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Abstract

IQGAP1 is a scaffolding protein that regulates spine number. We now show a differential role for IQGAP1 domains in spine
morphogenesis, in which a region of the N-terminus that promotes Arp2/3-mediated actin polymerization and branching
stimulates spine head formation while a region that binds to Cdc42 and Rac is required for stalk extension. Conversely,
IQGAP1 rescues spine deficiency induced by expression of dominant negative Cdc42 by stimulating formation of stubby
spines. Together, our observations place IQGAP1 as a crucial regulator of spine number and shape acting through the N-
Wasp Arp2/3 complex, as well as upstream and downstream of Cdc42.
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Introduction

Coordinated interactions among microtubules, microfilaments

and members of the family of small Rho-GTPases are crucially

involved in the development and maintenance of axons, dendrites

and synapses [1–4]. IQ motif-containing GTPase-activating

protein 1 (IQGAP1) is a 190-kDa scaffolding protein widely

expressed among different cell types [5–8], including neurons [9–

11], that links cytoskeletal components with different signaling

pathways during cell-cell adhesion, polarization and migration

[12–16].

However, and despite a well-recognized role for scaffolding and

cytoskeletal crosslinker proteins in neuronal polarization and

synaptic plasticity [1,2] the function of IQGAP1 in brain neurons

remained largely unexplored until recently. Some of the initial

evidences came from a study showing that impairment of N-

cadherin-mediated ERK signaling is paralleled by redistribution of

IQGAP1 from spines to dendritic shafts [17]. Later on, the same

group identified IQGAP1 as a key regulator of dendritic spine

number with a specific role in cognitive but not emotional or

motivational processes [10]. Mice lacking IQGAP1 exhibited

marked memory defects, including impaired long-term potentia-

tion (LTP) in a weak cellular learning model [10]. Interestingly,

hippocampal neurons from IQGAP12/2 mice displayed reduced

spine number, lower levels of surface NR2A and impaired ERK

activity. Other study demonstrated that IQGAP1 and the

microtubule plus-end tracking protein, CLIP-170, cooperatively

regulate dendritic arbor growth in both cortical and hippocampal

pyramidal neurons [11]. Based on these observations and to gain

insights into the mechanisms by which IQGAP1 regulates spine

morphogenesis, in the present study we used several deletion

mutants to identify domains of IQGAP1 that could be necessary

for spine and synapse formation.

Results and Discussion

IQGAP1 possesses several sequentially arranged functional

domains (Figure 1) that enable direct binding to a wide spectrum

of cytoskeletal, adhesion and signaling molecules [15,18,19]. In

this study, we used deletion mutants (D) of the following IQGAP1

domains (Figure 1): 1) The Calponin homology domain (D-CHD);

2) the RasGAP-related domain (D-RGD); and 3) the C-terminal

region (D-CT), to test their involvement in spine morphogenesis.

First, a gain-of-function experiment was performed to evaluate

the effect of overexpressing IQGAP1 wild-type (IQGAP1 WT) on

spine number and shape. Cultured hippocampal pyramidal

neurons were transfected with Green Fluorescent Protein (GFP)

or Red Fluorescent Protein (RFP) plus myc-tagged IQGAP1 WT

or mock vector 17 days after plating, fixed 18–20 hours later,

double stained with MAP2 or synaptophysin and examined by

confocal microscopy (Figure 2); in some experiments, neurons

were either co-transfected with GFP-PSD95 or stained with a mAb

against PSD95. Serial confocal sections were obtained and 3-D

reconstructions of dendritic shafts and spines performed using

Imaris software. Spine number and type were evaluated by either

manual counting or computer-assisted methods using published

protocols (see Materials and Methods); both procedures gave

similar results (Table S1 and Figure S1). The ectopic expression of

myc-tagged IQGAP1 WT (Figure 2) or GFP-tagged IQGAP1 WT

(not shown) induced a significant increase in the number of

dendritic spines. High-magnification views revealed that neurons

overexpressing IQGAP1 WT display many dendritic spines with

long necks and large bulbous heads, characteristic of mushroom-

shaped spines (Figure 2 H–J). As in the case of mock-transfected

neurons these spines localize GFP-PSD95 (Figure 2K–L) or PSD-

95 immunofluorescence (Figure S2) to their tips that in most cases

was in contact with synaptophysin puncta (Figure 2M–N; Figure
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S2). Quantitative analysis showed that the increase in spine density

of myc-tagged IQGAP1 WT positive neurons was associated with

a higher number of mushroom- and stubby-shaped dendritic

spines and no significant changes in thin spines and filopodial-like

protrusions (Figure 2O, 2P); this analysis also revealed that ectopic

expression of IQGAP1 WT induces a significant (p,0.0001)

increase in spine head size (Figure 2Q).

We then examined the consequences of expressing an IQGAP1

mutant lacking the CHD (Figure 1, D-CHD-IQGAP1). The CHD

(amino acids 44–159) located at the N-terminus is responsible for

actin and presumably N-WASP binding, as well as capable of

promoting Arp2/3-mediated actin polymerization and branching

[16]. Neurons expressing this mutant display an increase in the

number of spine-like protrusions (Figure 2O; Figure 3A). High-

magnification views (Figure 3B) and 3-D reconstructions

(Figure 3C) revealed that many of these protrusions resembled

filopodial-like extensions lacking a discernable head or displaying

a small expansion at the tip. Therefore, we tested, whether or not

these structures may represent thin spines or conventional

filopodia [20–24] by co-expressing D-CHD-IQGAP1 with GFP-

PSD95 or staining with anti-PSD95. Interestingly, co-expression of

these constructs revealed that the majority (.95%) of the

filopodial extensions display GFP-PSD95 fluorescence at their

tips (Figure 3D, 3E) and colocalize with synaptophysin puncta,

typical of thin spines (Figure 3F, 3G); quantitative analysis

confirmed these observations (Figure 3H–J). Collectively, these

results suggest that the CHD of IQGAP1 is required for proper

spine head formation, and that in its absence thin spines capable of

contacting synaptic terminals are formed; they also raise the

possibility that the increase in the number and size of mushroom-

shaped spines elicited by IQGAP1 WT could require N-WASP

and/or Arp 2/3 expression. Previous work has suggested that the

Arp 2/3 complex induces formation of the branched actin network

in the spine head [21,23,25,26]. Therefore, we generated sh-RNAs

specific for Arp3, Arp2 [27] and N-WASP (Figure S3). As shown

in Figure 3I, silencing of Arp3 significantly reduces spine number.

The remaining dendritic protrusions resemble filopodial exten-

sions; a similar phenotype was observed after Arp2 (not shown) or

N-WASP suppression (Figure 3I). Interestingly, co-expression of

IQGAP1 WT in Arp 2, or 3 or N-WASP-suppressed neurons

stimulated the formation of filopodial-like extensions, but not of

mushroom- or stubby spines (Figure 3K–M). This phenotype

resembles the one observed after expression of D-CHD; however,

the filopodial protrusions formed in the absence of Arp 2/3 or N-

WASP failed to localize with synaptophysin puncta (Figure 3J,

3N–Q) and do not contain PSD95 at their tips (not shown). This is

consistent with the idea that modeling of the actin cytoskeleton has

also a major role in organizing the post-synaptic density

[22,26,28]. It has also been reported filopodial formation in the

absence of Arp2/3 or WAVE [27,29]. Therefore, the protrusions

observed in Arp2/3 or WASP-suppressed neurons co-expressing

IQGAP1 WT may represent either immature thin spines or

‘‘conventional filopodia’’. Since our results also suggest that the

CHD is dispensable for stalk/neck formation, we decided to

examine the role of GRD.

This domain (Figure 1), which extends from amino acids 1025

to 1238 binds to the small GTPases Cdc42 and Rac1, both

implicated in spine formation [3,4]. Expression of IQGAP1 D-
GRD also increases spine number (Figure 2O and Figure 4A–G,

4K); analysis of spine shape reveals a selective increase in the

number of stubby spines (Figure 4K) that contain GFP-PSD95

(Figure 4E) or stain for PSD95 (Figure S2) and are contacted by

synaptophysin puncta (Figure 4F–G; Figure S2). These observa-

tions suggest that IQGAP1 interaction with Cdc42 and/or Rac

could be important for stalk-neck formation; since a recent study

has shown that stimulated spines have increased Cdc42 activation

at the spine neck [30] we tested the effect of a Cdc42 dominant

negative (DN) mutant (T17N) on the stimulatory effect of

IQGAP1 WT on spine formation. In agreement with previous

observations [26] expression of T17N reduced the number of

mushroom-shaped spines, consistent with its proposed role in

stalk-neck formation; intriguingly, T17N also induced a significant

increase in the number of filopodial extensions (Figure 4L).

However, co-expression of IQGAP1 WT reverts the T17N

phenotype, stimulating formation of stubby spines and reducing

filopodial number (Figure 4H–L), suggesting that IQGAP1-

mediated stalk-neck formation and/or extension requires Cdc42.

Conversely, spine deficiency caused by IQGAP1 suppression

(Figures S4 and S5) can be rescued by co-expression of an active

fast cycling mutant (F28L) of Cdc42 [31,32] (Figure S5). Together,

these observations favor the idea that IQGAP1 acts both upstream

(e.g. a regulator) and downstream (e.g. an effector) of Cdc42

[18,33]; they also suggest that Cdc42 may not require IQGAP1 to

promote spine formation.

Next, we evaluated the IQGAP1 C-terminus (Figure 1, CT).

This region, comprising amino acids 1563–1657, binds to several

proteins including CLIP-170, adenomatous polyposis coli (APC),

and E-cadherin [18]. Since an interaction between IQGAP1 and

CLIP170 regulates dendritic growth [11] and dynamic micro-

tubules containing +TIPs invade spines [34], it became of interest

to explore if expression of a deletion mutant of IQGAP1 lacking

the CT could affect spine number or shape. The results obtained

show that deletion of this domain does not prevent the stimulatory

effect of IQGAP1 on spine number or spine head size; however,

this mutant fails to increase the total length of mushroom-shaped

spines, as does full length IQGAP1 (Figure 5).

In the final set of experiments we evaluated the possible

participation of the CHD or GRD or CT domains of IQGAP1

in regulating the distribution of the NR2A, a subunit of the

NMDA receptor. Previous studies have shown that IQGAP1

interacts with NR2A and that NR2A surface levels were

significantly decreased in IQGAP12/2 mice [10]. To test if

any of the IQGAP1 deletion mutants used in this study could

affect the intracellular or surface distribution of NR2A, we co-

transfected GFP-tagged NR2A at the N-terminus with each of

the deletion mutants. By staining non-permeabilized transfected

Figure 1. Domain organization of IQGAP1 and representation
of the deletion mutants. CHD: Calponin-homology domain. IRS: WW:
protein domain containing two highly conserved triptophans that bind
proline- rich peptide motifs; responsible for interaction with ERKs. IQ:
calmodulin-binding motif; the term refers to the first two amino acids of
the motif: isoleucine and glutamine. GRD: Ras GTP related activating
protein domain; responsible for interactions with Cdc42 and Rac. CT: C-
terminus; responsible for interactions with cadherin, CLIP-170, APC, etc.
doi:10.1371/journal.pone.0056574.g001

IQGAP1 Domains and Spine Morphology
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Figure 2. IQGAP1 stimulates spine formation and increases spine head size. (A) Confocal image showing an example of a 17 DIV cultured
hippocampal neuron transfected with mock plasmid plus GFP (green) and double stained with MAP2 (red). (B) A high magnification view of
a dendritic segment from another neuron of the same culture (C) A 3-D reconstruction of dendritic shafts from a sister culture; note the morphology
and density of dendritic spines. (D–G) Confocal images showing a dendritic segment from a neuron co-transfected with myc-tagged-mock plasmid
(blue) plus GFP-PSD95 (green) and stained for synaptophysin (red). (G) Merge image; note that GFP-PSD95 (+) spines colocalize with synaptophysin
puncta (arrowheads). (H) A Confocal image showing an example of a 17 DIV cultured hippocampal neuron transfected with myc-tagged IQGAP1
WT+GFP (green) and double stained with MAP2 (red). (I) A high magnification view of a dendritic segment from another neuron of the same culture.
(J) A 3-D reconstruction of dendritic shafts from a sister culture; note the increase in the number and size of spines. (K–N) Confocal images showing
a segment of a dendritic shaft of a neuron co-transfected with myc-tagged-IQGAP1 WT (blue) plus GFP-PSD95 (green) and stained for synaptophysin
(red). (N) Merge image. (O–Q) Graphs showing effects of ectopic expression of myc-tagged IQGAP1 WT on spine number, spine type and spine head
size. Bars represent mean 6 standard deviation. *p,0.0001. The effect of IQGAP1 mutants on spine number is also shown (O).
doi:10.1371/journal.pone.0056574.g002

IQGAP1 Domains and Spine Morphology
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Figure 3. IQGAP1 CHD domain is required for spine head formation. (A) Confocal image showing an example of a 17 DIV cultured
hippocampal neuron transfected with myc-tagged D-CHD IQGAP1 plus GFP (green) and double stained with MAP2 (red). (B) A high magnification
view of dendritic segments from another neuron of the same culture; note the long filopodial-like protrusions merging from dendritic shafts
(arrowheads). (C) A 3-D reconstruction of dendritic shafts from a sister culture; note the morphology and density of filopodial-like protrusions
(arrowheads). (D–E) Confocal images showing a dendritic segment from a neuron co-transfected with myc-tagged-D-CHD-IQGAP1 (blue) plus GFP-
PSD95 (green) and stained for synaptophysin (red). (G) Merge image; note that GFP-PSD95 (+) protrusions colocalize with synaptophysin puncta
(arrowheads). (H) Graphs showing effects of the ectopic expression of myc-tagged D-CHD-IQGAP1 on the number of different types of dendritic
spines; note that D-CHD-IQGAP1 significantly increases the number of thin spines and filopodial extensions, while decreases the number of
mushroom-shaped spines. (I) Graphs showing the effect of scrambled-sh-Arp3, sh-Arp3, and sh-WASP on the number of dendritic protrusions. For this
experiment, cultures were transfected with the corresponding GFP-or HcRed-sh plasmids at 17 DIV and fixed 24 h later. Note the significant decrease
in the total number of dendritic protrusions in the sh-Arp3 and sh-WASP-treated groups. (J) Graphs showing the number of dendritic protrusions

IQGAP1 Domains and Spine Morphology
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neurons with a mAb against GFP, we were able to label surface

NR2A [10]. The results obtained (Figure 6) showed that none

of the IQGAP1 deletion mutants alter the intracellular or

surface distribution of NR2A, suggesting that other IQGAP1

domains or a combination of domains regulate the distribution

of this NMDA subunit.

Conclusions
The present results confirm and extend recent studies

[10,11,17] indicating that IQGAP1 is required for spine forma-

tion. The new information presented here suggests that IQGAP1

protein domains actively participate in spine morphogenesis and

differentially affect spine number and shape acting through the N-

WASP- Arp2/3 complex and Cdc-42 signaling.

Materials and Methods

Short-Hairpins RNA and Plasmid Constructs
The IQGAP1, Arp2, Arp3, N-WASP short hairpin (sh) RNAs

and their corresponding scrambled control sequences were

constructed using previously described procedures [35,36]. In

brief, DNA fragments containing U6-sh-RNA and U6-scrambled-

sh were inserted into pCAG vector in which the GFP or HcRed

cDNA is under the control of a chick actin-minimal (CAG)

promoter [35,36].

The following targeting sequences were used:

For IQGAP1-sh

Forward: 59TGCCATGGATGAGATTGGAAAGCTTTC-

CAATCTCATCCATGGCACTTTTTTG and.

Reverse: 59AATTCAAAAAGTGCCATGGATGAGATTG-

GAAAGCTTTCCAATCTCATCCATGGCA.

For Arp 2-sh

Forward:

59GGTTGGTGTTGCTGAATTGCTTAAGCTTAAG-

CAATTCAGCAACACCAACCCTTTTTG.

Reverse:

59AGCTTAAGCAATTCAGCAACACCAACCAATT-

CAAAAAGGGTTGGTGTTGCTGAATTGCTTA.

For Arp3-sh

Forward:

59GGTACAGTAATAGACAGTGGAGAAGCTTCTC-

CACTGTCTATTACTGTACCCTTTTTG.

Reverse.

59AGCTTCTCCACTGTCTATTACTGTACCAATT-

CAAAAAGGGTACAGTAATAGACAGTGGAGA.

For N-WASP-sh

Forward:

59GGATGCACTTCTAGACCAGATAAAGCTT-

TATCTGGTCTAGAAGTGCATCCCTTTTTG.

Reverse:

59AGCTTTATCTGGTCTAGAAGTGCATCCAATT-

CAAAAAGGGATGCACTTCTAGACCAGATAA.

The resulting plasmids were referred to as sh-IQGAP1-GFP or

HcRed, sh-ARP2-HcRed, sh-ARP3-HcRed, sh-NWASP-HcRed,

and the corresponding scrambled sh-RNAs. For myc tagged-

IQGAP1 WT, RNA was isolated from HEK293 cells, and

IQGAP1 transcripts amplified by RT-PCR with the following

primers:

Forward (IQ1F): 59-ATGTCCGCCGCAGACGAGG-39 and

Reverse (IQ1Rev): 59-TTACTTCCCGTAGAAC-39.

The DNA was then cloned in pcDNA3.1 Myc. The IQGAP1-

D-CHD mutant was generated from pcDNA3.1-IQGAP-WT by

PCR and sub cloned in pcDNA3.1 by generating a SalI site using

the following primers:

Forward: 59-GTCGACGAGAAGTATGGCATCC and Re-

verse 59- TTACTTCCCGTAGAAC-39.

For IQGAP1-D-GRD a silent mutation was generated to create

an Nhe1 site to eliminate the GRD region and allow re-ligation.

The following primers were used: Forward: 59-GGAAAT-

CAAGTCGAAGCTAGCTCAGATTCAAGAGATTGTGA-

CAGG-39 and Reverse: 59-CCTGTCACAATCTCTT-

GAATCTGAGCTAGCTTCGACTTGATTTCC-39. For

PSD95-GFP, RNA was isolated from 36 days old rat brains. A

transcript was then amplified using the following primers:

Forward: 59-GGCCCGAATTCATGGACTGTCTCTGTA-

TAG-39 and Reverse: 59-GCCAGGGTACCAATCA-

GAGTCTCTCTC -39.

The transcript was then cloned into pEGFP C2 between EcoR1

and KpNI.

For IQGAP1-DCT a mutation was generated to create a stop

codon at position 1377. The following primers were used:

Forward: 59-GCCTGGAGATGAGAATGCATAAATG-

GATGCTCGAACC-39.

Reverse: 59-GGTTCGAGCATCCATTTATGCATTCT-

CATCTCCAGGC-39.

The Cdc42 fast cycling mutant [31] (Clone Cdc42-F28L) and

the Dominant Negative (DN, Clone T17N) one were a generous

gift from Dr. R. A. Cerione, (Cornell University, Ithaca, New

York). The GFP-NR2A cDNA [32] was a generous gift of Dr. B.

Vissel (Neurodegenerative Disorders Laboratory, Neuroscience

Department, Garvan Institute of Medical Research, Sydney,

NSW, Australia).

Animals, Culture, Transfection, Immunofluorescence,
Confocal Microscopy, Morphometry and 3D
Reconstruction
Pregnant rats (Wistar, Charles River 251 Ballardvalle Street,

Wilmington, MA01887) were obtained from the institutional

(INIMEC-CONICET) specific pathogen free (SPF) vivarium. All

animal procedures and care were approved by the institutional

animal care committee (INIMEC-National Research Council and

Universidad Nacional de Córdoba, Argentina) and the National

Department of Animal Care and Health (SENASA-Argentina).

Efforts were made to minimize animal suffering and to reduce the

number of animals used.

Embryonic day-18 rat embryos (euthanized by CO2 overdose)

were used to prepare primary hippocampal cultures as previously

described [35–40]. Neurons of 17 days in vitro (DIV) with long

axons and well-developed dendritic arbors were used for all

contacting synaptophysin puncta in neurons transfected with IQGAP1 WT, D-CHD-IQGAP1 and sh-Arp3 plus myc-tagged-IQGAP1 WT. Note the
dramatic decrease in the number of dendritic protrusions contacting synaptophysin puncta in the cells treated with sh-Arp3 plus IQGAP1 WT; most of
these protrusion resemble filopodial extensions. (K) Confocal image showing an example of a 17 DIV cultured hippocampal neuron transfected with
HcRed-sh-Arp3 (red) plus myc-tagged IQGAP1 WT (green). (L) A high magnification view of a dendritic segment from another neuron of the same
culture. (M) A 3-D reconstruction of dendritic shafts from a sister culture; note the presence of many filopodial-like protrusions. (N-P) Confocal images
showing a segment of a dendritic shaft of a neuron co-transfected with myc-tagged-IQGAP1 WT (blue) plus GFP-sh-Arp3 (green) and stained for
synaptophysin (red). (Q) Merge image. Note that many filopodial protrusions are not contacted by synaptophysin puncta. Bars represent mean 6
standard deviation. * p,0.0001.
doi:10.1371/journal.pone.0056574.g003

IQGAP1 Domains and Spine Morphology
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Figure 4. The IQGAP1 GRD domain is required for stalk spine extension. (A) Confocal image showing an example of a 17 DIV cultured
hippocampal neuron transfected with myc-tagged D-GRD-IQGAP1 plus GFP (green) and double stained with MAP2 (red). (B) A high magnification
view of dendritic segments from another neuron of the same culture; note that many of the protrusions lack discernable stalks and are apposed to
dendritic shafts. (C) A 3-D reconstruction of dendritic shafts from a sister culture; note the morphology and density of dendritic protrusions that
resemble stubby spines lacking stalks or displaying very short ones. (D–F) Confocal images showing a dendritic segment from a neuron co-
transfected with myc-tagged-D-GRD-IQGAP1 (blue) plus GFP-PSD95 (green) and stained for synaptophysin (red). (G) Merge image; note that patches
of GFP-PSD95 colocalize with synaptophysin puncta (arrowheads). (H) Confocal image showing an example of a 17 DIV cultured hippocampal neuron
transfected with myc-tagged IQGAP1 WT plus GFP (green) plus HA-tagged DN-Cdc42 (T17N; red). (I) A high magnification view of dendritic segments
from another neuron of the same culture. (J) A 3-D reconstruction of dendritic shafts from a sister culture. Note that IQGAP1 WT failed to stimulate
the formation of mushroom-shaped spines; most of them resemble stubby spines. (K) Graphs showing effects of the ectopic expression of myc-
tagged D-GRD-IQGAP1 on the number of different types of dendritic spines; D-GRD-IQGAP1 significantly increases the number of stubby spines. (L)
Graphs showing effects of the ectopic expression of myc-tagged IQGAP1 WT+HA-tagged T17N on the number of different types of dendritic spines;
note the increase in the number of stubby spines. Bars represent mean 6 standard deviation. * p,0.0001.
doi:10.1371/journal.pone.0056574.g004

IQGAP1 Domains and Spine Morphology
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experiments [39]. Transient transfection of cultured neurons was

performed as described previously [32,35–37,39,40] and the

constructs used at concentrations ranging from 2 to 4 mg/ml.

Neurons were fixed with 4% paraformaldehyde in 4% sucrose-

containing PBS and permeabilized in 0.2% Triton X-100 in PBS

for 5 min before antibody incubation as described [35–40].

Neurons were fixed 18–20 after transfection in the case of cultures

transfected with cDNAs or after 24 hours in the case of cells

expressing short hairpin RNAi.

The following primary antibodies were used in this study:

a monoclonal antibody (mAb) against MAP2 (clone AP-20) diluted

1:1000; an affinity purified rabbit polyclonal antibody against

IQGAP1 (Santa Cruz Biotechnology, H-109, sc-10792) diluted

1:100 for immunofluorescence or 1:2000 for immunoblotting;

a rabbit polyclonal antibody or a mouse mAb against myc (Santa

Cruz Biotechnology) diluted 1:300; a mAb against synaptophysin

(Chemicon International); a mAb against WASP (Santa Cruz

Biotechnology) diluted 1:2000; a rabbit polyclonal antibody

against GFP (Molecular Probes, A 1122) diluted 1:500; a mAb

against PSD95 (AbCam, AB 2723) diluted 1:250; and a rabbit

polyclonal antibody against Arp2 (Santa Cruz Biotechnology)

diluted 1:2000. Cells were visualized using a conventional inverted

confocal microscope (Zeiss Pascal) or a spectral one (Olympus

FV1000). Images were processed using Adobe Photoshop.

Neuronal shape parameters were evaluated as described

previously [38–40]. Briefly, maximal projection images showing

the complete neuronal arbor of transfected neurons visualized by

GFP or HcRed fluorescence or myc-tagged IQGAP1 immuno-

fluorescence were created from confocal images acquired through

a 606or 636, 1.4 NA oil objective. Spine number and shape were

assessed manually by GFP or RFP fluorescence or myc-IQGAP1

immunofluorescence and the presence of synapses by co-expres-

sing GFP-PSD95 and/or co-staining with synaptophysin as

described by Tolias et al., [41]. We also used computer-assisted

methods for evaluating spine number and shape using the

procedures described by Rodriguez et al., [42,43]. No differences

in spine number or shape were found between manual and

computer-assisted methods; both procedures gave similar results

(Figure S1, Table S1). At least 10 dendritic segments (50 mm
length/each) per cell (total 6 cells per culture) from at least 3

different cultures were analyzed for each experimental condition.

Differences among experimental groups were analyzed by one-

way ANOVA and Tukey’s post hoc test.

Figure 5. D-CT IQGAP1 stimulates spine formation. (A) Confocal image showing an example of a 17 DIV cultured hippocampal neuron
transfected with myc-tagged D-CT-IQGAP1 plus GFP (green) and double stained with MAP2 (red). (B) A high magnification view of dendritic segments
from another neuron of the same culture; (C) A 3-D reconstruction of dendritic shafts from a sister culture. (D–F) Confocal images showing a dendritic
segment from a neuron co-transfected with myc-tagged-D-CT-IQGAP1 (blue) plus GFP-PSD95 (green) and stained for synaptophysin (red). (G) Merge
image. (H–J) Graphs showing the effect of expressing myc-tagged-D-CT-IQGAP1 on spine number/type and spine head size and length. Bars
represent mean 6 standard deviation. *p,0.0001.
doi:10.1371/journal.pone.0056574.g005

IQGAP1 Domains and Spine Morphology
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Western Blot
Changes in the levels of IQGAP1, N-WASP and ARP2/3 after

RNA interference treatments of CHO cells or cultured hippo-

campal pyramidal neurons were analyzed by Western blotting as

described previously [35]. Densitometry of Western blots were

performed using Scion Image software.

Supporting Information

Figure S1 Computer-assisted analysis of spine number
and shape. A representative image of the computer display

provided by the software used to automatically evaluate changes in

spine number and shape. For further details see Ref. 42 and 43.

(TIFF)

Figure S2 PSD95 immunofluorescence in neurons ex-
pressing IQGAP1 and its mutants. (A-C) High magnification

views of a dendritic segment from a 17 DIV hippocampal cell

culture transfected with myc-tagged IQGAP1 WT (green) and

double stained with anti-PSD95 (red); note that long spines stain

for PSD95 (arrows). (D-F). A similar set of images but from

a culture transfected with myc-tagged IQGAP1 WT (green) and

double stained with anti-synaptophysin (red); note that spines

colocalize with endogenous synaptophysin puncta (arrows). (G-I)

High magnification views of a dendritic segment from a 17 DIV

cultured hippocampal neuron transfected with myc-tagged D-
GRD IQGAP1 (green) and double stained with anti-PSD95 (red);

note that stubby spines stain for PSD95 (arrows). (J-L) A similar set

of images but from a 17 DIV cultured hippocampal neuron

transfected with myc-tagged D-GRD IQGAP1 (green) and double

stained with anti-synaptophysin (red); note that stubby spines

colocalize with endogenous synaptophysin puncta (arrows).

(TIFF)

Figure S3 Short-hairpin RNAi suppression of Arp3,
Arp2 and NWASP. Western blots showing levels of Arp3,

Figure 6. Distribution of NR2A in hippocampal neurons expressing IQGAP1 WT or deletion mutants. (A–C) High magnification views of
a dendritic segment from a 17 DIV cultured hippocampal neuron transfected with myc-tagged-mock plasmid (blue in merge) plus GFP-NR2A (green)
and double stained with anti-GFP for surface NR2A (red). (D–F) A similar set of images but from a culture transfected with myc-tagged IQGAP1 WT
(blue in merge) plus GFP-NR2A (green) and double stained with anti-GFP for surface NR2A (red). (G–I) A similar set of images but from a culture
transfected with myc-tagged D-GRD IQGAP1 (blue in merge) plus GFP-NR2A (green) and double stained with anti-GFP for surface NR2A (red). Note
that in all cases dendritic spines contain NR2A labeling at their tips. (J–L) Quantification of GFP-NR2A total fluorescemce intensity (J), GFP-NR2A
surface fluorescence intensity (K), and the ratio of surface vs. total GFP-NR2A fluorescence intensities (L) in neurons expressing myc-tagged mock
plasmid (control), myc-tagged IQGAP1 WT and myc-tagged D-GRD IQGAP1. No significnt differences were detected between control neurons and
those expressing IQGAP1 WT or D-GRD IQGAP1. Similar results were observed after ectopic expresson of D-GRD IQGAP1or D-CT IQGAP1 (not shown).
Intensity values (8-bit images) are expressed in pixels. Black = 0/White = 256. For further details see Ref. [35–37]. Values represent the mean6 S.E.M. A
least 20 dendritic segments (50 mm in length) per cell were measured for each experimental condition.
doi:10.1371/journal.pone.0056574.g006
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Arp2, NWASP, and ß-tubulin in extracts of CHO cells treated

with sh-Arp3, sh-Arp2, sh-NWASP or their corresponding

scrambled oligonucleotides. For this experiment, cultures were

transfected with the corresponding constructs and cell extracts

obtained 24 hours later.

(TIFF)

Figure S4 Short-hairpin RNAi suppression of IQGAP1.
(A) Schematic representation of the sh-IQGAP1. (B) Western blots

showing levels of IQGAP1 in extracts of CHO cells treated with

sh-IQGAP1 or its corresponding scrambled oligonucleotide (ssh-

IQGAP1). (C, D) Confocal images showing representatives images

of cells expressing sh-IQGAP1-GFP (green) double stained with

anti-IQGAP1. Note the decrease in IQGAP1 fluorescence in the

cells expressing the RNAi (arrows). (E) Quantitative measurements

of IQGAP1 fluorescence intensity in cultured hippocampal

pyramidal neurons transfected with ssh-IQGAP1 or sh-IQGAP1.

The values expressed in pixels represent the average fluorescent

intensity within the cell body, initial, middle and distal neuritic

segments. Note the significant reduction (P,0.001) in IQGAP1

fluorescent intensity in the RNAi-treated cultures. In all these

experiments, fluorescent measurements were performed using 8-

bites images.

(TIFF)

Figure S5 Cdc42 rescues the inhibitory effect of IQGAP1
suppression on spine number. (A) A dendritic segment of

a neuron expressing ssh-IQGAP1-GFP (scrambled) oligonucleo-

tide. (B) A dendritic segment of a neuron expressing sh-IQGAP1-

GFP oligonucleotide; note the decrease in spine number. (C-F)

Graphs showing the effect of IQGAP1 suppression on the number

and type of dendritic protrusions. Note that a fast cycling Cdc42

(F28L) mutant rescues the decrease in spine number observed after

IQGAP1 suppression. Bars represent mean 6 standard deviation.

(TIFF)

Table S1 A comparison of spine number and type as
determined by manual counting vs. automated methods
[42,43]. Each value is the mean 6 standard deviation. At least 10

dendritic segments (50 mm length/each) per cell (total 6 cells per

culture) from at least 3 different cultures were evaluated. Note that

both methods gave similar results.

(DOC)
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4. González-Billault C, Muñoz-Llancao P, Henriquez D, Wojnacki J, Conde C, et
al. (2012) The role of small GTPases in neuronal morphogenesis and

polarization. Cytoskeleton (Hoboken) 69: 464–485.

5. Weissbach L, Settleman L, Kalady MF, Snijders AJ, Murthy AE, et al. (1994)
Identification of a human ras GAP-related protein containing calmodulin-

binding motifs. J Biol Chem 278: 9630–9638.

6. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, et al. (2002)

Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell
109: 873–885.

7. Fukata M, Kuroda S, Fujii K, Nakamura T, Shoji I, et al. (1997) Regulation of

crosslinking of actin filaments by IQGAP1, a target of Cdc42. J Biol Chem 272:

29579–29583.

8. Briggs MW, Sacks DB (2003) IQGAP proteins are integral components of
cytoskeletal regulation. EMBO Rep 4: 571–574.

9. Wang S, Watanabe T, Noritake J, Fukata M, Yoshimura T, et al. (2007)

IQGAP3, a novel effector of rac1 and Cdc42, regulates neurite outgrowth. J Cell

Sci 120: 567–577.

10. Gao C, Frausto SF, Guedea AL, Tronson NC, Jovasevic V, et al. (2011)
IQGAP1 regulates NR2A signaling, spine density, and cognitive processes.

J Neurosci 31: 8533–8542.

11. Swiech L, Blazejczyk M, Urbanska M, Pietruszka P, Dortland BJ, et al. (2011)
CLIP-170 and IQGAP1 cooperatively regulates dendrite morphology. J Neurosci

31: 4555–4568.

12. Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of Rho-family GTPases in

cell proliferation and directional migration. Curr Op Cell Biol 15: 590–597.

13. Watanabe T, Wang S, Noritake J, Sato K, Fukata M, et al. (2004) Interaction
with IQGAP1 links APC to rac1, cdc42, and actin filaments during cell

polarization and migration. Dev Cell 7: 871–883.

14. Watanabe T, Noritake J, Kaibuchi K (2005) Roles of IQGAP1 in cell

polarization and migration. Novartis Found Symp 269: 92–101.

15. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key
regulator of adhesion and migration. J Cell Sci 118: 2985–2092.

16. Bensenor LB, Kan H-M, Wang N, Wallrabe H, Davidson LA, et al. (2006)

IQGAP1 regulates cell motility by linking growth factor signaling to actin

assembly. J Cell Sci 120: 658–669.

17. Schrick C, Fischer A, Srivastava DP, Tronson NC, Penzes P, et al. (2007) N-
cadherin regulates cytoskeletally associated IQGAP1/ERK signaling and

memory formation. Neuron 55: 786–798.

18. Brown MD, Sacks DB (2006) IQGAP1 in cellular signaling: bridging the gap.

Trends Cell Biol 16: 242–249.

19. Jausoro I, Mestres I, Remedi M, Sánchez M, Caceres A (2012) IQGAP1: A
Microtubule-microfilament scaffolding protein with roles in nerve cell de-

velopment and synaptic plasticity. Histology and Histopathology, Cellular and
Molecular Biology 27: 1385–1394.

20. Schubert V, Dotti CG (2006) Transmitting on actin: synaptic control of

dendritic architecture. J Cell Sci 120: 205–212.

21. Hotulainen P, Llano O, Smirnov S, Tanhuanpää K, Faix J, et al. (2009)
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