network.

Results and discussion
In this section, we use three different protein-protein
interaction datasets to perform our empirical study. In
light of many evaluation metrics, we assess the perfor-
mance of our algorithm, and compare our test results
to other existing algorithms on these PPI datasets. The
experimental platform is a PCwith Core 2, 2.13 GHz CPU,
2.99 GB RAM, and Windows XP, and all algorithms are
implemented by Java language.

PPI datasets
We have performed our experiments over five publicly
available benchmark PPI datasets including four yeast
data and one human data, namely DIP data [35], Gavin
data [36], MIPS data [37], DIP Scere20140703 and DIP
Hsapi20140703. Table 1 shows a summary of the data
sets used in our experiments, where the 2th column
gives the web links, the 3th and 4th columns respectively
present the size of proteins and interactions in source
data while the 5th and 6th columns respectively present
the size of proteins and interactions in the preprocessed
data. A cleaning step, which deletes all self-connected and
repeated interactions, is performed in data preprocessing.
To evaluate the protein modules mined by our algorithm,
the set of real functional modules from [38] is selected
as the benchmark. This benchmark set, which consists
of 428 protein functional modules, is constructed from
three main sources: the MIPS [27], Aloy et al. [39] and
the SGD database [40] based on the Gene Ontology (GO)
notations.

Evaluation metrics
At present, there exist three popular measurements
for the evaluation of the detection modules’ quality
and the calculation of the detection methods’ general
performance [41].

Precision, Recall, F-measure, and Coverage
Many research works use a neighborhood affinity score to
assess the degree of matching between the identified func-
tional modules and real ones. The scoreNA(p, b) between
an identified module p = (Vp,Ep) and a real module
b = (Vb,Eb) in the benchmark module set is defined as:

NA(p, b) =
∣∣Vp

⋂
Vb

∣∣2∣∣Vp
∣∣ × ∣∣Vp

∣∣ . (10)

If NA(p, b) ≥ ω, then p and b are considered to
be matched (generally, ω = 0.2). Let P be the set of
functional modules identified by some computational
methods and B be the real functional module set in
benchmark networks. And then the number of the mod-
ules in P which at least matches one real module is
denoted by Ncp = ∣∣{p|p ∈ P, ∃b ∈ B,NA(p, b) ≥ ω}∣∣ ,
while the counterpart number in B can be denoted by



Ji et al. BMC Bioinformatics 2014, 15:325 Page 8 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 1 Data sets used in our experiments

Date sets Http address Source data Preprocessed data

Size of P. Size of I. Size of P. Size of I.

Gavin http://www.thebiogrid.org/[BioGRID version 2.0.33] 1430 6531 1430 6531

DIP http://dip.doe-mbi.ucla.edu/[version ScereCR20060402] 2554 5952 2528 5728

MIPS ftp://ftpmips.gsf.de/yeast/PPI/[version PPI18052006] 4554 15456 4545 12318

DIPScere20140703 http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=4932 5137 22775 5126 22402

DIPHsapi20140703 http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=9606 4187 6245 4086 5823

Ncb = ∣∣{b|b ∈ B, ∃p ∈ P,NA(p, b) ≥ ω}∣∣. Thus, Precision
and Recall can be defined as follows [42]:

Precision = Ncp
|P| , (11)

and

Recall = Ncb
|B| . (12)

F-measure is a harmonic mean of Precision and Recall,
so can be used to evaluate the overall performance. It is
defined as:

F = 2 × Precision × Recall
Precision + Recall

. (13)

Moreover, Coverage assesses how many proteins in a
PPI network can be clustered into the detected modules
by a computational method. That is, it indicates the per-
centage of proteins assigned to any functional module, i.e.,
1-Discard-rate, which can be defined as follows [43]:

Coverage =
∣∣∣⋃|P|

i=1 Vpi

∣∣∣
|V | , (14)

where |V | = N denotes the size of the PPI network and
Vpi is the set of the proteins in the ith detected module.

Sensitivity, positive predictive value, and accuracy
Sensitivity (Sn), Positive predictive value (PPV ) and Accu-
racy (Acc) are also common measures to assess the per-
formance of module detection methods. Let Tij be the
number of the common proteins in both of the ith bench-
mark and the jth identified module. Then Sn and PPV can
be defined as [38]:

Sn =

|B|∑
i=1

max
j

{Tij}
|B|∑
i=1

Ni

, (15)

and

PPV =

|P|∑
j=1

max
i

{Tij}
|P|∑
j=1

T.j

, (16)

where Ni is the number of the proteins in the ith bench-

mark module, and T.j =
|B|∑
i=1

Tij. Generally speaking, Sn
assesses how many proteins in the real functional mod-
ules can be covered by the predicted modules, while PPV
indicates that identified modules are more likely to be true
positives.
As a general metric, the accuracy of an identification

(Acc) can be calculated as the geometric mean of Sn and
PPV :

Acc = (Sn × PPV )1/2. (17)

p-valuemeasure
Modules can be statistically evaluated using the p-value
from the hypergeometric distribution, which is defined
as [44]:

p = 1 −
k−1∑
i=0

( |F|
i

) ( |V | − |F|
|C| − i

)
( |V |

|C|
) , (18)

where |V | denotes the same means as mentioned in
Equation 16, C is an identified module, |F| is the number
of proteins in a reference function, and k is the num-
ber of proteins in common between the function and the
module. P-value is also known as a metric of functional
homogeneity. It is understood as the probability that at
least k proteins in a module of size |C| are included in
a reference function of size |F|. A low value of p indi-
cates that the module closely corresponds to the function,
because it is less probable that the network will produce
the module by chance. Consequently, the minimum p-
value in all modules will show the general performance of
each detection method.

Effects of parameters
In this subsection, we take the Gavin data as an exam-
ple to study respectively the effects of the algorithm
parameters involved in the multi-agent evolution and
post-processing. These parameters include the number of
agent population (M), the strength threshold of connec-
tions (ε), the maximum step length with same energy level

http://www.thebiogrid.org/
http://dip.doe-mbi.ucla.edu/
ftp://ftpmips.gsf.de/yeast/PPI/
http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=4932
http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=9606


Ji et al. BMC Bioinformatics 2014, 15:325 Page 9 of 26
http://www.biomedcentral.com/1471-2105/15/325

(R), the selection probability (po), the crossover probabil-
ity (pc), the mutation probability (pm), merging threshold
(λ), and filtering threshold value (δ). During all experi-
mentations, the value of a single parameter is changed,
while keeping the values of other parameters fixed.
For the multi-agent random-walk and evolutionary pro-

cesses, we take maximum energy of an agent and the
number of iterations as two evaluation metrics to test the
performance of the algorithm. Ten executions are inde-
pendently carried out in each parametric combination.
Figure 7 reveals that the effects of three main parame-
ters (M, ε, R) on the multi-agent method performance
by mean value curve with error bars. Figure 7(a) shows
the evolutionary performance with 7 different agent sizes
(M). Multi-agent evolutionary method is a population-
based optimization algorithm, where the number of agent
population determines the number of solutions at each
iteration. The left graph in Figure 7(a) shows the results
about the maximum energy value, and the right graph
in Figure 7(a) illustrates the results about the number
of iterations. As reflected in Figure 7(a), smaller maxi-
mum energy values and larger number of iterationss are
obtained when using a small number of agents. Along with
the number of agents increasing, the maximum energy
slowly increases and the number of iterations decreases
on the whole. The reason is that more agents means more
initial search points in the search space to be employed
so that the search range is larger at each iteration, which
induces the algorithm to rapid converge. However, after
a sufficient value for the number of agents, any incre-
ment does not obviously improve the maximum energy,
and also does not dramatically reduce the number of iter-
ations. On the contrary, the search time in each iteration
will increase as the size of the number of agents increases.
Therefore, to acquire a balance between getting a better
solution and using less time, we recommend an agent size
of 225 (M = 225).
The strength threshold of connections ε is an impor-

tant parameter in the constructing solution process of an
agent, which controls the feasible neighborhood for each
node in an agent random-walk process. To investigate
the effect of ε on our algorithm, we perform experiments
using different values of ε. The results are presented in
Figure 7(b) where the curve of maximum energy has 2 dis-
tinct ranges for various values of ε, i.e. [0.05, 0.10] and
[0.15, 0.60], while the curve of the number of iterations
also has 2 rough ranges for various values of ε, i.e. [0.05,
0.20] and [0.25, 0.6]. As ε increases, the maximum energy
increases in the first range, and then decreases dramat-
ically in the second range. However, our algorithm can
keep the maximum energy value being larger than 0.5
when ε locates in [0.05, 0.35]. For the curve of the number
of iterations, the first range has far larger values than the
second range though there are some small fluctuations in

both ranges. The reason is as follows: Smaller ε is, larger
the feasible neighborhood of each node and the search
space of a solution are, thus the algorithm will cost more
iterations to search a better solution, and vice versa. It is
worth noting that the algorithm is easy to fall into local
optimal if ε is too large though it has s fast convergence
performance. Combining above experimental results and
such analysis, we select ε = 0.25 in our algorithm.
The maximum step length with same energy level R is

also a key parameter which plays an important role in
determining the end of evolution. Figure 7(c) shows two
plots of the maximum energy value and number of iter-
ations for different R. From the left graph in Figure 7(c),
the maximum energy value is insensitive to the parameter
R and increases slightly along with increasing of R. From
the right graph in Figure 7(c), the number of iterations
will have a more significant increase as the parameter R
increases. These results illustrate that if the algorithm uses
a large value of R, which is bound to increase the number
of iterations and not necessarily able to get a better result.
Considering the two factors together, we set R = 60.
Figure 8 reveals that the effects of three operator param-

eters (po, pc, pm) on the performance of the multi-agent
method by mean value curve with error bars. As shown
in the left graph of Figure 8(a), the maximum energy is
insensitive to the occupying probability po, and its value
maintains around at 0.56 within all values of po. From
the right graph in Figure 8(a), we can see that the num-
ber of iterations decreases as po increases on the whole.
This is because no matter what value po is, the competi-
tion operator (Strategy 1 or Strategy 2) is performed, thus
the difference on the maximum energy is very small (e.g.
the maximum gap of the average value is 0.006). However,
since Strategy 2 reserves more advantaged information
of a loser than Strategy 1, excessively using Strategy 2
will slow the convergence of the algorithm. Hence, we set
po = 0.5 in our algorithm to obtain a balance between two
strategies. The relationship curve between the method
performance and pc is shown in the Figure 8(b). Similar to
the curve of po, the maximum energy values vary from the
different values of pc, but the difference is very small (e.g.
the maximum gap of the average value is 0.009), which
suggests that the multi-agent evolutionary process is also
not sensitive to the crossover probability. There are three
varying ranges for the number of iterations along with pc
increasing, i.e., [0.1, 0.4), [0.4, 0.6] and (0.6, 0.9]. The num-
ber of iterations curve decreases gradually in [0.1, 0.4),
then maintains the smaller value of almost equal in [0.4,
0.6], and finally increases gradually in (0.6, 0.9], which
means that moderate crossover operations can contribute
to the convergence of the algorithm, however, too few or
too many crossover operations will reduce the conver-
gence of the algorithm. To shorten the evolutionary pro-
cess, we set pc = 0.5 in our algorithm. Figure 8(c) gives the



Ji et al. BMC Bioinformatics 2014, 15:325 Page 10 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 7 The effects of three parameters (M, ε,R) on the multi-agent method performance. (a) the plots of the maximum energy value and
the number of iterations for different valuesM; (b) the plots of the maximum energy value and the number of iterations for different values ε; and
(c) the plots of the maximum energy value and the number of iterations for different values R.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 11 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 8 The effects of three operation parameters (pc,po,pm) on the multi-agent method performance. (a) indicates how the maximum
energy and the iteration number changes when the pc increases; (b) indicates how the maximum energy and the number of iterations changes
when the po increases; (c) indicates how the maximum energy and the iteration number changes when the pm increases.

curve of the evolutionary performance on mutation prob-
ability pm. As pm increases, the maximum energy values
slowly increase, and the number of iterations decreases

with a small amount of fluctuation. That is, the rich muta-
tion operators will not only benefit the convergence of
the multi-agent evolutionary process, but also get a better



Ji et al. BMC Bioinformatics 2014, 15:325 Page 12 of 26
http://www.biomedcentral.com/1471-2105/15/325

maximum energy value. To obtain a good result and save
evolution time, we select pm = 0.8 in our algorithm.
For the postprocessing process, we employ recall,

F-measure, precision, sensitivity, accuracy and PPV met-
rics to evaluate algorithm performance. Figure 9 gives the
effects of merging threshold λ on 6 performance metrics.
Figure 9(a) demonstrates that the F-measure and recall
increase as λ increases on the whole range while the pre-
cision also increases as λ increases at the beginning and
decreases after λ passes over 1.0. Figure 9(b) shows that
the relationship between λ and the sensitivity, the accu-
racy and the PPV. The accuracy and the PPV have the
same trend: both values subtly increase as λ increases.
Conversely, the sensitivity decreases at the beginning,
then keep the value low (0.74) after λ gets to 1.4. As shown
in Figure 9(a) and Figure 9(b), the larger λ is, the better
F-measure and accuracy seems to be. However, once λ is
set a larger value, the number of clusters will become too
large due to many small clusters. To balance between the
scale and size of clusters, the value of λ is set to 1.8 in our
following experiments.
Figure 10 gives the effects of filter threshold δ on 6 per-

formance metrics. As shown in Figure 10(a), the recall
and F-measure have a similar trend, namely, their val-
ues slowly increase as δ increases at the beginning, then
gently decrease after δ gets to 0.12. However, the rate
of change is slightly different for the two metrics where
the values of recall have larger changes than those of F-
measure. Meanwhile, the precision maintains a relatively
stable value around 0.45 though there are two small peaks
at δ = 0.04 and 0.12. Figure 10(b) investigates the relation-
ship between δ and PPV, the accuracy and the sensitivity.
As δ increases, three metrics have different tendencies.

In detail, the sensitivity obviously decreases from 0.75 to
0.52, the PPV increases from 0.30 to 0.32 when δ locates in
[0.02, 0.16], then keeps a larger value (0.32) when δ > 0.16
while the accuracy holds steady at 0.46 when δ varies from
0.02 to 0.14, then slightly decreases from 0.46 to 0.41 when
δ locates in [0.14, 0.2]. The main reason for these dif-
ferent trends is that only those modules whose similarity
is strong enough are merged along with the value of δ

increasing, thus making the number of clusters to increase
and the average size of a cluster to be small. To make a
balance, we employ δ = 0.12 in our algorithm.
Based on similar tests, we have determined the

parameter sets for other different data sets, and Table 2
summaries these parameters used in the following
experiments.
From these results, we can give some simple suggestions

to preset these parameters. For M, a certain size popu-
lation is necessary for MAE-FMD to obtain good quality
solution while keeping a smaller value not to increase the
running time. For ε, a medium value between [0, 0.6]
is recommended. For R, a smaller value is favorable to
rapidly converge. For po, pc and pm, we can set a medium
value between [0, 1] to po and pc and a higher value to
pm to save the running time. The two parameters in post-
processing depend on different datasets. For the curated
databases, such as DIP and MIPS, λ and δ can be set two
smaller values in respective domains, however, two larger
values in respective domains have to be employed for the
database with more noise (such as Gavin).

Comparative evaluations
To demonstrate the strengths of the MAE-FMD method,
we compared it to the six competing methods: HAM-

Figure 9 The effects of merging threshold λ on 6 performance metrics. (a) reveals the relation between the λ value and recall, F-measure and
precision; and (b) displays the relation between the λ value and sensitivity, accuracy and PPV.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 13 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 10 The effects of filter threshold δ on 6 performance metrics. (a) reveals the relation between the δ value and recall, F-measure and
precision; and (b) displays the relation between the δ value and sensitivity, accuracy and PPV.

FMD, NACO-FMD, Coach, CFinder, MCL and MCODE
in our experiments, where CFinder and MCL run with-
out parameter settings, the only parameter of Coach is
the filter threshold ω which was set to 0.225, NACO-FMD
runs with α = 1.5, β = 4 and δ = 0.3, MCODE adopts
the default values for their parameters as provided by its
binary executable system, and HAM-FMD uses five dif-
ferent combinations of parameter values (100, 0.5, 2, 4,
286, 0.2, 0.8, 0.1, 0.6), (300, 0.4, 2, 4, 510.8, 0.2, 0.8, 0.3,
0.4), (400, 0.5, 2, 4, 910.8, 0.2, 0.8, 0.1, 0.7), (500, 0.5, 1.5,
5, 1025.2, 0.2, 0.5, 0.1, 0.3) and (400, 0.5, 1.5, 5, 817.2, 0.2,
0.5, 0.1, 0.3) for the parameter set of (m, ρ, α, β , Q, Po, Pc,
Pm, δ) on Gavin, DIP and MIPS, respectively.
The detailed comparative results of the various algo-

rithms on the five different data sets are shown respec-
tively in Table 3, where " − " denotes an invalid result. For
each detectionmethod, we have listed the number of clus-
ters detected (Number of clusters), the average number
of proteins in each cluster (size of average module), the
number of detectedmodules whichmatch at least one real
module (Ncp) and the number of real modules that match

at least one detected module (Ncb). Taking MAE-FMD on
Gavin data as an example, it has detected 193 modules, of
which 110 match 224 real modules. Each of 193 detected
modules has about 6 proteins in Gavin. These results
show that MAE-FMD generates smaller scale clusters on
most of data, and MCL doesn’t effectively detect modules
when a dataset is largely sparse (i.e. human interaction
networks).
Figures 11, 12, 13, 14 and 15 show the overall compari-

son results of thesemethods in terms of various evaluation
metrics, including Coverage, Precision, Recall, F-measure,
Sensitivity, PPV and Accuracy for five different data,
respectively. From the first panel of these figures, we can
conclude that our algorithm archives good performance
on the Coverage for all five data sets. For instance, one can
easily see that the Coverage of our algorithm is the third
highest one among seven algorithms on DIP, MIPS and
DIPScere20140703, which is higher than that of other four
algorithms and only lower than that of NACO-FMD and
MCL. The main reason is that these algorithms adopted
different clustering mechanisms which can seriously exert

Table 2 Summary of parameters used in our experiments

Data sets Agent random-walk Multi-agent evolution Post-processing

M ε R po pc pm λ δ

Gavin 225 0.25 60 0.5 0.5 0.8 1.8 0.12

Dip 100 0.27 60 0.5 0.5 0.8 0.21 0.04

MIPS 100 0.27 60 0.5 0.5 0.8 0.19 0.05

DIPScere20140703 100 0.29 60 0.5 0.5 0.8 0.6 0.05

DIPHsapi20140703 100 0.28 60 0.5 0.5 0.8 0.6 0.05



Ji et al. BMC Bioinformatics 2014, 15:325 Page 14 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 3 The results of various algorithms on different data sets

Data sets Results Algorithms

MAE-FMD CFinder Coach NACO-FMD MCL HAM-FMD MCODE

Number of clusters 193 98 325 162 208 163 69

Gavin Size of average module 6.30 12.91 10.37 8.13 6.76 6.87 9.35

Ncp > 0.2 110 54 178 92 99 88 49

Ncb > 0.2 224 89 177 164 180 163 86

Number of clusters 234 173 383 406 500 296 88

DIP Size of average module 8.40 8.09 5.66 5.57 4.57 4.88 6.52

Ncp > 0.2 117 89 177 149 144 139 56

Ncb > 0.2 223 139 204 239 215 231 97

Number of clusters 384 178 488 543 593 449 83

MIPS Size of average module 5.84 9.29 9.23 4.93 6.16 3.92 6.23

Ncp > 0.2 115 55 146 119 92 110 30

Ncb > 0.2 197 86 151 173 138 157 55

Number of clusters 526 204 891 571 968 598 55

DIPScere20140703 Size of average module 5.55 13.03 8.96 7.52 5.04 4.51 14.38

Ncp > 0.2 147 65 274 127 148 133 22

Ncb > 0.2 242 86 246 212 208 215 47

Number of clusters 741 202 304 350 — 626 78

DIPHsapi20140703 Size of average module 4.39 5.76 4.57 4.85 — 3.89 5.17

Ncp > 0.2 136 43 60 45 — 112 9

Ncb > 0.2 136 41 53 47 — 112 9

influence on the percentage of proteins clustered into
functional modules in a PPI network. Essentially, MAE-
FMD, NACO-FMD, HAM-FMD and MCL have two sim-
ilar characteristics: 1) Three representations of solutions
are established on the basis of all nodes of the PPI network.

For example, MCL uses a matrix representation of nodes,
NACO-FMD employs an ordered sequence of nodes while
HAM-FMD and MAE-FMD adopt a connection encod-
ing of nodes; 2) All four algorithms use random clustering
mechanisms though specific methods are different. Both

Figure 11 Comparative results of somemethods in terms of various evaluation metrics for Gavin data.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 15 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 12 Comparative results of somemethods in terms of various evaluation metrics for DIP data.

characteristics insure that clustering results can include
most of nodes in the PPI network. However, MAE-
FMD, NACO-FMD and HAM-FMD adopt similar filter
operators in post-processing process, thus their coverage
values are smaller than that of MCL. Moreover, HAM-
FMD combines the random search mechanism used by
NACO-FMDwith the similar randommechanism used by
MAE-FMD, so its coverage value is smaller than those of
NACO-FMD and MAE-FMD. Moreover, for the human
data (i.e. DIPHsapi20140703) with large sparsity, our algo-
rithm obtains the best result which shows thatMAE-FMD

can still keep good coverage performance even when there
are seriously sparse connections in the data set.
From the second to fourth panels of these figures, we

can see that the Precision values of our algorithm are
57%, 50%, 29.9%, 27%, and 18%, respectively. In detail,
MAE-FMD obtains the second best result which is only
inferior to that of MCODE (72.5%) on Gavin, the third
best result which is only inferior to that of CFinder (51.4%,
and 30.9%) and MCODE (64.8% and 37.3%) on DIP and
MIPS data and that of CFinder (21%) and Coarch (19%)
on DIPHsapi20140703 data, and fourth best result which

Figure 13 Comparative results of somemethods in terms of various evaluation metrics for MIPS data.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 16 of 26
http://www.biomedcentral.com/1471-2105/15/325

Figure 14 Comparative results of somemethods in terms of various evaluation metrics for DIPScere20140703 data.

is superior to that of NACO-FMD (22%), MCL (15%)
and HAM-FMD (22%) on DIPScere20140703 data. Fur-
ther, it is easy to observe that our algorithm obtains the
best performance on the Recall for Gavin (67.9%), MIPS
(46.9%) and DIPHsapi20140703 (17%) data, and is only
inferior to that of NACO-FMDonDIP data (less 1.3%) and
Coach on DIPScere20140703 data (less 1%). In combina-
tion, our algorithm archives the most excellent F-measure
onGavin, DIP,MIPS andDIPHsapi20140703 data, and the
second best result on DIPScere20140703 data. That is, our

algorithm obtains the highest F-measure value 62.0% with
the Gavin data as shown in Figure 11, which is 31.77%,
14.84%, 16.2%, 17.31%, 17.3% and 18.92% higher than that
of CFinder, Coach, NACO-FMD, MCL, HAM-FMD and
MCODE, 52.2% with the DIP data as shown in Figure 12,
which is 12.4%, 5.3%, 7.9%, 15.6%, 2.0% and 16.4% higher
than that of CFinder, Coach, NACO-FMD, MCL, HAM-
FMD and MCODE, 36.6% with the MIPS data as shown
in Figure 13, which is 12.2%, 4.3%, 8.3%, 15.7%, 7.2% and
16.4% higher than that of CFinder, Coach, NACO-FMD,

Figure 15 Comparative results of somemethods in terms of various evaluation metrics for DIPHsapi20140703 data.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 17 of 26
http://www.biomedcentral.com/1471-2105/15/325

MCL, HAM-FMD and MCODE, 17% with the DIPH-
sapi20140703 data as shown in Figure 15, which is 9%,
16%, 8.9%, 2% and 15% higher than that of CFinder, Coach,
NACO-FMD,HAM-FMD andMCODE, and 37%with the
DIPScere20140703 data as shown in Figure 14, which is
13%, 7%, 14%, 7% and 20% higher than that of CFinder,
NACO-FMD, MCL, HAM-FMD and MCODE, and only
0.3% lower than that of Coach, respectively.
From these figures, we also can observe that MAE-

FMD gets the best sensitivity in four data sets (Gavin,
DIP, MIPS and DIPHsapi20140703) and the second best
result in another data (DIPScere20140703), which indi-
cates the modules detected by our algorithm can cover
the real functional modules to a great extent. More specif-
ically, we can see that the sensitivity of our algorithm is
72.4% in Figure 11, which is 24.4%, 40.0%, 32.7%, 33.2%,
36.9% and 34.6% higher than that of CFinder, Coach,
NACO-FMD,MCL, HAM-FMD andMCODE algorithms
with the Gavin data. Figure 12 shows the sensitivity of
our algorithm is 57.0%, which is 25.5%, 33.5%, 25.4%,
27.6%, 29.3% and 32.5% higher than that of CFinder,
Coach, NACO-FMD, MCL, HAM-FMD and MCODE
algorithms with the DIP data. Figure 13 shows the sensi-
tivity of our algorithm is 36.2%, which is better than that
of CFinder (30.9%), Coach (20.7%), NACO-FMD (24.6%),
MCL (22%), HAM-FMD (19.3%) and MCODE (15.9%)
algorithms with the MIPS data. Figure 15 shows the sen-
sitivity of our algorithm is 30%, which is much better than
that of CFinder (18%), Coach (16%), NACO-FMD (17%),
HAM-FMD (24.7%) and MCODE (8%) algorithms with
the DIPHsapi20140703 data. Though MAE-FMD gets the
second best result (59%) on DIPScere20140703 data, it is
only inferior to that of CFinder (61%) and also much bet-
ter than that of Coach (36%), NACO-FMD (50%), MCL
(33%), HAM-FMD (47%) and MCODE (20%) algorithms.
On Gavin, MIPS, DIPScere20140703 and DIPH-

sapi20140703 data, MAE-FMD attains the best or the
second best PPV value while its PPV performance is not
outstanding on DIP data. In detail, the PPV value ofMAE-
FMD is 30.7% shown in Figure 11, which is 9.9%, 4.7%,
1.4%, 0.4% and 5.0% higher than that of CFinder, Coach,
NACO-FMD, MCL and MCODE and is 0.9% lower than
that of HAM-FMD. Figure 12 shows the PPV value of
MAE-FMD is 29.9%, which is 4.4% and 1.4% higher than
the CFinder and MCODE algorithms, and is 1.1%, 3.5%,
5.2% and 5.4% lower than that of Coach, NACO-FMD,
MCL and HAM-FMD algorithms with the DIP data. In
Figure 13, the PPV value of MAE-FMD is 34.2%, which
is 15.3%, 10.6%, 1.2%, 5.1% and 8.2% higher than that of
CFinder, Coach, NACO-FMD, MCL and MCODE, and
only is 2.1% lower than that of HAM-FMD. The PPV value
of MAE-FMD is 32% shown in Figure 14, which is 17%,
9%, 1%, 1% and 15% higher than that of CFinder, Coach,
NACO-FMD and MCODE and is equal to that of MCL.

In Figure 15, the PPV value of MAE-FMD is 48%, which
is equal to that of NACO-FMD, and 16%, 11% and 17%
higher than that of CFinder, Coach and MCODE while it
is only 4% lower than that of HAM-FMD.
Overall, our algorithm achieves the highest Acc on all

five tested data due to its balanced effort between Sensi-
tivity and PPV. The Acc value of our algorithm is 47.2%
shown in Figure 11, which is 15.6%, 18.2%, 13.1%, 12.8%,
13.7% and 16.1% higher than that of CFinder, Coach,
NACO-FMD, MCL, HAM-FMD and MCODE with the
Gavin data, respectively. Figure 12 shows the Acc value
of our algorithm is 41.3%, which is 12.9%, 14.3%, 8.8%,
9.2%, 10.1% and 14.9% higher than that of CFinder, Coach,
NACO-FMD, MCL, HAM-FMD and MCODE with the
DIP data, respectively. Figure 13 shows the Acc value
of our algorithm is 35.2%, which is 11.0%, 13.1%, 6.8%,
9.9%, 8.7% and 14.9% higher than that of CFinder, Coach,
NACO-FMD, MCL, HAM-FMD and MCODE with the
MIPS data. Figure 14 shows the Acc value of our algorithm
is 43%, which is 12%, 14%, 3.4%, 11%, 5% and 25% higher
than that of CFinder, Coach, NACO-FMD, MCL, HAM-
FMD andMCODEwith the DIPScere20140703 data. Sim-
ilarly, our algorithm attains 38% on Acc metric, which is
14%, 14%, 9%, 2% and 22% higher than that of CFinder,
Coach, NACO-FMD, HAM-FMD and MCODE with the
DIPHsapi20140703 data. These experimental results on
the Acc performance show that our algorithm is superior
to other six algorithms.
Table 4 compares the distribution of the p-values of

protein modules obtained by 7 different algorithms on
DIP data, where the first column gives different types of
p-values, the second column lists 7 algorithms, and the
third to eighth columns respectively present the num-
ber of modules located in the corresponding range while
the ninth column shows the ratio of the modules with
a p-value and all modules detected for each algorithm.
From these results, we can find that MCODE, Coach, and
CFinder have the three highest ratios in all the statistics,
however, MCODE only obtains the minimum amount of
modules while Coach can obtains the maximum amount
of modules. The ratio difference of three swarm intelli-
gence algorithms (MAE-FMD, HAM-FMD and NACO-
FMD) is not obvious, particularly to MAE-FMD and
HAM-FMD. MCL has the worst ratio in three types of
p-values. Moreover, it is worth noting that most mod-
ules with a p-value are concentrated in the area (1.0e-10,
1.0e-3], and only a fewmodules fall into the range (0, 1.0e-
20] where MAE-FMD has obvious advantages comparing
with other algorithms.
To further investigate the computational results, 10

protein modules with low p-values and high matching
rate predicted by different algorithms using DIP data are
respectively presented in Tables 5, 6, 7, 8, 9, 10 and 11.
In these tables, the first column is a cluster identifier. The



Jietal.BM
C
Bioinform

atics
2014,15:325

Page
18

of26
http

://w
w
w
.b
iom

edcentral.com
/1471-2105/15/325

Table 4 Distribution comparisons of the p-values of protein modules obtained from different algorithms on DIP

p-values Algorithms Distribution ranges Ratio

(0, 1.0e − 30] (1.0e − 30, 1.0e − 20] (1.0e − 20, 1.0e − 10] (1.0e − 10, 1.0e − 3] (1.0e − 3, 0.05] (0.05, 1]

MAE-FMD 4 12 33 100 35 17 0.859

CFinder 3 4 26 80 32 15 0.925

Biological Coach 1 2 57 213 74 24 0.966

Process NACO-FMD 2 5 28 158 96 40 0.810

MCL 1 5 35 180 110 57 0.733

HAM-FMD 2 3 27 139 64 25 0.878

MCODE 0 1 15 55 11 3 0.966

MAE-FMD 7 14 30 76 28 22 0.756

CFinder 5 6 18 76 18 10 0.769

Cellular Coach 2 9 54 187 60 26 0.880

Component NACO-FMD 2 9 34 137 61 38 0.692

MCL 3 11 38 144 67 55 0.601

HAM-FMD 1 6 35 109 51 23 0.760

MCODE 0 1 21 42 8 7 0.898

MAE-FMD 4 6 22 72 38 20 0.692

CFinder 1 3 13 63 36 15 0.757

Molecular Coach 1 1 20 128 108 45 0.789

Function NACO-FMD 1 2 19 108 69 47 0.606

MCL 1 3 22 102 84 50 0.495

HAM-FMD 0 1 15 94 59 32 0.679

MCODE 0 0 8 39 13 12 0.818



Ji et al. BMC Bioinformatics 2014, 15:325 Page 19 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 5 Some functional modules predicted byMAE-FMD using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yor132w yor069w yjl154c yhr012w yjl053w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 13 ykl022c ynl172w yfr036w yhr166c ybl084c ylr127c Anaphase-promoting 100 4.76e-25 1.82e-31 2.84e-14

yor249c ygl240w ylr102c ydl008w ydr118w ygl003c

ygr225w

3 10 ymr094w yjr060w ydr318w ygr179c ypl018w ygr140w Kinetochore module 100 1.70e-07 5.95e-16 2.29e-13

ymr168c yjr089w ykl049c ykl089w

4 29 yer148w ygr274c ycr042c ydr448w ydr176w ygr252w Transcription factor 86.2 2.80e-24 1.48e-25 1.18e-24

yol148c yel009c ymr236w ygl112c ybr198c ybr081c

ydr216w ydr167w ypl254w ypr086w yor023c ycr082w

yml114c yml098w ydr392w ydr145w yor194c ykl058w

yml015c ypl011c yil129c ymr005w ymr227c

5 10 yjl203w ydl043c ydl030w ymr240c yor319w ynl286w Ribonucleo protein 100 4.63e-14 7.74e-19 1.93e-06

yml049c ymr288w ypl213w yir009w

6 16 yjl194w yml065w ybr060c yll004w ypr162c ynl261w DNA replication preinitiation 87.5 3.72e-29 1.46e-30 7.63e-28

yhr118c ybl023c ylr103c ylr274w yil150c yel032w

ybr202w ypr019w ymr216c ygl201c

7 19 ybl099w ynl315c yjl180c yjr121w ydr322c ylr295c Mitochondrial proton-transportin 73.7 2.80e-24 1.48e-25 1.18e-24

ypl271w ydl004w ydr377w yml081c ypr020w ybr039w ATP synthase

yypl078c ydr298c q0085 ykl016c q0080 q0130

ydl181w

8 9 ykr026c ypl237w yor260w yjr007w ydr211w ygr083c Interacting eIF2 (Sui2/3/4) and 88.9 5.43e-13 2.50e-11 2.89e-14

ylr291c ypl070w yer025w eIF2B (Gcd1/2/6/7/Gcn3)

9 21 yhr041c yer022w ydr308c ybr253w ymr112c yor174w DNA-directed RNA 90.5 1.55e-18 1.04e-37 2.36e-13

yol135c ykl028w ykr062w yhr058c yol051w ypr070w polymerase II

ydl005c ybr193c ygl025c ylr071c ybl093c ynl236w

ygr104c ycr081w yor140w

10 6 ylr418c ybr279w yol145c yor123c ygl244w yml010w Transcription elongation factor 100 7.43e-15 4.11e-11 2.63e-12

second column indicates the number of proteins in each
cluster. The third column gives proteins in the predicted
module. The four column lists the corresponding real pro-
tein module. The fifth column refers to the matching rate
(%) between our predicted module and a real module,
which can be computed as Npm/Npc, where Npm is the
number of proteins belonging to the same MIPS mod-
ule (real module) within the matched module, and Npc is
the number of proteins contained in the matched module.
The last three columns show corresponding p-values of
the predicted module from the view of Biological Process,
Cellular Component and Molecular Function. From the
column of matching rate, we can see that many of the pro-
tein modules detected by the seven algorithms match well
with the benchmark modules. The p-values of modules in

these tables are very low, which further demonstrates that
the modules identified have high statistical significance
from three different Gene Ontology categories.
To explicitly reveal the results obtained by our algo-

rithm, we take two modules as the examples to explain.
For the retromer module, corresponding to the first mod-
ule in these seven tables, the seven algorithms have
obtained the same good performance in terms of p-values
and matching rates. That is, the real retromer module
is correctly detected by all seven algorithms. Compared
to the anaphase-promoting module (corresponding to the
second module in Tables 7, 8, 9, 10 and 11) that is respec-
tively detected by the Coach, NACO-FMD, MCL, HAM-
FMD and MCODE algorithms, the minimum p-value of
our algorithm in Table 5 is 1.82e-31, which is much less



Ji et al. BMC Bioinformatics 2014, 15:325 Page 20 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 6 Some functional modules predicted by CFinder using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yor132w yjl154c yhr012w yjl053w yor069w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 21 ydl140c ydl108w yor151c yil021w ydr138w yjl140w DNA-directed RNA 85.7 6.88e-17 3.27e-24 8.45e-19

ybr154c ypr187w yor210w yml010w ygl070c ykl145w polymerase II, holoenzyme

ydr404c ypl129w ybr279w yor123c yol005c ygl244w

yol145c ylr418c ylr384c

3 20 ydl140c yer165w ymr061w ygl044c ykr002w yer133w mRNA cleavage factor 90 1.60e-28 7.90e-39 5.71e-13

ykl059c ykl018w ydr228c ydr195w ynl317w yjr093c

yal043c ypr107c ylr277c ydr301w yor179c yor250c

ylr115w yol123w

4 18 yjr121w q0085 q0080 ydl181w ypl078c ybl099w Mitochondrial proton-transporting 83.3 3.88e-37 3.88e-37 3.88e-37

ydr298c ypl271w ykl016c ynl315c ybr039w q0130 ATP synthase

ydr322c-a yml081c-a ydr377w ydl004w ypr020w ylr295c

5 13 yjr050w yer013w yal032c ykl095w yll036c ybr188c Spliceosomal network 92.3 2.08e-18 1.83e-22 1.83e-22

ygl120c ygr129w ymr213w ydr416w ypr101w ylr117c

ypl151c

6 11 yor361c ymr309c ynl244c ybr079c ypr041w ygr162w eIF1/eIF3/eIF5 complex 72.7 3.22e-14 5.19e-14 1.34e-18

ygl049c ymr146c yil071c ydr429c ylr192c

7 9 ykl052c ykr037c ykr083c ybr156c ypl209c gl061c Condensed nuclear 88.9 7.78e-17 1.88e-12 9.31e-15

ygr113w ydr201w ydr016c chromosome kinetochore

8 8 yor260w ypl237w ygr083c ykr026c yjr007w yer025w interacting eIF2 (Sui2/3/4) and 100 5.08e-14 9.27e-12 2.69e-15

ydr211w ylr291c and eIF2B (Gcd1/2/6/7/Gcn3)

9 8 ykl018w ybr175w ybr258c yhr119w yar003w ylr015w COMPASS 100 4.31e-17 6.70e-21 6.70e-21

ypl138c ydr469w

10 6 yel032w ybl023c ylr274w yil150c ybr202w ylr103c pre-replicative complex 83.3 4.70e-11 4.70e-11 4.12e-10

than those of the other five algorithms since the min-
imum p-values of the module predicted by the Coach,
NACO-FMD,MCL, HAM-FMD andMCODE algorithms
are 1.38e-25, 1.38e-25, 2.08e-28, 2.08e-28 and 5.62e-24,
respectively. The real anaphase-promoting module in the
benchmark consists of 16 proteins, of which 1 protein
(ygl116w) is isolated by other proteins within the same
module and 2 proteins (yir025w and ydr260c) don’t exist
in DIP data. Thus, the real structure of the anaphase-
promoting module including 13 proteins is shown in
Figure 16(a). The protein module obtained by our algo-
rithm consists of 13 proteins and succeeds in match-
ing all 13 proteins in the benchmark module (shown
in Figure 16(b)). Though the matching rates of Coach,
NACO-FMD,MCL, HAM-FMD andMCODE algorithms
are also 100%, Coach, NACO-FMD, MCL, HAM-FMD
and MCODE only cover 11, 11, 12, 12 and 10 proteins of
the real anaphase-promotingmodule, respectively (shown
in Figure 16(c), Figure 16(d) and Figure 16(e)). In addition,
CFinder has not obtained the real anaphase-promoting
module. Actually, CFinder finds a huge cluster which

contains 13 proteins in the real anaphase-promotingmod-
ule and 49 other proteins. In other words, the example
demonstrates that our algorithm can accurately predict
protein modules. To show more biological details of
Figure 16, Table 12 gives some corresponding messages of
the sixteen proteins in anaphase-promoting module.
Moreover, our algorithm also obtains some new mod-

ules on all five data sets. Table 13 lists 5 newmodules with
lower p-values on the DIP data, which are not previously
described or not detected by other six algorithms. This
means that MAE-FMD has certain exploratory ability in
detection functional modules from a PPI network.
In this section, we have performed complete compar-

isons among MAE-FMD, CFinder, Coach, NACO-FMD,
MCL, HAM-FMD and MCODE algorithms in terms
of various evaluation metrics (e.g. F-measure, accuracy,
p-value etc). These evaluation comparisons from different
perspectives show that MAE-FMD is a promising method
to effectively identify functional module structures in PPI
networks. It should be noted that F-measure and accuracy
are two comprehensive evaluation metrics whose values



Ji et al. BMC Bioinformatics 2014, 15:325 Page 21 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 7 Some functional modules predicted by Coach using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yor132w yor069w yjl154c yhr012w yjl053w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 11 yor249c ygl240w ydl008w ydr118w ykl022c yfr036w Anaphase-promoting 100 6.17e-23 1.38e-25 2.81e-16

yhr166c ybl084c ylr127c ynl172w ylr102c

3 16 ydr335w ygl092w ykl068w ymr047c ykr082w ydl116w Nuclear pore 81.3 2.49e-19 5.02e-14 8.81e-13

ygl172w ylr335w ygr119c ymr308c ygr218w yer165w

ydr192c ylr347c yjr042w ynl189w

4 17 ydr448w ydr176w yol148c yhr041c yer022w ydr392w Transcription factor 76.5 3.93e-13 3.16e-18 1.88e-06

ydr308c ypl181w yer148w yel009c ybr198c ybr081c

yhr099w ygr274c ymr236w ypl254w ygl112c

5 8 ydr469w yar003w ybr175w ylr015w ypl138c yhr119w Chromatin remodeling module 100 4.10e-12 2.99e-13 2.24e-10

ybr258c ykl018w

6 8 ycr057c yjl069c ydr449c ylr222c ygr090w ylr409c Ribonucleoprotein module 87.5 1.09e-11 1.51e-14 7.63e-08

yjl109c ylr129w

7 7 ypr110c ynr003c yor116c yor207c ynl113w ykl144c RNA polymerase III 100 7.97e-15 2.39e-15 2.39e-15

ypr190c

8 8 ybl099w yjr121w ydr377w yml081c q0085 ykl016c Mitochondrial proton-transporting 87.5 5.41e-15 5.41e-15 5.41e-15

ypl078c ydr298c and ATP synthase

9 7 yor260w ykr026c yjr007w ydr211w ygr083c ylr291c Interacting eIF2 (Sui2/3/4) 100 3.57e-12 2.57e-12 2.89e-13

ypl237w and eIF2B (Gcd1/2/6/7/Gcn3)

10 9 ybl105c yjl002c yel002c yor103c yor085w ydl232w Oligosaccharyl transferase 88.9 1.48e-13 1.30e-17 1.33e-11

ygl226c ygl022w ymr149w

Table 8 Some functional modules predicted by NACO-FMD using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yor132w yor069w yjl154c yhr012w yjl053w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 11 ykl022c yhr166c ybl084c yfr036w ynl172w ylr127c Anaphase-promoting 100 6.17e-23 1.38e-25 2.81e-16

yor249c ylr102c ygl240w ydl008w ydr118w

3 24 yor098c ynl189w yhr129c ygr119c ygl172w yil063c Nuclear pore 70.8 9.65e-27 4.29e-21 2.36e-19

ygl092w ydr002w ydr192c ypl174c ylr347c yer009w

ykl068w ylr335w ymr047c ymr294w ygl097w ydl116w

ykl057c ykr082w ydr488c yjr042w yar002w ypl125w

4 15 yer148w ydr448w ydr176w yel009c ybr198c ygr274c Transcription factor TFIIIB 93.3 5.87e-14 4.65e-19 2.36e-10

ybr081c yol148c ydr167w ymr236w ydr392w ygl112c

ypl254w ypl181w ypl011c

5 9 ybl023c yil150c ylr103c ylr274w ygl201c yel032w DNA replication preinitiation 77.8 1.86e-14 1.86e-14 9.40e-14

ybr202w ypr019w ymr216c

6 9 ynr003c ypr110c ynl113w ydr045c yor116c yor207c RNA polymerase III 88.9 2.28e-19 4.69e-20 4.69e-20

ypr190c yhr143w-a ykl144c

7 12 yll036c ydr416w ybr188c yjr050w yir009w yal032c Ribonucleo protein 91.7 5.96e-17 3.33e-23 3.33e-23

ymr213w ygr129w ylr117c ykl095w ypl213w ypr101w

8 14 ydr228c ypr107c yol123w ymr061w ygl044c yjr093c mRNA cleavage factor 100 1.23e-30 1.23e-30 1.82e-12

ykr002w ydr301w ylr277c ynl317w ylr115w yor250c

yal043c ykl059c

9 7 yhr090c yhr099w yor244w yjl081c ypr023c yfl024c Transcription factor 100 8.08e-09 8.08e-16 2.34e-10

ynl107w

10 6 ygl061c ydr201w ykr083c ydr016c ykr037c ykl052c Kinetochore module 100 2.63e-15 2.63e-15 7.90e-14



Ji et al. BMC Bioinformatics 2014, 15:325 Page 22 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 9 Some functional modules predicted byMCL using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yyor132w yor069w yjl154c yhr012w yjl053w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 12 ykl022c ynl172w yfr036w yhr166c ybl084c ylr127c Anaphase-promoting 100 4.62e-22 2.08e-28 4.13e-15

yor249c ygl240w ylr102c ydl008w ydr118w ygr225w

3 8 yar003w ybr175w ydr469w ylr015w yhr119w ypl138c COMPASS module 100 4.31e-17 4.31e-17 6.70e-21

ybr258c ykl018w

4 10 ymr309c ynl244c ypr041w yor361c ymr146c ydr429c eIF1/eIF3/eIF5 module 80 7.12e-10 2.05e-14 1.51e-13

yil071c ybr079c ynl062c ylr192c

5 16 ydr195w ydr228c yor250c ymr061w ypr107c yjr093c mRNA cleavage factor 93.8 6.79e-26 4.48e-33 1.92e-11

ykr002w ydr301w ylr115w yal043c ylr277c ynl317w

ykl059c yor179c ynl222w ydl094c

6 7 yjl194w yml065w ybr060c yll004w ypr162c ynl261w DNA replication preinitiation 100 5.38e-14 4.19e-15 2.64e-12

yhr118c

7 13 yor076c ygr158c ydl111c ygr195w ydr280w yol021c Exosome 100 2.62e-28 4.57e-30 4.36e-02

yhr069c ynl232w yol142w ycr035c ygr095c yor001w

yhr081w

8 10 ynr003c ypr190c ypr110c ynl113w yor116c ydr045c RNA polymerase III 100 1.93e-15 4.50e-16 4.50e-16

yor207c yfr011c ynl248c ykl144c

9 8 ybl023c ylr103c ylr274w yil150c yel032w ybr202w DNA replication preinitiation 75 2.93e-12 2.93e-12 3.92e-11

ymr216c ygl201c

10 6 ylr418c ybr279w yol145c yor123c ygl244w yml010w Transcription elongation factor 100 7.43e-15 4.11e-11 2.63e-12

Table 10 Some functional modules predicted by HAM-FMD using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yor132w yjl154c yhr012w yjl053w yor069w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 12 ybl084c ydl008w ydr118w yfr036w ygl240w ygr225w Anaphase-promoting 100 4.62e-22 2.08e-28 4.13e-15

yhr166c ykl022c ylr102c ylr127c ynl172w yor249c

3 18 yal043c ydr195w ydr228c ydr301w yer032w ygl044c RNA 3’ end processing factor 72.2 1.44e-33 2.76e-37 6.81e-13

ygr156w yjr093c ykl018w ykl059c ykr002w ylr115w

ylr277c ymr061w ynl317w yor179c yor250c ypr107c

4 11 q0080 q0130 ybl099w ybr039w ydl004w ydl181w Mitochondrial proton-transporting 81.8 2.53e-13 2.53e-13 2.53e-13

ydr322c yjr121w yrl295c ynl315c ypl271w ATP synthase

5 10 yar019c ybr127c ydl185w yel051w ygr020c ygr092w No description 80 1.09e-16 3.49e-16 1.74e-15

ylr447c ymr054w yor270c yor332w

6 10 ycr057c ydr449c yer082c ygr090w yjl069c yjl109c Small-subunit processome 100 4.59e-15 1.46e-18 1.40e-09

ylr129w ylr222c ylr409c ypl126w

7 9 ybr156c ydr016c ydr201w ygl061c ygr113w ykl052c mutLbeta module 88.9 7.78e-17 7.78e-17 9.31e-15

ykr037c ykr083c ypl209c

8 8 ydr211w yer025w ygr083c yjr007w ykr026c ylr291c Interacting eIF2 (Sui2/3/4 100 5.08e-14 9.27e-12 2.69e-15

yor260w ypl237w and eIF2B (Gcd1/2/6/7/Gcn3)

9 7 yar003w ybr175w ybr258c ydr469w yhr119w ylr015w Transcription factor 100 1.23e-14 1.53e-17 1.53e-17

ypl138c

10 7 q0085 ydr298c ydr377w ykl016c yml081c ypl078c Mitochondrial proton-transporting 85.7 1.64e-12 4.58e-14 1.64e-12

ypl138c ATP synthase



Ji et al. BMC Bioinformatics 2014, 15:325 Page 23 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 11 Some functional modules predicted byMCODE using DIP data

ID Size Proteins in the predicted module Real protein module MR(%) p-values

Biological Cellular Molecular

1 5 yhr012w yjl053w yjl154c yor069w yor132w Retromer module 100 3.13e-09 5.58e-13 4.67e-08

2 10 ybl084c ydl008w ydr118w yfr036w ygl240w yhr166c Anaphase-promoting 100 5.62e-24 8.52e-23 1.29e-14

ykl022c ylr127c ynl172w yor249c

3 9 ybl026w ycr077c ydr378c yer112w yer146w yjl124c Ribonucleo protein 100 1.25e-07 9.18e-14 1.16e-05

yjr022w ylr438c ynl147w

4 8 ydl232w yel002c ygl022w ygl226c yjl002c ymr149w Oligosaccharyl transferase 87.5 9.37e-15 8.19e-19 2.51e-12

yor085w yor103c

5 7 ycr002c ydl225w ydr507c yhr107c yjr076c ylr314c Septin module 71.4 8.31e-12 1.36e-13 2.49e-08

ynl166c

6 6 ygr200c yhr187w ylr384c ymr312w ypl086c ypl101w Elongator holoenzyme 100 7.17e-11 3.11e-16 6.61e-05

7 6 ydr211w ygr083c yjr007w ykr026c ylr291c Interacting eIF2 (Sui2/3/4) 100 3.14e-10 7.03e-13 3.82e-11

yor260w and eIF2B (Gcd1/2/6/7/Gcn3)

8 6 ybr087w yhr191c yjr068w ymr078c ynl290w yol094c Ctf18 RFC-like module 100 8.60e-10 2.59e-15 1.70e-08

9 6 q0085 ybl099w ydr377w yjr121w ykl016c Mitochondrial proton-transporting 83.3 4.59e-10 4.59e-10 4.59e-10

yml081c ATP synthase

10 6 ybr079c ydr429c ylr192c ynl244c yor361c ypr041w eIF1/eIF3/eIF5 module 100 2.39e-07 2.56e-10 5.52e-11

can more objectively reflect the detection quality from
different computational views. In light of accuracy, MAE-
FMD significantly outperforms CFinder, Coach, NACO-
FMD,MCL,HAM-FMD andMCODE on five protein data
sets. Based on F-measure, MAE-FMD also outperforms

other six algorithms on Gavin, DIP, MIPS and DIPH-
sapi20140703 data, and is slightly worse than Coach on
DIPScere20140703 data. On the other hand, since the
p-value of modules is a metric to incarnate the biolog-
ical significance, the more number of modules we get

Figure 16 The anaphase-promoting module detected by various algorithms. (a) Benchmark; (b)MAE-FMD algorithms; (c) Coach and
NACO-FMD algorithms; (d)MCL and HAM-FMD algorithms; and (e)MCODE algorithm.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 24 of 26
http://www.biomedcentral.com/1471-2105/15/325

Table 12 Sixteen proteins in anaphase-promotingmodule

ID Gene name Protein name Detail messages (url)

1 yir025w Anaphase-promoting complex subunit MND2 http://www.uniprot.org/uniprot/P40577

2 ydr260c Anaphase-promoting complex subunit SWM1 http://www.uniprot.org/uniprot/Q12379

3 ygl116w APC/C activator protein CDC20 http://www.uniprot.org/uniprot/P26309

4 yor249c Anaphase-promoting complex subunit 5 http://www.uniprot.org/uniprot/Q08683

5 ylr127c Anaphase-promoting complex subunit 2 http://www.uniprot.org/uniprot/Q12440

6 ygl240w Anaphase-promoting complex subunit DOC1 http://www.uniprot.org/uniprot/P53068

7 ylr102c Anaphase-promoting complex subunit 9 http://www.uniprot.org/uniprot/Q12107

8 ydl008w Anaphase-promoting complex subunit 11 http://www.uniprot.org/uniprot/Q12157

9 ygr225w Meiosis-specific APC/C activator protein AMA1 http://www.uniprot.org/uniprot/P50082

10 ydr118w Anaphase-promoting complex subunit 4 http://www.uniprot.org/uniprot/P0C5L7

11 ykl022c Anaphase-promoting complex subunit CDC16 http://www.uniprot.org/uniprot/P09798

12 yfr036w Anaphase-promoting complex subunit CDC26 http://www.uniprot.org/uniprot/P14724

13 ygl003c APC/C activator protein CDH1 CDC20 homolog 1 http://www.uniprot.org/uniprot/P53197

14 ybl084c Anaphase-promoting complex subunit CDC27 http://www.uniprot.org/uniprot/P38042

15 yhr166c Anaphase-promoting complex subunit CDC23 http://www.uniprot.org/uniprot/P16522

16 ynl172w Anaphase-promoting complex subunit 1 http://www.uniprot.org/uniprot/P53886

with lower p-values, the greater significant the application
is. Though the number of modules discovered by MAE-
FMD is smaller than most of algorithms compared on
yeast data, the number of modules with lower p-value dis-
covered by MAE-FMD is no less than those algorithms
did. For instance, MAE-FMD detects 234 modules on

DIP data which is less than those of HAM-FMD, NACO-
FMD, Coarch and MCL, however, the number of modules
located in (0, 1.0e-20] is 16, 21 and 10 from three types
of p-values, which is much larger than those of other
four algorithms. Moreover, MAE-FMD can identify some
new modules that were not previously identified by other

Table 13 Some new functional modules predicted byMAE-FMD algorithm using DIP data

ID Size Proteins in the predicted module p-values

Biological Cellular Molecular

1 22 yjr045c yil022w yor232w ybr091c yhr005c ydl217c 2.67e-27 2.04e-21 6.19e-23

yjl064w yjl143w ynl121c ynl131w yfl016c ynr017w

ygr082w ymr203w yel020w ybl030c yml054c yjl054w

yor297c ygr181w yjr135w ypl063w

2 15 ydr382w ylr340w ydl081c ydl130w yel054c 4.66e-12 8.88e-12 1.22e-12

yol039w ylr287c ylr199c ylr177w yjr125c

yor111w ygr034w ymr131c yor063w ygr214w

3 15 ymr055c yml064c yfr028c yjl076w yjr053w 4.14e-19 1.14e-15 2.26e-12

ybr211c ygr113w ygl061c ydr016c ydr201w

ykr037c ykr083c ykl052c ypl209c ybr156c

4 13 yll036c ymr213w ydr416w yjr050w ybr188c 2.17e-18 1.91e-22 1.91e-22

ygr129w ylr117c ykl095w ypr101w yal032c

ypl151c ygl120c ydr364c

5 10 ydr036c ybr251w yhl004w ydr175c ylr009w 1.21e-12 8.40e-14 5.46e-13

yil093c ygl068w ypl013c ybl038w ynl284c

http://www.uniprot.org/uniprot/P40577
http://www.uniprot.org/uniprot/Q12379
http://www.uniprot.org/uniprot/P26309
http://www.uniprot.org/uniprot/Q08683
http://www.uniprot.org/uniprot/Q12440
http://www.uniprot.org/uniprot/P53068
http://www.uniprot.org/uniprot/Q12107
http://www.uniprot.org/uniprot/Q12157
http://www.uniprot.org/uniprot/P50082
http://www.uniprot.org/uniprot/P0C5L7
http://www.uniprot.org/uniprot/P09798
http://www.uniprot.org/uniprot/P14724
http://www.uniprot.org/uniprot/P53197
http://www.uniprot.org/uniprot/P38042
http://www.uniprot.org/uniprot/P16522
http://www.uniprot.org/uniprot/P53886


Ji et al. BMC Bioinformatics 2014, 15:325 Page 25 of 26
http://www.biomedcentral.com/1471-2105/15/325

algorithms, especially for the human data. All these results
show MAE-FMD can identify more biological functional
modules.
In summary, the outstanding experimental results of

MAE-FMD on five different data sets demonstrate that
MAE-FMD is robust algorithm whose performances are
not dependent on the underlying data.

Conclusions
To reveal unknown functional ties between proteins and
predict functions for unknown proteins, people have
remained a great interest in mining functional modules
from PPI networks over the past decade. However, how
to accurately predict these protein modules through com-
putational methods is still a highly challenging issue. This
paper presented a multi-agent evolution approach called
MAE-FMD, which can achieve a high accuracy for identi-
fying functional modules in PPI networks. The most sig-
nificant feature ofMAE-FMD is that the algorithm utilizes
random search and optimization mechanisms in the solu-
tion constructing and evolutionary processes. First, MAE-
FMD employs a random-walk model merged topological
characteristics with functional information to construct
a candidate solution for each agent, which can effec-
tively and reasonably find a feasible solution. And then,
it applies some simple evolutionary operators, i.e., com-
petition, crossover, and mutation, to realize information
exchange among agents during the evolution process. The
competition operator can replace the worst connection
information with the better information to improve the
winner anent, the crossover operator performs a random
search in a solution space by the cooperation between
neighborhood agents while the mutation operator carries
out local searches with randomness. The experimental
results indicate that our algorithm has the characteristics
of outstanding recall, F-measure, sensitivity, accuracy and
p-value and can obtain some new modules on five bench-
mark data sets while keeping other competitive perfor-
mances, so it can be applied to the biological study which
requires a higher accuracy. It should be pointed out that
the algorithm doesn’t take into account overlapping func-
tional modules based on the current representation and
evolution of solutions, and may require longer running
time for larger scale PPI networks due to the iterative evo-
lution of the population. Thus, our future work includes
investigating some new strategies to further improve the
time efficiency and detect overlapping modules in PPI
networks.

Endnote
aBecause the underlying protein interaction data used

in the paper do not provide temporal and spatial
information, we use the concept of functional modules.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JZJ and LJ conceived the work. LJ and JWL performed the experimental
analysis. JZJ and CCY prepared the manuscript with revisions by ADZ. All
authors read and approved the final manuscript.

Acknowledgements
This work is partly supported by National “973” Key Basic Research Program of
China (2014CB744601), NSFC Research Program (61375059, 61332016),
Specialized Research Fund for the Doctoral Program of Higher Education
(20121103110031), and the Beijing Municipal Education Research Plan key
project (Beijing Municipal Fund Class B) (KZ201410005004).

Author details
1College of Computer Science, Beijing University of Technology, Chaoyang
District, Beijing, China. 2Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, New York, USA.

Received: 10 April 2014 Accepted: 22 September 2014
Published: 30 September 2014

References
1. Ji JZ, Zhang AD, Liu CN, Quan XM, Liu ZJ: Survey: functional module

detection from protein-protein interaction networks. IEEE Trans
Knowl Data Eng 2014, 26(2):261–277.

2. Patternson SD, Aebersold RH: Proteomics: the first decade and
beyond. Nat Genet 2003, 33:311–323.

3. Zhang AD: Protein interaction networks: computational analysis. New York,
USA: Cambridge University Press; 2009.

4. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M: A generic protein
purification method for protein complex characterization and
proteome exploration. Nat Biotechnol 1999, 17(10):1030–1032.

5. Gavin AC, Boesche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J,
Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M,
Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dichson D, Rudi T,
Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR,
Edelmann A, Querfurth E, Rybin V, et al: Functional organization of the
yeast proteome by systematic analysis of protein complexes. Nature
2002, 415(6868):141–147.

6. Tarassov K, Messier V, Landry CR, Radinovic S, Molina MM, Shames I: An in
vivo map of the yeast protein interactome. Science 2008,
320(5882):1465–1470.

7. Bader GD, Hogue CW: An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics
2003, 4(1):2.

8. Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T: CFinder: locating
cliques and overlapping modules in biological networks.
Bioinformatics 2006, 22(8):1021–1023.

9. Altaf-UI-amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S: Development
and implementation of an algorithm for detection of protein
complexes in large interaction networks. BMC Bioinformatics 2006,
7(1):207.

10. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical
organization of modularity in metabolic networks. Science 2002,
297:1551–1555.

11. Arnau V, Mars S, Marin I: Iterative cluster analysis of protein
interaction data. Bioinformatics 2005, 21(3):364–378.

12. Holme P, Huss M, Jeong H: Subnetwork hierarchies of biochemical
pathways. Bioinformatics 2003, 19:532–538.

13. King AD, Przulj N, Jurisica I: Protein complex prediction via cost-based
clustering. Bioinformatics 2004, 20(17):3013–3020.

14. Frey BJ, Dueck D: Clustering by passing messages between data
points. Science 2007, 15(5814):972–976.

15. Abdullah A, Deris S, Hashim SZM, Jamil HM: Graph partitioning method
for functional module detections of protein interaction network.
Int Conf Comput Technol Dev 2009, 1(1):230–234.

16. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res 2002,
30(7):1575–1584.



Ji et al. BMC Bioinformatics 2014, 15:325 Page 26 of 26
http://www.biomedcentral.com/1471-2105/15/325

17. Pereira-Leal JB, Enright AJ, Ouzounis CA: Detection of functional
modules from protein interaction networks. Proteins 2004, 54:49–57.

18. Cho YR, Hwang W, Ramanathan M, Zhang AD: Semantic integration to
identify overlapping functional modules in protein interaction
networks. BMC Bioinformatics 2007, 8(1):265.

19. Hwang W, Cho YR, Zhang AD, Ramanathan M: CASCADE: a novel quasi
all paths-based network analysis algorithm for clustering biological
interactions. BMC Bioinformatics 2008, 9:64.

20. Inoue K, Li W, Kurata H: Diffusion model based spectral clustering for
protein-protein interaction networks. PLoS ONE 2010, 5(9):e12623.

21. Wu M, Li XL, Kwoh CK, Ng SK: A core-attachment based method to
detect protein complexes in PPI networks. BMC Bioinformatics 2009,
10:169.

22. Sallim J, Abdullah R, Khader AT: ACOPIN: An ACO algorithmwith TSP
approach for clustering proteins from protein interaction network.
In Second UKSIM European Symposium on Computer Modeling and
Simulation: IEEE; 2008:203–208.

23. Wu S, Lei XJ, Tian JF: Clustering PPI network based on functional flow
model through artificial bee colony algorithm. In Seventh International
Conference on Natural Computation: IEEE; 2011:92–96.

24. Ji JZ, Liu ZJ, Zhang AD, Jiao L, Liu CN: Improved ant colony
optimization for detecting functional modules in protein-protein
interaction networks. In Information Computing and Applications,
Volume 1. Heidelberg: Springer Berlin; 2012:404–413.

25. Ji JZ, Liu ZJ, Zhang AD, Yang CC, Liu CN: HAM-FMD: mining functional
modules in protein-protein interaction networks using ant colony
optimization andmulti-agent evolution. Neurocomputing 2013,
121:453–469.

26. Liu JM, Jing H, Tang YY:Multi-agent oriented constraint satisfaction.
Artif Intell 2002, 136:101–144.

27. Zhong WC, Liu J, Xue MZ, Jiao LC: Amultiagent genetic algorithm for
global numerical optimization. IEEE Trans Syst Man Cybernet (Part B)
2004, 34(2):1128–1141.

28. Pan XY, Jiao LC, Liu F: Granular agent evolutionary algorithm for
classification. ACTA ELECTRONICA SINICA 2009, 37(3):628–633.

29. Pan XY, Liu F, Jiao LC: Density sensitive based multi-agent
evolutionary clustering algorithm. J Software 2010, 21(10):2420–2431.

30. Pan XY, Chen H:Multi-agent evolutionary clustering algorithm based
onmanifold distance. In Proceedings of the 8th International Conference
on Computational Intelligence and Security. Guangzhou, China;
2012:123–127.

31. Yang B, Huang J, liu DY, Liu JM: Amulti-agent based decentralized
algorithm for social network community mining. In Proceedings of the
International Conference on Advances in Social Network Analysis andMining.
Athens, Greece; 2009:78–82.

32. Mete M, Tang FS, Xu XW, Yuruk N: A structural approach for finding
functional modules from large biological networks. BMC
Bioinformatics 2008, 9(Suppl 9):S19.

33. Schlicker A, Albrecht M: FunSimMat: a comprehensive functional
similarity database. Nucleic Acids Res 2008, 36:D434–D439.

34. Guimerà R, Amaral LAN: Functional cartography of complex
metabolic networks. Nature 2005, 433(7028):895–900.

35. Xenarios I, Salwinski L, Duan X, Higney P, Kim S, Eisenberg D: DIP, the
Database of Interacting Proteins: a research tool for studying
cellular networks of protein interactions. Nucleic Acids Research 2002,
30:303–305.

36. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C,
Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V,
Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M,
Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer
G, Rick JM, Kuster B, Bork P, et al: Proteome survey reveals modularity
of the yeast cell machinery. Nature 2006, 440(7084):631–636.

37. Mewes HW, et al:MIPS: analysis and annotation of proteins from
whole genomes. Nucleic Acids Res 2004, 32(Database issue):D41–D44.

38. Friedel CC, Krumsiek J, Zimmer R: Boostrapping the Interactome:
unsupervised identification of protein complexes in yeast. RECOMB
2008, 4955(1):3–16.

39. Aloy P, Bottcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin
AC, Bork P, Superti-Furga G, Serrano L, Russell RB: Structure-based
assembly of protein complexes in yeast. Science 2004,
303(5666):2026–2029.

40. Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR, Fisk DG,
Issel-Tarver Laurie, Schroeder M, Sherlock G, Sethuraman A, Weng S,
Botstein D, Cherry JM: Saccharomyces genome database provides
secondary gene annotation using the gene ontology. Nucleic Acids
Res 2002, 30(1):69–72.

41. Li XL, Wu M, Kwoh CK, Ng SK: Computational approaches for
detecting protein complexes from protein interaction networks: a
survey. BMC Genomics 2010, 11(suppl 1):S3.

42. Chua HN, Ning K, Sung WK, Leong HW, Wong L: Using indirect
protein-protein interactions for protein complex prediction.
J Bioinformatics Comput Biol 2008, 6(03):435–466.

43. Hwang W, Cho YR, Zhang AD, Ramanathan M: CASCADE: a novel quasi
all paths-based network analysis algorithm for clustering biological
interactions. BMC Bioinformatics 2008, 9:64.

44. Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N, Li
G, Chen R: Topological structure analysis of the protein-protein
interaction network in budding yeast. Nucleic Acids Res 2003,
31(9):2443–2450.

doi:10.1186/1471-2105-15-325
Cite this article as: Ji et al.:MAE-FMD: Multi-agent evolutionary method
for functional module detection in protein-protein interaction networks.
BMC Bioinformatics 2014 15:325.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Method
	Basic ideas
	Agent representation and its construction
	Agent energy level and evolutionary environment
	Evolutionary operators
	Post-processing
	Algorithm description and complexity analysis

	Results and discussion
	PPI datasets
	Evaluation metrics
	Precision, Recall, F-measure, and Coverage
	Sensitivity, positive predictive value, and accuracy
	p-value measure

	Effects of parameters
	Comparative evaluations

	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

