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This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resis-
tant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, 
as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate 
that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. 
The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens 
are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their 
mechanism of action and at obtaining new compounds with better therapeutic profile.
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Malaria is estimated to have threatened 198 million 
people in 2013 (WHO 2014). Resistance of Plasmodium 
falciparum to artemisinin derivatives (Miotto et al. 
2013, Ashley et al. 2014) and of Plasmodium vivax to 
chloroquine (CQ) (Graf et al. 2012, Marques et al. 2014) 
hinders chemotherapy-based efforts to control the dis-
ease. P. falciparum causes the most deadly form of the 
disease (WHO 2014), thus new antimalarial drugs are 
needed, especially towards CQ-resistant parasites.

The potentiality of the metal-based approach to dis-
cover new drugs has been highlighted by ferroquine, 
which proceeded to Phase IIB clinical trials as an an-
timalarial drug (Biot 2004, Biot et al. 2012a, Held et al. 
2015b). Very recently, the combination of ferroquine 
with artesunate was shown to be safe at all doses tested, 
associated with high cure rates. Therefore it represents 
a promising alternative for drug combination against P. 
falciparum malaria (Held et al. 2015b). Ferroquine is the 
only candidate in Phase II clinical trials that has a half-
life longer than 20 days, allowing for a prolonged post-
treatment prophylactic effect and diversifying the anti-
malarial portfolio (Held et al. 2015a). Experimentally, 
two other ferrocene derivatives have shown important 
antiplasmodial activity (Soares et al. 2010).

The ruthenium (Ru)-based compounds also attract 
interest due to their biological activities as anticancer 
(Pizarro et al. 2010), antibacterial (Wenzel et al. 2013), 
leishmanicidal, trypanosomicidal (Martínez et al. 2012), 
antiplasmodial (Biot et al. 2007, Glans et al. 2012), in-
cluding Ru-CQ complexes (Martínez et al. 2009, Raj-
apakse et al. 2009). Ruthenocenyl compounds were also 
described as bioprobes of ferroquine, used in an attempt 
to elucidate its molecular mechanism of action (Biot et 
al. 2012b). The use of Ru allowed to evercome the dif-
ficulty of detecting iron (Fe)-based compounds among 
the numerous Fe-containing components of the parasite 
digestive vacuole (DV) (Dubar et al. 2011, 2012).

An enhanced antiplasmodial activity has been ob-
tained by complexation with Ru in relation to the free 
ligands, providing molecules such as Ru-lapachol com-
plexes (Barbosa et al. 2014) and Ru-pyridil ester (Chellan 
et al. 2014), or ether complexes (Chellan et al. 2013), as 
well as thiosemicarbazone Ru-arene complexes (Adams 
et al. 2013). Another example of successful complexation 
of Ru with an antifungal agent (clotrimazole) has led to 
antiparasitic compounds over 50-fold more potent in re-
lation to the parental compounds (Martínez et al. 2012). 
Furthermore, the substitution of Fe by Ru in ferroquine 
led to higher anti-P. falciparum activity against K1 strain, 
another resistant parasite strain (Beagley et al. 2003).

Several ferrocenyl derivatives of tamoxifen dem-
onstrate antiproliferative activity against breast cancer 
cells (Tan et al. 2012, Cázares-Marinero et al. 2014, de 
Oliveira et al. 2014).

The present paper reports the evaluation of tamoxi-
fen-based compounds and their ferrocene and rutheno-
cene derivatives, designed as ferrocifens and ruthenoci-
fens for: (i) antiplasmodial activity against P. falciparum 
(W2 clone, CQ-resistant) blood parasites in culture, and 
(ii) cytotoxicity in vitro against HepG2 human hepatoma 
cells. This is the first report dealing with ruthenocifens 
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as antiplasmodial compounds. The synthesis of a new 
ferrocenophane is also described.

MATERIALS AND METHODS

Compounds 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, and 13 
were prepared according to literature procedures (refer-
ences are given in Table I). The synthesis of compounds 
8 is described in the present paper. Tetrahydrofuran 
(THF) was distilled over sodium/benzophenone prior to 
use. Thin layer chromatography was performed on sili-
ca gel 60 GF254. 

1H and 13C-NMR spectra were acquired 
on a Bruker 300 MHz spectrometer. Mass spectrometry 
was carried out at the Mass Spectrometry Service at Na-
tional Chemical Engineering Institute, Paris. High reso-
lution mass spectra (HRMS) were acquired in the Paris 
Institute of Molecular Chemistry (Mixed Research Unit 
8232) at the Pierre and Marie Curie University, Paris.

Measurement of lipophilicity data - Measurements 
of the octanol/water partition coefficient (log Po/w) were 
made by the HPLC technique according to a method 
described previously (Minick et al. 1988, Pomper et al. 
1990). Measurement of the chromatographic capacity 
factors (k) for each molecule was done at various con-
centrations in the range of 95-75% methanol containing 
0.25% (v/v) 1-octanol, and an aqueous phase consist-
ing of 0.15% (v/v) n-decylamine in the buffering agent 
3-morpholinopropane-1-sulfonic acid (MOPS) prepared 
in 1-octanol saturated water adjusted to pH 7.4. These ca-
pacity factors (k’) are extrapolated to 100% of the aque-
ous component given the value of k’. The log Po/w is ob-
tained by the formula log Po/w = 0.13418 + 0.98452 log k’.

Synthesis of 1-[(4-(3-dimethylaminopropoxy)phenyl-
phenyl)methylidene][3]ferrocenophane, 8 - Titanium 
chloride (10.04 g, 5.8 mL, 52.9 mmol) was added drop-
wise to a suspension of zinc powder (4.84 g, 74 mmol) in 
dry THF (400 mL) at 10-20ºC. The mixture was heated 
at reflux for 2 h. A second solution was prepared by 
dissolving [3]ferrocenophan-1-one (2.54 g, 10.6 mmol) 
and 4-(3-dimethylaminopropoxy)benzophenone (3 g, 
10.6 mmol) in dry THF (25 mL). This latter solution 
was added, dropwise, to the first solution and then the 
reflux was continued for 4 h. After cooling to room 
temperature, the mixture was stirred with water and di-
chloromethane. The mixture was acidified with diluted 
hydrochloric acid until dark colour disappeared, then, 
sodium hydrogenocarbonate was added to maintain a 
pH close to neutral and the mixture was decanted. The 
aqueous layer was extracted with dichloromethane and 
the combination of organic layers was dried on magne-
sium sulphate. After concentration under reduced pres-
sure, the crude product was chromatographed on silica 
gel column with acetone as the eluent, then was puri-
fied by semi-preparative HPLC [Shimadzu apparatus 
with a Nucleodur C18 column (l = 25 cm, 1 = 3.2 cm, 
particle size = 10 mm] with a solution of methanol/tri-
ethylamine 95/5, as the eluent, giving an undetermined 
2/1 ratio of Z and E isomers. Compound 8 (yield of 84%) 
was re-crystallised from diethyl ether and was obtained 
as a bright yellow product as an undetermined 4/1 ra-
tio of E and Z isomers. 1H NMR (CDCl3, 300 MHz): δ 

1.82-2.04 (m, 2H, CH2), 2.23 and 2.27 (s, 6H, NMe2), 
2.31-2.53 (m, 4H, CH2N+CH2 cycle), 2.60-2.68 and 
2.68-2.75 (m, 2H, CH2 cycle), 3.90 (t, J = 6.4 Hz, 2H, 
CH2O major isomer), 3.94-4.07 (m, 10H, CH2O minor 
isomer+C5H4 major and minor isomers), 4.21 (t, J = 1.8 
Hz, 2H, C5H4 major isomer), 6.61 and 6.88 (d, J = 8.8 Hz, 
2H, C6H4), 6.94 and 7.14 (d, J = 8.8 Hz, 2H, C6H4), 7.02-
7.10 (m, 1H, C6H5), 7.20-7.39 (m, 4H, C6H5). 

13C NMR 
(CDCl3, 75.4 MHz): δ 27.4 and 27.5 (CH2), 28.7 (CH2), 
40.9 (CH2), 45.3 (2CH3 NMe2), 56.4 (CH2), 65.9 and 66.1 
(CH2O), 68.2 (2CH C5H4), 68.5 and 68.7 (2CH C5H4), 
70.2 (2CH C5H4), 70.3 (2CH C5H4), 83.7 (Cip), 86.7 and 
86.8 (Cip), 113.2 and 114.0 (2CH C6H4), 125.9 and 126.6 
(CH C6H5), 127.2 and 128.1 (2CHarom), 129.3 and 130.4 
(2CHarom), 130.6 and 131.6 (2CHarom), 133.6 and 134.3 
(C), 135.5 and 135.9 (C), 140.5 and 140.6 (C), 143.4 and 
143.8 (C), 157.1 and 157.7 (C). MS (EI, 70 eV) m/z: 491 
[M]+, 405 [M-NMe2CH2CH2]

+, 86 [NMe2CH2CH2]
+, 58 

[NMe2CH2]
+. HRMS (ESI, C31H34FeNO: [M+H]+) calcu-

lated: 492.1990, found: 492.1998.
Cytotoxicity tests with HepG2 human hepatoma 

cells and monkey kidney (BGM) cell lines - Cytotoxic-
ity tests were performed with HepG2 human hepatoma 
cells or normal BGM cell lines using 3-(4,5-dimethyl-
thiazol-2-yl)-2,5 diphenyltetrazolium bromide (Molecu-
lar Probes, USA) (Denizot & Lang 1986) or neutral red 
(Borenfreund et al. 1987) methods. The minimum lethal 
dose for 50% of the cells (MLD50) was determined (de 
Madureira et al. 2002) by a curve-fitting software (Micro-
cal Origin Software v.5.0; Origin Lab Co, USA) and fur-
ther used to calculate the selectivity index (SI) of the ac-
tive compounds [SI = MDL50/inhibitory concentration for 
50% (IC50)] (Bézivin et al. 2003). The SI was calculated in 
order to give an insight into the therapeutic index of the 
molecules, i.e., how far the toxic concentration is from the 
therapeutic one. Molecules having MLD50 > 500 mM were 
considered not toxic, if between 500-100 mM moderately 
toxic, and those having MLD50 < 100 mM were considered 
toxic. Molecules with SI ≤ 10 were also considered toxic.

Continuous culture of P. falciparum and in vitro tests 
of drug activity - Blood-stage P. falciparum parasites, W2 
clone CQ-resistant (Oduola et al. 1988), maintained ac-
cording to Trager & Jensen (1976), were used in the drug 
activity tests after sorbitol-synchronisation (Lambros & 
Vanderberg 1979). The antiplasmodial activity of the com-
pounds was determined relative to control parasites kept 
in culture medium only (Rieckmann et al. 1978) through 
the anti-histidine-rich protein II assay (Noedl et al. 2002). 
The IC50 of parasite growth was determined through 
sigmoidal dose-response curves built by curve-fitting 
software (Microcal Origin Software v.5.0). Compounds 
exhibiting IC50 values lower than 6 mM were considered 
active, those with IC50 between 20-60 mM partially active, 
and those higher than 60 mM, inactive.

RESULTS

The compounds evaluated in this work belong to five 
structural classes and their reported biological activities 
and some physicochemical parameters are listed in Table 
I. They are classified as: organic tamoxifen-like com-
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pounds in series A (1, 2), compounds having a ferrocenyl 
substituent in series B (3-6), a [3]ferrocenophane sub-
stituent (7, 8) in series C, two ferrocenyl groups (9, 10) in 
series D, and the ruthenocenes (11-13) in series E. Sub-
stitutions on the phenyl rings include hydroxyl, acetoxy, 
pivaloxy, and/or dimethylaminopropoxy groups.

Log P values were determined for the first time in 
this paper, for compounds 6, 7, and 8, being: 5.66, 6.11, 
and 3.46, respectively. All log P values are higher than 
4 (except for compound 8, whose log P was 3.46), point-
ing to a lipophilic trend of the compounds. They can be 
ranked in a general fashion as follows (in decreasing or-
der): diferrocenyl derivatives > ruthenocenes > tamox-
ifen-like derivatives > ferrocifens, intermixed with the 
more lipophilic compound 3 (log P = 6.43), and the more 
hydrophilic one, compound 8 (log P = 3.46).

Most of the compounds were synthesised using a 
McMurry cross-coupling reaction (1, 3, 7, 8, 9, 10, 11, 
12, 13), or by functionalisation of a phenolic compound 
that were synthesised by this method (2, 4, 5, and 6) 
(Figure). Synthesis had been performed as previously 
reported for all compound classes summarised in Table 
I, except for compound 8, prepared using a McMurry 
reaction between the [3]ferrocenophan-1-one (Turbitt & 
Watts 1972), and the 4-(3-dimethylaminopropoxy)ben-
zophenone (Top et al. 2002), yielding 84%.

Among the 13 tested compounds, six were active 
against P. falciparum CQ-resistant parasites based on the 
IC50 values (Table II). The most active compounds (2 and 
4) showed IC50 below 6, followed by compounds 8, 12, 13, 

with IC50 values below 6 mM; compounds 3 and 11 were 
partially active (IC50 values around 16.6 mM), and com-
pounds 1 and 7, with IC50 values above 60 mM, were con-
sidered inactive. These results show a special effect of the 
dimethylaminopropoxy chain, since the compounds bear-
ing it (2, 4, and 8) ranked the first three places of activity.

Regarding the in vitro cytotoxicity tests against 
HepG2 cells, compounds 1, 7, and 11 exhibited MLD50 
value up to 3,516 mM, compounds 3, 12, and 13, MLD50 
values ranging from 479-266.2 ± 3 mM, being considered 
nontoxic and moderately toxic, respectively. Remaining 
compounds (2, 4, 5, 6, 8, 9, and 10) were considered toxic 
(MLD50 values below 100 mM), especially compounds 2 
and 4, with MLD50 values below 10 mM.

The compounds were ranked in relation to their SI 
(Table II, column 5) as: 11 > 12 > 13 > 1 > 7 > 3. The 
other compounds exhibited low SI due to their high tox-
icity towards HepG2 cells.

DISCUSSION

Based on the present and published data (Soares et 
al. 2010), some interesting trends emerge. The presence 
of the dimethylaminopropoxy side-chain increases an-
tiplasmodial activity, with IC50 values to around 2.2 ± 
0.05 mM (for 2) and 0.7 ± 0.1 mM (for 4), and also their 
cytotoxicity, in comparison to 1 and 3, respectively. In 
addition, we have shown that hydroxy moieties in para 
position, or biologically hydrolysable ester groups, as in 
6 (Heilmann et al. 2008, Görmen et al. 2010a), also in-
crease the cytotoxicity (Hillard et al. 2007). For this rea-
son, compound 8 bearing only a dimethylaminopropoxy 
chain has lower cytotoxicity than 2 and 4. Compounds 
having no substituent on the phenyl moieties had the low-
est activities on HepG2 cells (1, 7, 3, and 11). The pres-
ence of the ferrocenyl group increases more than three 
times the antiplasmodial activity (1 vs. 3, and 2 vs. 4) 
(Table II). The toxicity also increased, thus diminishing 
the SI to undesirable values, as observed previously with 
cancer cell lines (de Oliveira et al. 2011). The compounds 
4, 6, 9, and 10 become too toxic for P. falciparum. By 
contrast, ferrocenophane compounds 7 and 8 appear to 
be less toxic (SI = 41 and 18, respectively).

Interestingly, SI of ruthenocene compounds are better 
than that of ferrocene compounds. The IC50 value for 11 
(16.5 ± 0.5 mM) is similar to that of 3 (16.6 ± 2.3 mM). By 
contrast, MLD50 values for these two compounds are very 
different, 2248 ± 53 mM vs. 479 ± 89 mM. The presence 
of a phenol moiety in the ruthenocifen series increases not 
only the antiplasmodial, but also the cytotoxic activity 
(compound 12 and 13). Compound 11 appears to have the 
best profile, with SI > 100. Low cytotoxicity of rutheno-
cenyl compounds, as compared to ferrocenyl compounds, 
was also observed for breast cancer cells (Gobec et al. 
2014, Lee et al. 2015). Concerning different activities be-
tween ferrocenyl and ruthenocenyl compounds, it may 
well be due to their selective cytotoxicity. A recent work 
dealing with some of the molecules presented herein (Lee 
et al. 2015) attributed this differential cytotoxicity to the 
solubility and stability of the quinone-methide (QM) moi-
eties formed after oxidation, as well as the rapidity of this 
process (ferrocenes form QM faster than ruthenocenes, 
whose phenoxy radicals are not turned into QM moieties 

General scheme for the synthesis of compounds of series A (A), C (B), 
represented by the synthesis of the new compound 8, and E (C). The 
same procedure was used for the other series with adequate precursors.
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rapidly). The nature of the metallocene, which include re-
dox properties and acidity of the phenolic proton of the 
radical cations also play a role. Ruthenocenic derivatives 
of peptide nucleic acids were also shown to be less toxic 
than the ferrocenic ones, which can be due to the higher 
chemical and oxidative stability of ruthenocene, in rela-
tion to ferrocene (Swarts et al. 2009).

Despite the use of few compounds for comparison 
in this work (1 vs. 3 vs. 11; 2 vs. 4) and the absence of 
mechanistic studies, due to the extreme complexity of 
inherent possible events related to metal complexes 
(Gasser et al. 2011, Coogan et al. 2012), it is possible to 
suggest that the presence of redox-active metal centres 
increases the biological activity. Drug lipophilicity fa-
cilitates membrane permeability, providing accumula-
tion of drug in the resistant parasite DV. This is possibly 
the cause for the increase of efficacy of organometallic 
compounds (Martínez et al. 2009, Rajapakse et al. 2009, 
Dubar et al. 2011, 2012, Glans et al. 2012).

In fact, log P values reported for the metallocenes 
presented herein suggest that these molecules can cross 
cell membranes readily. Within each series, there is no 
significant difference among the two metals (Ru, Fe) 
and the lipophilicity decreases in the order monophe-
nol > diphenol > tamoxifen-like compounds. This is the 
trend expected for the addition of an hydroxyl group or 
an amino chain, the latter responsible for a stronger de-
crease (Lee et al. 2015).

Concerning specifically the structural classes of the 
present studied compounds toward cancer cells, electro-
chemical and biochemical studies (Pigeon et al. 2005, Hill-
ard et al. 2007, Nguyen et al. 2007) pointed to the involve-

ment of oxidative formation of cytotoxic quinone-type 
metabolites in the activity of many ferrocifens, inactivat-
ing proteins, or increasing oxidative stress in cells, leading 
to cells death (Nguyen et al. 2007, Hamels et al. 2009, Lee 
et al. 2014, 2015). Thus, the generation of reactive oxygen 
species may represent a mode of action against P. falci-
parum, as observed for other tamoxifen-like molecules 
bearing ferrocene moiety (Soares et al. 2010).

Some Ru complexes were shown to be kinase inhibi-
tors (Debreczeni et al. 2006). They also inhibited thio-
redoxin reductase (Casini et al. 2008) which is an im-
portant system responsible for redox homeostasis in P. 
falciparum (Kanzok et al. 2000). Indeed, a recent study 
showed that ferrocenyl derivatives of tamoxifen, includ-
ing some of those studied herein, targeted thioredoxin 
reductases of cancer cells (Citta et al. 2014).

Falcipain-2, a cystein protease involved in haemoglo-
bin degradation in P. falciparum (Chugh et al. 2013), is 
also a likely target for compound 11, since cystein prote-
ases are amenable to be attacked by metals (Fricker 2010).

Other potential targets for ruthenocenic compounds 
include DNA and parasite proteins (Gambino & Otero 
2012), as shown for tumour cells (Brabec & Nováková 
2006, Casini et al. 2008). Indeed, Ru-arene complexes 
have been designed to interact with DNA by intercalation 
and methylation (Aird et al. 2002). Despite no DNA-in-
teraction studies were performed with the ruthenocifens 
presented herein, a recent report (de Oliveira et al. 2014) 
proved, by performing differential pulse voltammetry and 
spectrophotometric analysis, the interaction of compound 
3 with double-stranded DNA and single-stranded DNA.

TABLE II
Selectivity indexes (SI), the ratio between in vitro cytotoxicity [minimum lethal dose for 50% of the cells (MLD50)]  

and activity [inhibitory concentration for 50% (IC50), mM] against Plasmodium falciparum (Pf)  
of tamoxifen-like compounds and metallic derivatives

Compounds/
series

Structural 
class

MLD50
HepG2a

IC50
Pf

SI
(MLD50/IC50)

1/A Tamoxifen-like > 3516 83 ± 5 42
2/A < 10 2.2 ± 0.05 Toxic
3/B Ferrocifene 479 ± 89 16.6 ± 2.3 29
4/B < 7.7 0.7 ± 0.1 Toxic
5/B < 61 23.6 ± 9.8 Toxic
6/B < 61 23.6 ± 5.9 Toxic
7/C [3]ferrocenophane > 2562 62.8 ± 10.7 41
8/C < 63 5.9 ± 1.6 18
9/D Di-ferrocenyl derivative < 60 27.1 ± 23.2 Toxic
10/D < 60 7.8 ± 1.6 Toxic
11/E Ruthenocene 2248 ± 53 16.5 ± 0.5 136
12/E 251 ± 34 4.7 ± 1.3 53
13/E 266 ± 3 5.9 ± 2.3 45
CQ Quinoline 502 ± 52 0.1 ± 0.02 5,020

a: except for compounds 12 and 13, which were tested for cytotoxicity against normal monkey kidney cells using the neutral red 
method; CQ: chloroquine.
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In conclusion, along with describing the synthesis of 
a new ferrocenophane, this work represents an additional 
evidence for the metal-complex approach enhancing the 
antiplasmodial activity, with emphasis to ruthenocifens, 
for the first time assayed against resistant P. falciparum 
parasites, showing the best therapeutic potential. Several 
possible modes of action are discussed, by comparison 
with the literature. A further structural optimisation 
is required in order to evaluate a larger library of such 
compounds, which is under way, together with investi-
gation of the mechanism of action, based on the bioprobe 
potential use of Ru derivatives.
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