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Simple Summary: Despite immune checkpoint inhibitors’ (ICIs) improved overall survival in urothe-
lial carcinoma patients, only a minority of them benefit from immunotherapy. Therefore, there is
an unmet clinical need to identify biomarkers which are useful to select the patients who are most
likely to respond to ICIs. This review describes the prognostic and predictive role, and potential
clinical applicability, of patient- and tumour-related factors. These factors include new molecular
classes, tumour mutational burden, mutational signatures, circulating tumour DNA, programmed
death-ligand 1, inflammatory indices and clinical characteristics. This summary may help clinicians
to assess patients who are considered for ICI treatment, and may drive further prospective research
on these biomarkers.

Abstract: In recent years, the treatment landscape of urothelial carcinoma has significantly changed
due to the introduction of immune checkpoint inhibitors (ICIs), which are the standard of care for
second-line treatment and first-line platinum-ineligible patients with advanced disease. Despite
the overall survival improvement, only a minority of patients benefit from this immunotherapy.
Therefore, there is an unmet need to identify prognostic and predictive biomarkers or models to
select patients who will benefit from ICIs, especially in view of novel therapeutic agents. This review
describes the prognostic and predictive role, and clinical readiness, of clinical and tumour factors,
including new molecular classes, tumour mutational burden, mutational signatures, circulating
tumour DNA, programmed death-ligand 1, inflammatory indices and clinical characteristics for
patients with urothelial cancer treated with ICIs. A classification of these factors according to the levels
of evidence and grades of recommendation currently indicates both a prognostic and predictive value
for ctDNA and a prognostic relevance only for concomitant medications and patients’ characteristics.
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1. Introduction

Worldwide, urothelial carcinoma (UC) represents the seventh most common cancer
and the ninth most deadly tumour, with about 212,000 related deaths [1].

For a long time, the only effective treatment of metastatic UC (mUC) was platinum-
based chemotherapy, which is still the standard of care in the first-line setting [2]. In recent
years, the treatment landscape of mUC has been changed profoundly by the introduction of
immune-checkpoint inhibitors (ICIs) [3] and, even more recently, antibody–drug conjugates
(anti-nectin 4 and anti-Trop2) [4] and FGFR inhibitors [5].

Since 2016, the U.S. Food and Drug Administration (FDA) has approved two mono-
clonal antibodies targeting PD-1 (nivolumab and pembrolizumab) and three antibodies
targeting PD-L1 (atezolizumab, avelumab, and durvalumab) for mUC [6].

The introduction of these new drugs urges the identification of potential biomarkers
which are able to select the patients most likely to respond to immunotherapy. Promising
prognostic and predictive factors in patients with mUC treated with ICIs include clinical
features, new tumour molecular classes, the tumour mutational burden (TMB), mutational
signatures, circulating tumour DNA (ctDNA) and programmed death-ligand 1 (PD-L1).
Despite the increasing number of biomarkers under investigation, these factors still need
validation for their application in clinical practice.

In this review, we summarize the landscape of clinical, molecular and genomic deter-
minants of the prognosis and response to ICIs in patients with mUC. A classification of
these factors by their prognostic and predictive value according to levels of evidence and
grades of recommendation [7] based on the available evidence has been attempted.

2. Molecular Factors
2.1. Molecular Classes

Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease characterized by
genomic instability and a high mutation rate [8]. In this scenario, transcriptome profiling
may be helpful with the classification of UC into molecular subtypes in order to stratify
the prognosis more precisely and drive more effective therapeutic choices. Indeed, the
assumption for a molecular tumour classification is the understanding of cancer biology by
identifying the specific genomic alterations of which the molecular subtypes are enriched,
and which could be clinically significant as prognostic and druggable [9].

Several molecular classifications have been attempted for UC, advancing our knowl-
edge about its biology [9]. The response to chemotherapy and immunotherapy may be
enriched in specific MIBC subtypes [10–13]. However, the diversity of their subtype sets,
so far, has impeded their clinical application.

Based on the transcriptomic profiles of 1750 MIBCs from 16 published datasets, two
additional cohorts, and a network-based analysis of six independent MIBC classification
systems, a consensus set of six molecular classes has been identified by a single-sample
transcriptomic classifier [9]. The six molecular classes included: the basal/squamous class
(Ba/Sq), accounting for 35% of all MIBC; the luminal/papillary class (LumP), accounting
for 24%; the luminal unstable class (LumU), accounting for 15%; the stroma-rich class,
accounting for 15%; the luminal non-specified class (LumNS), accounting for 8%; and the
neuroendocrine (NE)-like class, accounting for 3% [9].

An association of some of these classes with The Cancer Genome Atlas (TCGA)
PanCancer clusters has been observed between the Ba/Sq and the Squamous cell carcinoma
(C27: Pan-SCC pan-cancer cluster) (p < 0.001), and the stroma-rich class with the stroma-
driven class (C20: Mixed stromal/immune) (p < 0.001) [9].
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The six molecular classes differ by their underlying oncogenic mechanisms, infiltra-
tion by immune and stromal cells, histological and clinical characteristics, and
survival outcomes.

Regarding their prognostic value, based on 872 patients, and taking the LumP class as
the reference for class-based survival, the LumNS (hazard ratio [HR] 1.07, 95% confidence
interval [CI] 0.63–1.82) and stroma-rich classes (HR 0.98, 95% CI 0.65–1.49) showed a
similar prognosis to the LumP class; the LumU class did not have significantly inferior
overall survival (OS) (HR 1.49, 95% CI 0.93–2.39), the Ba/Sq class had a significantly poorer
prognosis (HR 1.83, 95% CI 1.30–2.58, p < 0.001), and the NE-like class had the worst
prognosis (HR 2.34, 95% CI 1.09–5.05, p < 0.03) [9].

In addition to common urothelial differentiation signatures, like the PPARG/GATA3/
FOXA1-related Lund urothelial ones, the luminal classes may selectively bear gene al-
terations which are potentially relevant as drug targets, such as the FGFR3 in the LumP,
and the TP53, high TMB and ERCC2—which are related to higher cell cycle activity and
genomic instability—in the LumU. Similarly, the Ba/Sq was enriched in cytotoxic lympho-
cytes (CTL) and NK, alongside EGFR mutations, the Stroma-rich in T- and B-Cells, and the
NE-like in TP53 and RB1 alterations [9].

Concerning treatment responses, an enrichment in responders to atezolizumab was
observed among LumNS, LumU and NE-like [9]. However, previous discordant results
from the TCGA and different ICIs [11,14] indicate the need for prospective validation.

The molecular classification might be used for prognostication to assist treatment
evaluation, and, at the same time, for a more productive collection of clinical information.
However, prospective validation is warranted because the use of such classification is only
supported by retrospective clinical data lacking the complete patients’ treatment history.
Furthermore, it might represent a robust framework enabling the testing and validation of
predictive biomarkers in future prospective clinical trials, including basket trials, based on
similarities with other cancer molecular subtypes according to the PanCancer Atlas, such
as the Ba/Sq and Lum.

On the other hand, an integrative multi-omics analysis has recently been performed to
better characterize Non-Invasive Muscle Bladder Cancer (NIMBC) [15]. In this study, the
authors identified four molecular classes reflecting the behaviour and aggressiveness of
UC, driving the implementation of biomarkers with predictive and prognostic value [15].

The genomic landscape of NMIBC showed complex genomic patterns, with activating
mutations in FGFR3 and PIK3CA, such as chromosome 9 deletions in early disease [16,17].
The NMIBCs were also subdivided into different progression risk groups based on muta-
tions in FGFR3, the methylation of GATA2 and copy number alterations (CNAs). All of
these data could provide new molecular therapeutic targets [16,17].

2.2. Tumour Mutational Burden (TMB)

TMB can be defined as the total number of non-synonymous mutations per coding
area of a tumour genome [18]. These mutations can be transcribed and translated to
generate neoantigens displayed on the cell surface; T-lymphocytes can recognise some of
these neoantigens and promote the apoptosis of tumour cells [18]. Tumours with a high
mutational load are more likely to express neoantigens, and to induce a strong immune
reaction [19]. Several studies have demonstrated an association between a high TMB and
the response to immunotherapy in different locally advanced or metastatic solid tumour
types [20].

In June 2020, the FDA approved pembrolizumab for the treatment of adult and paedi-
atric patients with unresectable or metastatic solid cancers and a high TMB [>10 mutations/
megabase (mut/Mb)] [21]. This approval was based on the efficacy data from the phase
II KEYNOTE-158 trial, which demonstrated an association between a high TMB and the
tumour response to immunotherapy, with a durable response (>2 years) rarely being
observed in heavily pre-treated metastatic cancers [22].
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UC, along with melanoma and lung cancer, is characterized by a high number of
somatic mutations and, therefore, a significant genomic instability [8]. The exploratory
analyses of the phase II IMvigor210 trial included the quantification of the mutational load
and a correlation with the clinical outcomes [23]. As expected, the TMB was significantly
higher in patients who responded to atezolizumab than in non-responders. Moreover,
patients with a higher mutational load had significantly longer overall survival than
patients with a lower load [23].

However, the TMB status alone was not able to stratify the patients according to the
survival benefit. In this regard, exploratory analyses of the JAVELIN Bladder 100 trial
demonstrated that some DNA mutational signatures, involving certain base pair alterations,
were associated with a survival benefit from avelumab, while other mutations were not [24].
This suggests that the type and the location of mutations may influence the predictive role
of TMB assessment more accurately than the degree of the mutational load.

The predictive value of TMB for the pathological response to immunotherapy has also
been explored in the neoadjuvant setting [25,26]. In patients with MIBC, a high TMB was
generally observed in responders versus non-responders to neoadjuvant pembrolizumab,
irrespective of the histological subtypes [27].

The predictive role of combining TMB with PD-L1 was also investigated. Patients with
high TMB and PD-L1-positive tumours were more likely to derive a survival benefit from
avelumab maintenance therapy [24]. Similar findings were observed in the randomised
phase III IMvigor130 study [28]. The association of high PD-L-1 (>5% of immune cells)
and a high TMB (>10 mut/MB) was associated with improved OS in the atezolizumab
monotherapy arm, as compared to the chemotherapy arm [28]. Nevertheless, similar out-
comes were not seen with the combination of atezolizumab and chemotherapy compared
to the chemotherapy alone, suggesting a potentially distinct biology driving the benefit
from atezolizumab and its combination with chemotherapy, and eventually highlighting
the predictive inconsistency of this biomarker combination [28].

As for other tumour types, many factors hinder the clinical application of TMB as a
biomarker, including the variability and the lack of a validated cut-off, a clear prognostic
value, the differences related to the sequencing platforms used for its assessment, and the
high scoring failure rate due to the quantity and quality of tumour tissue analysed [29]. As
an example for the mUC, in the IMvigor210 study, the cut-off of the TMB varied between
the two different cohorts of cisplatin-ineligible mUC treated with first-line atezolizumab
and the platinum-treated patients [23]. Moreover, a high tumour mutational load may not
be a specific biomarker for immunotherapy, as it has also been associated with the tumour
response to neoadjuvant chemotherapy [30,31].

2.3. Mulecular Signatures

The increasing interest in tumour molecular features and new omics technologies has
led to the discovery of different molecular signatures. These involve genes, messenger
ribonucleic acids (mRNAs) and proteins which are studied as biomarkers to better predict
clinical outcomes, or to better understand the cancerogenesis process [32,33].

Furthermore, because the TMB and/or the PD-L1 expression did not precisely identify
patients who were more likely to derive benefit from immunotherapy [34,35], the assess-
ment of tumour-related or immune-related gene signatures was actively investigated.

The DNA and RNA sequencing analyses of the IMvigor130 trial investigated the
apolipoprotein B editing catalytic polypeptide (APOBEC) signature [28]. The APOBEC
enzymes are a family of cytidine deaminases involved in the DNA repair processes, and are
responsible for a mutation signature (TCW > T/G) frequently observed in MIBCs [36,37].
Patients with a high APOBEC mutational signature had a longer survival, whether in
the atezolizumab monotherapy or the combination arm with chemotherapy compared
to chemotherapy alone, whereas a high TGFβ signature predicted a worse OS with the
immunotherapy alone [28].
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RNA-based immune-gene expression profiling has the advantage of providing in-
formation from many cancer cells and immune cells, identifying more accurately the
inflammatory status. The Checkmate-275 study investigated an interferon-gamma (IFN-γ)
expression signature, and found a significant correlation with the response to nivolumab
in the metastatic setting [38].

At the ESMO 2020 meeting, an exploratory analysis of the Javelin Bladder 100 study on
tumour biomarkers was presented. While neither PD-L1 and TMB alone nor in combination
predicted the response to immunotherapy and survival benefit, the expression of the
immune-related genes of both the innate and adaptive immune system (i.e., CD8, IFNG,
LAG3, TIGIT and CXCL9) and the number of alleles encoding high-affinity Fc gamma
receptor variants predicted the survival benefit from avelumab first-line maintenance [24].
The application of the T-cell-inflamed and JAVELIN-Immuno signatures seemed to correlate
with the treatment response with HRs of 0.55 and 0.49, respectively. Furthermore, the
JAVELIN-Immuno high signature showed enrichment in some signalling pathways (Notch,
Hedgehog, TGFbeta) which were likely to have an increased antitumour response to
immunotherapy [24].

In the PURE-01 study, investigating the efficacy of pembrolizumab as a neoadjuvant
therapy, a T-cell-inflamed signature was able to identify those patients who achieved patho-
logical T0 downstaging. In a subsequent analysis, other RNA-based immune signatures
were evaluated for their association with pCR and a high Immune190 signature, as well
as hallmark signatures for interferon gamma and interferon-alpha, which were signifi-
cantly associated with pCR and progression-free survival (PFS) after pembrolizumab in the
PURE01 study [27]. Similarly, a correlation between the tumour response to atezolizumab
and the transcriptional signature of eight genes (IFNG, CXCL9, CD8A, GZMA, GZMB,
CXCL10, PRF1 and TBX21) representing interferon signalling, and the presence of CD8+
effector T cells, namely the tGE8, was reported within the ABACUS neoadjuvant study [39].

Moreover, a strong immune-mediated adaptive resistance was observed in non-
responding tumours, suggesting the investigation of ICI combinations to counteract the
expression of negative regulators of the immune response [40].

The BISCAY study combined durvalumab (anti-PD-L1) with different targeted thera-
pies depending on tumour gene alterations determined by NGS [41]. Despite the overall
negative results, this study suggested a negative predictive role for the FGFR expression
with regards to immunotherapy. In fact, FGFR-mutated tumours did not have a high
expression of immune-active T-cell signatures, and the addition of durvalumab did not
result in enhanced activity from the targeting agent only [9,41].

Although the above data look promising, there is a need to standardize molecular
assays and find a molecular panel which is applicable to daily clinical practice.

2.4. ctDNA

The sequencing of the tumour fraction of the cell-free DNA (ctDNA) is an emerging
and sensitive method to detect residual disease, anticipate relapse, and monitor the ther-
apeutic efficacy in patients with several cancer types [42,43]. Furthermore, it provides a
basis for clinical studies evaluating early therapeutic interventions [42,43].

In UCs, proof-of-concept data documented that ctDNA is detectable in plasma and
urine, and could be a prognostic factor [44,45].

Vandekerkhove et al. demonstrated that ctDNA profiling may also identify putative
biomarkers for therapy response in bladder cancer (such as FGFR3, ERCC2, ERBB2 and
TMB), and represents a cost-effective and minimally invasive method for their identification
and patient stratification [46]. Furthermore, the serial monitoring of ctDNA can optimize
the use of therapies, as ctDNA fractions are expected to decrease in patients responding to
treatment [46].

In a longitudinal analysis, the presence of ctDNA—assessed by whole-exome sequenc-
ing (WES) in 68 patients with localised advanced bladder cancer at diagnosis—during
chemotherapy, before and after cystectomy and during surveillance, resulted in being
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highly prognostic at diagnosis (HR 29.1) [47]. The presence of ctDNA identified all of
the patients with metastatic relapse (with 100% sensitivity and 98% specificity), with a
median of 96 days of diagnostic anticipation compared to the radiographic imaging [47].
Furthermore, the dynamics of ctDNA during chemotherapy, for those patients with posi-
tive ctDNA before or during the treatment, were associated with disease recurrence. It is
worth noting that pathological downstaging, including related mutational signatures, was
not associated with disease recurrence [47].

A post-surgical ctDNA detection was also associated with a higher risk for recurrence
and death in the randomised phase III IMvigor010 study with adjuvant atezolizumab ver-
sus observation following cystectomy for patients with MIBC [48]. Moreover, the presence
of ctDNA was predictive, as it was able to identify the patients who were likely to benefit
from adjuvant atezolizumab. The IMvigor010 study did not meet his primary endpoint
of disease-free survival (DFS) in the overall population of 809 enrolled patients [48]. The
ctDNA was assessed by WES at a median of 11 weeks post-cystectomy in 581 patients with
evaluable samples, comprising 72% of the intent-to-treat population of the IMvigor010
study. While the detection of ctDNA (in 214 patients, 37%) was associated with worse DFS
and OS compared to the absence of ctDNA (in 367 patients, 63%), a significant difference in
DFS (HR 0.58, 95% CI 0.43–0.79) and OS (0.59, 95% CI 0.41–0.86, p = 0.0059) was observed
in favour of the patients with detectable ctDNA treated with atezolizumab compared to
the observational arm. Furthermore, in patients with the presence of ctDNA, the rate of
ctDNA clearance from cycle 1 to cycle 3 was significantly higher in the atezolizumab arm
versus the observational one, with ctDNA clearance rates of 18.2% and 3.8%, respectively
(p = 0.0048) [48].

2.5. Programmed Death Ligand-1 (PD-L1)

In the first-line treatment of mUC, a high PD-L1 combined positive score (CPS) of
≥10%, defined as the percentage of tumour cells (TC) and immune cells (IC)/the total
tumour cells given by the 22C3 Dako assay, was associated with a prolonged median
OS (mOS) in patients ineligible for cisplatin treatment with first-line pembrolizumab in
the single-arm phase II KEYNOTE 052 study. The mOS was 18.3 versus 9 months in
patients with PD-L1 CPS ≥ 10% and <10%, respectively, and it was 11.3 months in the
overall population [49]. As the KEYNOTE 052 was not a controlled phase III study, a
favourable prognostic value only for the high PD-L1 expression could not be rule out.
Indeed, in the following KEYNOTE 361, IMvigor130 and Danube phase III randomised
trials, the anti-PD1/PD-L1 agents either alone or in combination with chemotherapy were
not superior to the chemotherapy according to OS in patients with high PD-L1 tumours,
as well as in the overall population [50–52]. Only in the Danube trial did the combination
of the anti-PD-L1 inhibitor durvalumab and anti-CTLA4 tremelimumab show a superior
OS compared to chemotherapy in patients with high PD-L1. Therefore, the predictive
value of high PD-L1 remains uncertain [52]. In contrast, a decreased survival with first-line
pembrolizumab or atezolizumab compared to platinum-based chemotherapy was reported
by the KEYNOTE 361 and IMvigor130 phase III trials for patients with low PD-L1 tumour
expression, suggesting a negative predictive value for low PD-L1 expression [50,51]. A
low PD-L1 expression was defined in the KEYNOTE 361 and IMvigor130 studies as a
CPS < 10% or positive IC < 5% by the immunohistochemistry (IHC) 22C3 pharmDx and
SP142 Ventana assays, respectively [50,51].

In the maintenance setting of mUC, following first-line chemotherapy, the Javelin-100
phase III trial showed an advantage in OS from the anti-PD-L1 avelumab compared to the
best supportive care irrespective of the positive PD-L1 expression, which was assessed by a
SP263 Ventana assay and classified as positive if at least one of the following three criteria
were met: at least 25% TC staining for PD-L1, at least 25% IC staining for PD-L1 if more
than 1% of the tumour area contained IC, or 100% ICs staining for PD-L1 if no more than
1% of the tumour area contained ICs [53].
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In the adjuvant setting of UC, the IMvigor 010 with the anti-PD-L1 atezolizumab
did not show a significant advantage in DFS compared to observation either in patients
with positive PD-L1 tumours IC according to the SP142 Ventana assay, or in the overall
population [54], while the Checkmate274 showed a significant DFS advantage in favour
of nivolumab versus observation in the intention-to-treat population with a better HR in
patients with a PD-L1 expression ≥ 1% (HR 0.55 vs. 0.70 for the overall population), as
assessed on TC by a PD-L1 IHC 28-8 pharmDx assay [55].

In the second-line of mUC, in the IMvigor 211 phase III study with anti-PD-L1 ate-
zolizumab compared to chemotherapy, the OS was not significantly different in patients
with a high PD-L1 defined by IC 2/3 (or ≥5%/10% of PD-L1 positive IC according to a
SP142 Ventana assay) [56]. In contrast, in the KEYNOTE 045 study, a significant difference
in OS was observed in favour of the anti-PD-1 pembrolizumab versus chemotherapy in
patients with high PD-L1 tumours defined as CPS according the 22C3 Dako assay [57].
Although possible differences in efficacy between the anti-PD1 and anti-PD-L1 agents
cannot completely be ruled out [58], plausible explanations may rely on the different
tests and scores used to assess the PD-L1 expression, as well as on the tumoural site and
timing of the biopsy in respect to the disease history. In this regard, it is noteworthy
that the mOS duration in the high PD-L1 subgroup of patients differed between those
two trials despite the similar populations enrolled and the mOS observed in the overall
population of the chemotherapy control arm (of 8.4 and 7.3 months, for the IMvigor211
and the Keynote-045 study, respectively) [56,57]. In the KEYNOTE 045 study, the mOS of
patients with high CPS (≥10%) treated with pembrolizumab was of 8.0 months, which was
significantly longer than 5.2 months with chemotherapy (p = 0.0048) [57]; on the other hand,
in the IMvigor211 study, the patients with high IC 2/3 had an mOS of 11.1 months with
atezolizumab, which was not significantly longer than 10.6 months with chemotherapy
(p = 0.41) [56]. The OS difference seen in the chemotherapy control arms of these two stud-
ies, with a different definition of high PD-L1 tumours, might suggest a positive prognostic
value which is marginally predictive for the high PD-L1 by the IC 2/3, and a negative
prognostic—although predictive—value by the CPS.

In the neoadjuvant setting, only phase II studies are currently available. However,
the Pure-01 study demonstrated the dynamic characteristic of the PD-L1 by showing its
significantly increased expression as CPS following three administrations of the anti-PD1
pembrolizumab [40].

In conclusion, the current evidence on the prognostic and predictive value of PD-L1
expression is limited by the different diagnostic assays used in the clinical trials for each
anti-PD1 or anti-PD-L1 agent, and remains inconclusive. PD-L1 may have a prognostic
role, the value of which may also change depending on the type of tumour cells scored
(i.e., negative if CPS, or positive if IC), and may be predictive only for the low expression.

The molecular predictive and prognostic factors in UCs are summarized in Table 1.

Table 1. Molecular factors and their prognostic and predictive value in UC patients, with a particular focus on ICIs.

Category Description Prognostic and Predictive Value
in UC Notes

Molecular classes

6 molecular (transcriptomic)
classes based on a consensus

of MIBC:
Squamous (Ba/Sq)-35%;

luminal/papillary (LumP),
24%; luminal unstable

(LumU), 15%; stroma-rich,
15%; luminal non-specified

(LumNS), 8%; neuroendocrine
(NE)-like, 3% [9].

Ba/Sq is associated with shorter OS,
NE-like is associated with worse

prognosis (LumP as reference) [9].
LUmNS, LumU, NE-like are more

responsive to ICIs [9].

Need for
prospective validation
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Table 1. Cont.

Category Description Prognostic and Predictive Value
in UC Notes

TMB

Total number of
non-synonymous mutations
per coding area of a tumour
genome. UC is characterized

by high values of TMB
compared to other

tumours [23].

High TMB predicts OS benefit from
avelumab maintenance therapy [23]
and improved OS with atezolizumab

when compared to CT [28].
TMB was higher in responder to

neoadjuvant pembrolizumab [27].

Issues: variability, lack of a
validated cut-off, differences

related to the
sequencing platforms

Molecular signatures

Study of involved genes
(DNA sequencing), messenger

ribonucleic acids (mRNAs)
(RNA sequencing), and

proteins (transcriptome) in
tumor samples.

APOBEC mutational signature
predicts OS benefit with atezolizumab

± CT compared to CT alone [28].
TGF-β signature predicts worse OS

with ICIs [28].
IFN-γ signature correlates with

response to nivolumab [38].
JAVELIN -Immuno high signature

correlates with increased responses to
ICIs [24].

Transcriptional signature of eight
genes (IFNG, CXCL9, CD8A, GZMA,
GZMB, CXCL10, PRF1 and TBX21)

correlates with response to
atezolizumab [39].

FGFR mutations predict low response
to durvalumab [41].

Need to standardize
molecular assays and find a

molecular panel applicable to
daily clinical practice

ctDNA

Quantitative and qualitative
analysis of circulating tumoral

DNA detected on
blood samples.

ctDNA detection is associated with
worse prognosis in early stages and

could identify metastatic relapses
before imaging [47].

ctDNA detection is predictive for
adjuvant atezolizumab
(both DFS and OS) [48].

ctDNA profiling may be predictive
for response to specific therapies [46].

PD-L1

Expression of the ligand of
PD1 receptor has been widely

studied as predictive
biomarker of response to
anti-PD1 and anti-PD-L1

therapies across
human cancers.

Possibly predictive for anti-PD1 and
anti-PD-L1 agents used in UC

patients as adjuvant [54],
first-line [49], maintenance after

first-line [53] and second-line
therapy [56].

Issues: different diagnostic
assays used in clinical trials

for each anti-PD1 or
anti-PD-L1 agent, discordant

efficacy of these agents
between studies

Abbreviations: UC, urothelial carcinoma; ICIs, immune checkpoint inhibitors; TMB, tumor mutational burden; OS, overall survival;
CT, chemotherapy; ctDNA, circulating tumor DNA.

3. Clinical Factors
3.1. Patient’s Characteristics

Several clinical factors have been reported to be prognostic in patients with mUC
treated with chemotherapy. The most important ones include performance status (PS),
metastatic sites, haemoglobin levels, and time from prior chemotherapy. Bajorin et al.
showed that, in untreated patients, a poor Karnofsky Performance Status (KPS) < 80% and
the presence of visceral (liver, lung, and bone) metastases were independent prognostic
factors associated with a worse OS [59]. Bellmunt et al. reported that a poor Eastern
Cooperative Oncology Group (ECOG) PS ≥ 2, low haemoglobin levels (<10 g/dL) and the
presence of liver metastasis were independent poor prognostic factors in patients who failed
platinum-based chemotherapy [60]. Moreover, a shorter time from prior chemotherapy
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(<3 months) has been reported to enhance the prognostic classification of patients receiving
second-line therapy [61].

The survival benefit of immunotherapy in both untreated and pretreated patients
with mUC has been observed regardless of all of those clinical factors, confirming their
prognostic but not predictive value, in many retrospective analyses [62–70] and subgroup
and post-hoc analyses of prospective randomised trials [71,72].

3.2. Concomitant Medications

Several retrospective analyses and meta-analyses have recently been reported in the
literature about the impact of concomitant medications on the clinical outcomes of patients
with cancer treated with ICIs [73–78]. These studies mainly included patients with non-
small cell lung cancer (NSCLC), melanoma or renal cell carcinoma (RCC). Commonly
used drugs in clinical practice—such as corticosteroids, antibiotics and proton pump
inhibitors (PPIs)—have been reported to negatively affect the activity of immunotherapy
through immune-modulatory effects. In fact, these drugs may induce a detrimental effect
on the immune system and gut microbiota, which is a well-known regulator of immune
homeostasis [79]. A drug-based prognostic score developed by Buti et al.—including
the cumulative exposure to high-dose steroid therapy (a dose of ≥ 10 mg prednisone-
equivalents per day), antibiotics and PPIs—can help to stratify patients treated with ICIs in
routine practice and clinical trials [73].

The post-hoc analyses of the single-arm phase II IMvigor210 trial and the randomised
phase III IMvigor211 trial confirmed the negative predictive role of PPI and antibiotic use
in patients with mUC treated with ICI, but not in the case of treatment with chemother-
apy [80,81].

3.3. Inflammatory Indices

An inflammatory condition in patients with cancer has been associated with worse
outcomes and a lower therapeutic response across different tumour types [82]. Inflam-
matory indices from peripheral blood have been investigated as potential biomarkers in
different tumours, settings and therapies [83–85], including patients with UC treated with
surgery or chemotherapy [64,86–88].

As far as ICIs are concerned, inflammatory indices have been mostly studied in
patients with advanced NSCLC and melanoma [89,90], while fewer and smaller stud-
ies have been conducted in patients treated with ICIs for genitourinary tumours, in-
cluding UC [62,63,65,69,70,91–97]. The inflammatory indices most commonly studied
in patients with UC treated with ICIs include the neutrophil-to-lymphocyte ratio (NLR),
baseline platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), lac-
tate dehydrogenase (LDH), C-reactive protein (CRP) and albumin. High levels of NLR,
PLR, LDH and CRP, and low levels of albumin have been correlated with worse sur-
vival and efficacy outcomes, either as single parameters or within combined prognostic
scores [62,63,65,69,70,92–98].

3.4. Combined Prognostic Tools

Inflammatory indices from peripheral blood have been investigated in combination
with other clinical prognostic factors within prognostic models for risk-stratification in
several cancer types treated with ICIs, especially the NSCLC [91,98–100]. The interest in
prognostic models has also recently been increasing for genitourinary tumours, including
RCC [101–103] and UC [63,65,68,95–97,104].

In patients with mUC treated with ICIs, the most frequently included factors in prog-
nostic models are inflammatory indices (such as NLR, C-reactive protein and albumin) and
pretreatment clinical parameters (i.e., the PS and metastatic site) [63,65,68,95–97,104–106].
The molecular factors included in the prognostic scores were PD-L1 expression and ge-
nomic parameters (e.g., single-nucleotide variants) [96,104].
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Most of these analyses are derived from retrospective studies, except for the two
prognostic scores developed by Fornarini et al. and Sonpavde et al., and the machine
learning (ML) model developed by Abuhelwa et al. [104–106]. The two prognostic models
were developed by the retrospective analysis of the phase IIIb SAUL trial [104] and the two
phase I/II trials [105], both evaluating second-line ICI monotherapy. The ML model was
built using the atezolizumab cohort of the IMvigor210 trial as the training cohort, and the
IMvigor211 trial population as the external validation [106].

Most of these prognostic models (Table 2) need external validation with prospective
studies before being incorporated into clinical practice; only one of them has shown a pre-
dictive value for immunotherapy but not for chemotherapy in a retrospective analysis [96].

Table 2. Clinical factors and their prognostic and predictive value in UC patients, with a particular focus on ICIs.

Category Description Prognostic and Predictive Value in UC

Patient’s characteristics
Performance status (PS), metastatic sites,
haemoglobin levels are prognostic factors

in human cancer.

Karnofsky PS < 80%, ECOG PS ≥ 2, low
haemoglobin levels and the presence of visceral

metastases are associated with worse OS in mUC
patients treated with CT [59,61].

Prognostic but not predictive in mUC patients
treated with ICIs [62–72].

Concomitant medications
Commonly used drugs in clinical practice

may affect clinical outcomes of cancer
patients treated with ICIs.

Use of antibiotics and PPIs have a negative
predictive role in mUC patients treated with ICIs

but not in those treated with CT [80,81].

Inflammatory indices

Inflammatory indices, like NLR, CMP
and albumin, have been investigated in

several human cancer types as prognostic
tools, especially regarding ICIs.

High levels of NLR, PLR, LDH, CRP and low
levels of albumin have been correlated with worse

survival and efficacy outcomes in mUC
patients [62–64,70,92–98].

Combined prognostic tools

Combinations of inflammatory indices
and clinical factors have been

investigated in several human cancer
types as prognostic tools, especially

regarding ICIs.

Two prognostic models were developed in
second-line ICIs mono-therapy [104,105].

A machine learning model was built from
IMvigor210 atezolizumab arm and validated in

IMvigor211 atezolizumab arm [106].

Abbreviations: UC, urothelial carcinoma; mUC, metastatic urothelial carcinoma; ICIs, immune checkpoint inhibitors; OS, overall
survival; CT, chemotherapy; PPIs, proton pump inhibitors; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio;
LMR, lymphocyte-to-monocyte ratio; LDH, lactate dehydrogenase; CRP, C-reactive protein (CRP).

4. Radiomics

Due to the growing need to identify useful biomarkers to select the patients who are
most likely to benefit from ICIs, the quantitative analysis of imaging features by artificial
intelligence algorithms, namely radiomics, has recently been investigated as a possible
surrogate marker to predict the outcome of patients treated with immunotherapy [107,108].
Radiomics has been reported as a promising approach to predict the response and sur-
vival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. Three
retrospective analyses investigated radiomics from baseline contrast-enhanced computed
tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-PD1 monother-
apy [111–113].

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus
increasing the diagnostic accuracy of predictive models [112,113].

Artificial intelligence and deep machine learning-based models may provide helpful
decision tools to clinicians for the selection of patients for ICIs in the near future. However,
none of these radiomics-based models have been assessed in patients with UC treated with
chemotherapy yet; further studies on larger populations and external validation are still
needed to confirm their predictive value.
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5. Conclusions

In the current era, in which ICIs have been tested for several tumour types, it is crucial
to identify prognostic and predictive biomarkers or models which are able to select UC
patients who will benefit from ICIs, especially as novel therapeutic agents could soon
become available in clinical practice for the treatment of UC. In addition, adjuvant ICIs
have recently shown a benefit in terms of disease-free survival in patients with radically
resected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival
benefit is awaited, opening new methods for biomarker identification even in this setting.

By reviewing the available evidence and attempting a classification of clinical and
tumour factors according to levels of evidence and grades of recommendation (see Table 3),
both a prognostic and a predictive value is currently suggested for ctDNA, while only a
prognostic relevance seems to apply to concomitant medications and patient’s characteristics.

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival
outcomes in mUC treated with ICIs.

Variable Prognostic Predictive

Parameter Clinical
Value

Strenght of
Evidence

Outcome
Variable

Clinical
Value

Strenght of
Evidence

Outcome
Variable

Tumour molecular factors
Molecular classes for MIBC
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and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

II, A DFS, OS
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

II, A DFS, OS

PD-L1
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, C DFS, PFS, OS
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, B 2 DFS, PFS, OS

Clinical factors

Patient’s characteristics 3
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, A ORR, PFS, OS
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, A ORR, PFS, OS

Concomitant medications 4
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, A ORR, PFS, OS

Cancers 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

I, B ORR, PFS, OS

Inflammatory indices 5
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

IV, A ORR, PFS, OS
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[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
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none of these radiomics-based models have been assessed in patients with UC treated 
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come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
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Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 
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Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

IV, A ORR, PFS, OS

Combined tools 6
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III, B ORR, PFS, OS
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IV, C ORR, PFS, OS

Radiomics

Radiomics-based models 7
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IV, B ORR, PFS, OS

Cancers 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

[107,108]. Radiomics has been reported as a promising approach to predict the response 
and survival outcomes in patients with NSCLC and melanoma receiving ICIs [109,110]. 
Three retrospective analyses investigated radiomics from baseline contrast-enhanced 
computed tomography (CT) images in patients with mUC receiving anti-PDL1 or anti-
PD1 monotherapy [111–113].  

Artificial intelligence algorithms may also allow us to combine the information ob-
tained by the image features with other clinical and laboratory prognostic factors, thus 
increasing the diagnostic accuracy of predictive models [112,113].  

Artificial intelligence and deep machine learning-based models may provide helpful 
decision tools to clinicians for the selection of patients for ICIs in the near future. However, 
none of these radiomics-based models have been assessed in patients with UC treated 
with chemotherapy yet; further studies on larger populations and external validation are 
still needed to confirm their predictive value. 

5. Conclusions 
In the current era, in which ICIs have been tested for several tumour types, it is crucial 

to identify prognostic and predictive biomarkers or models which are able to select UC 
patients who will benefit from ICIs, especially as novel therapeutic agents could soon be-
come available in clinical practice for the treatment of UC. In addition, adjuvant ICIs have 
recently shown a benefit in terms of disease-free survival in patients with radically re-
sected muscle-invasive urothelial carcinoma [112]. With more follow-up, a survival bene-
fit is awaited, opening new methods for biomarker identification even in this setting. 

By reviewing the available evidence and attempting a classification of clinical and 
tumour factors according to levels of evidence and grades of recommendation (see Table 
3), both a prognostic and a predictive value is currently suggested for ctDNA, while only 
a prognostic relevance seems to apply to concomitant medications and patient’s charac-
teristics.  

Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 
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Value 
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idence Outcome Variable 
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Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 
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PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 
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Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 
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PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

NI NI

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investigated. 1 DNA
and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such as the JAVELIN-Immuno or
Immune190. 2 Evidence was limited due to its low expression. 3 Poor PS, visceral metastases, mainly liver metastases, low hemoglobin
levels, and a shorter time from prior chemotherapy (<3 months). 4 High-dose steroid therapy, antibiotics and PPIs. 5 Inflammatory indices
from peripheral blood, such as ratios of immune system cells (e.g., NLR) or LDH. 6 Combination of inflammatory indices and clinical

parameters. 7 Radiomic features with/without clinical factors.
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Clinical 
Value 
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ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

Green circle: clinically useful.
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Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 
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Yellow circle: uncertain clinical

usefulness.
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Table 3. Prognostic and predictive values of tumour and clinical factors for their impact on the response and survival 
outcomes in mUC treated with ICIs. 

Variable Prognostic Predictive 

Parameter 
Clinical 
Value 

Strenght of Ev-
idence Outcome Variable 

Clinical 
Value 

Strenght of Evi-
dence Outcome Variable 

Tumour molecular factors 
Molecular classes for MIBC  IV, B PFS, OS  IV, B PFS, OS 

TMB  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

Mutational signatures 1  IV, C ORR, PFS, OS  I, C ORR, PFS, OS 

ctDNA  II, A DFS, OS  II, A DFS, OS 

PD-L1  I, C DFS, PFS, OS  I, B 2 DFS, PFS, OS 

Clinical factors 

Patient’s characteristics 3  I, A ORR, PFS, OS  I, A ORR, PFS, OS 

Concomitant medications 4  I, A ORR, PFS, OS  I, B ORR, PFS, OS 

Inflammatory indices 5  IV, A ORR, PFS, OS  IV, A ORR, PFS, OS 

Combined tools 6  III, B ORR, PFS, OS  IV, C ORR, PFS, OS 

Radiomics 
Radiomics-based models 7  IV, B ORR, PFS, OS  NI NI 

PFS, progress-free survival; OS, overall survival; ORR, overall response rate; DFS, disease-free survival; NI, not investi-
gated. 1 DNA and RNA signatures such as the APOBEC, TGFbeta, IFN-γ and IFN-alpha; immune-related signatures such 

Red circle: not clinically useful. The strength of evidence was adapted from the Infectious Diseases Society of America-
United States Public Health Service Grading System [7]. Levels of evidence: I, evidence from at least one large randomised, controlled
trial of good methodological quality (low potential for bias) or meta-analyses of well-conducted randomised trials without heterogeneity;
II, small randomised trials or large randomised trials with a suspicion of bias (lower methodological quality), or meta-analyses of such
trials or of trials with demonstrated heterogeneity; III, prospective cohort studies; IV, retrospective cohort studies or case-control studies;
V, studies without a control group, case reports, or expert opinions. Grades of recommendation: A, strong evidence for efficacy with a
substantial clinical benefit, strongly recommended; B, strong or moderate evidence for efficacy, but with a limited clinical benefit, generally
recommended; C, insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs, etc.),
optional; D, moderate evidence against efficacy or for adverse outcomes, generally not recommended; E, strong evidence against efficacy or
for adverse outcomes, never recommended.

We think this information may be helpful to clinically assess mUCs patients who are
considered for treatment with ICIs, and could also drive further prospective research on
these biomarkers, either as single factors or within combined prognostic models imple-
mented by artificial intelligence algorithms.
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50. Alva, A.; Csőszi, T.; Ozguroglu, M.; Matsubara, N.; Geczi, L.; Cheng, S.Y.-S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Barrera, R.M.; et al.
LBA23 Pembrolizumab (P) Combined with Chemotherapy (C) vs C Alone as First-Line (1L) Therapy for Advanced Urothelial
Carcinoma (UC): KEYNOTE-361. Ann. Oncol. 2020, 31, S1155. [CrossRef]

51. Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-Del-Muro, X.; De Giorgi, U.; Mencinger, M.;
Izumi, K.; et al. Atezolizumab with or without Chemotherapy in Metastatic Urothelial Cancer (IMvigor130): A Multicentre,
Randomised, Placebo-Controlled Phase 3 Trial. Lancet 2020, 395, 1547–1557. [CrossRef]

52. Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.-L.;
De Giorgi, U.; et al. Durvalumab Alone and Durvalumab plus Tremelimumab versus Chemotherapy in Previously Untreated
Patients with Unresectable, Locally Advanced or Metastatic Urothelial Carcinoma (DANUBE): A Randomised, Open-Label,
Multicentre, Phase 3 Trial. Lancet Oncol. 2020, 21, 1574–1588. [CrossRef]

53. Powles, T.B.; Loriot, Y.; Bellmunt, J.; Sternberg, C.N.; Sridhar, S.; Petrylak, D.P.; Tambaro, R.; Dourthe, L.M.; Alvarez-Fernandez, C.;
Aarts, M.; et al. 699O Avelumab First-Line (1L) Maintenance + Best Supportive Care (BSC) vs. BSC Alone for Advanced Urothelial
Carcinoma (UC): Association between Clinical Outcomes and Exploratory Biomarkers. Ann. Oncol. 2020, 31, S552–S553.
[CrossRef]

54. Hussain, M.H.A.; Powles, T.; Albers, P.; Castellano, D.; Daneshmand, S.; Gschwend, J.; Nishiyama, H.; Oudard, S.; Tayama, D.;
Davarpanah, N.N.; et al. IMvigor010: Primary Analysis from a Phase III Randomized Study of Adjuvant Atezolizumab (Atezo)
versus Observation (Obs) in High-Risk Muscle-Invasive Urothelial Carcinoma (MIUC). JCO 2020, 38, 5000. [CrossRef]

55. Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.;
Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384,
2102–2114. [CrossRef] [PubMed]

56. Powles, T.; Durán, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.;
Bamias, A.; et al. Atezolizumab versus Chemotherapy in Patients with Platinum-Treated Locally Advanced or Metastatic
Urothelial Carcinoma (IMvigor211): A Multicentre, Open-Label, Phase 3 Randomised Controlled Trial. Lancet 2018, 391, 748–757.
[CrossRef]

57. Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.;
Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376,
1015–1026. [CrossRef]

http://doi.org/10.1038/s41591-019-0628-7
http://www.ncbi.nlm.nih.gov/pubmed/31686036
http://doi.org/10.1200/JCO.18.01148
http://doi.org/10.1038/s41591-021-01317-6
http://doi.org/10.1038/s41571-018-0074-3
http://doi.org/10.1056/NEJMra1706174
http://www.ncbi.nlm.nih.gov/pubmed/30380390
http://doi.org/10.1016/j.eururo.2017.09.011
http://doi.org/10.1038/s41598-017-05623-3
http://doi.org/10.1038/s41467-020-20493-6
http://doi.org/10.1200/JCO.18.02052
http://doi.org/10.1016/j.annonc.2020.10.486
http://doi.org/10.1200/JCO.2021.39.15_suppl.4508
http://doi.org/10.1016/j.annonc.2020.08.2252
http://doi.org/10.1016/S0140-6736(20)30230-0
http://doi.org/10.1016/S1470-2045(20)30541-6
http://doi.org/10.1016/j.annonc.2020.08.771
http://doi.org/10.1200/JCO.2020.38.15_suppl.5000
http://doi.org/10.1056/NEJMoa2034442
http://www.ncbi.nlm.nih.gov/pubmed/34077643
http://doi.org/10.1016/S0140-6736(17)33297-X
http://doi.org/10.1056/NEJMoa1613683


Cancers 2021, 13, 5517 15 of 17

58. Banna, G.L.; Cantale, O.; Bersanelli, M.; Del Re, M.; Friedlaender, A.; Cortellini, A.; Addeo, A. Are Anti-PD1 and Anti-PD-L1
Alike? The Non-Small-Cell Lung Cancer Paradigm. Oncol. Rev. 2020, 14, 490. [CrossRef]

59. Bajorin, D.F.; Dodd, P.M.; Mazumdar, M.; Fazzari, M.; McCaffrey, J.A.; Scher, H.I.; Herr, H.; Higgins, G.; Boyle, M.G. Long-Term
Survival in Metastatic Transitional-Cell Carcinoma and Prognostic Factors Predicting Outcome of Therapy. J. Clin. Oncol. 1999,
17, 3173–3181. [CrossRef]

60. Bellmunt, J.; Choueiri, T.K.; Fougeray, R.; Schutz, F.A.B.; Salhi, Y.; Winquist, E.; Culine, S.; von der Maase, H.; Vaughn, D.J.;
Rosenberg, J.E. Prognostic Factors in Patients with Advanced Transitional Cell Carcinoma of the Urothelial Tract Experiencing
Treatment Failure with Platinum-Containing Regimens. J. Clin. Oncol. 2010, 28, 1850–1855. [CrossRef]

61. Sonpavde, G.; Pond, G.R.; Fougeray, R.; Choueiri, T.K.; Qu, A.Q.; Vaughn, D.J.; Niegisch, G.; Albers, P.; James, N.D.;
Wong, Y.-N.; et al. Time from Prior Chemotherapy Enhances Prognostic Risk Grouping in the Second-Line Setting of Ad-
vanced Urothelial Carcinoma: A Retrospective Analysis of Pooled, Prospective Phase 2 Trials. Eur. Urol. 2013, 63, 717–723.
[CrossRef]

62. Matsumoto, R.; Abe, T.; Ishizaki, J.; Kikuchi, H.; Harabayashi, T.; Minami, K.; Sazawa, A.; Mochizuki, T.; Akino, T.;
Murakumo, M.; et al. Outcome and Prognostic Factors in Metastatic Urothelial Carcinoma Patients Receiving Second-Line
Chemotherapy: An Analysis of Real-World Clinical Practice Data in Japan. Jpn. J. Clin. Oncol. 2018, 48, 771–776. [CrossRef]

63. Shabto, J.M.; Martini, D.J.; Liu, Y.; Ravindranathan, D.; Brown, J.; Hitron, E.E.; Russler, G.A.; Caulfield, S.; Kissick, H.;
Alemozaffar, M.; et al. Novel Risk Group Stratification for Metastatic Urothelial Cancer Patients Treated with Immune Checkpoint
Inhibitors. Cancer Med. 2020, 9, 2752–2760. [CrossRef]

64. Suh, J.; Jung, J.H.; Jeong, C.W.; Kwak, C.; Kim, H.H.; Ku, J.H. Clinical Significance of Pre-Treated Neutrophil-Lymphocyte Ratio
in the Management of Urothelial Carcinoma: A Systemic Review and Meta-Analysis. Front. Oncol. 2019, 9, 1365. [CrossRef]
[PubMed]

65. Kobayashi, K.; Suzuki, K.; Hiraide, M.; Aoyama, T.; Yokokawa, T.; Shikibu, S.; Hashimoto, K.; Iikura, Y.; Sato, H.; Sugiyama, E.; et al.
Association of Immune-Related Adverse Events with Pembrolizumab Efficacy in the Treatment of Advanced Urothelial Carcinoma.
Oncology 2020, 98, 237–242. [CrossRef]

66. Khaki, A.R.; Li, A.; Diamantopoulos, L.N.; Bilen, M.A.; Santos, V.; Esther, J.; Morales-Barrera, R.; Devitt, M.; Nelson, A.;
Hoimes, C.J.; et al. Impact of Performance Status on Treatment Outcomes: A Real-World Study of Advanced Urothelial Cancer
Treated with Immune Checkpoint Inhibitors. Cancer 2020, 126, 1208–1216. [CrossRef]

67. Furubayashi, N.; Negishi, T.; Miura, A.; Nakamura, N.; Nakamura, M. Organ-Specific Therapeutic Effect of Paclitaxel and
Carboplatin Chemotherapy After Platinum-Based Chemotherapy and Pembrolizumab for Metastatic Urothelial Carcinoma. Res.
Rep. Urol. 2020, 12, 455–461. [CrossRef]

68. Ruiz-Bañobre, J.; Molina-Díaz, A.; Fernández-Calvo, O.; Fernández-Núñez, N.; Medina-Colmenero, A.; Santomé, L.;
Lázaro-Quintela, M.; Mateos-González, M.; García-Cid, N.; López-López, R.; et al. Rethinking Prognostic Factors in Locally
Advanced or Metastatic Urothelial Carcinoma in the Immune Checkpoint Blockade Era: A Multicenter Retrospective Study.
ESMO Open 2021, 6, 100090. [CrossRef] [PubMed]

69. Fujiwara, M.; Yuasa, T.; Urasaki, T.; Komai, Y.; Fujiwara, R.; Numao, N.; Yamamoto, S.; Yonese, J. Effectiveness and Safety Profile
of Pembrolizumab for Metastatic Urothelial Cancer: A Retrospective Single-Center Analysis in Japan. Cancer Rep. 2021, e1398.
[CrossRef]

70. Tamura, D.; Jinnouchi, N.; Abe, M.; Ikarashi, D.; Matsuura, T.; Kato, R.; Maekawa, S.; Kato, Y.; Kanehira, M.; Takata, R.; et al.
Prognostic Outcomes and Safety in Patients Treated with Pembrolizumab for Advanced Urothelial Carcinoma: Experience in
Real-World Clinical Practice. Int. J. Clin. Oncol. 2020, 25, 899–905. [CrossRef] [PubMed]

71. Necchi, A.; Fradet, Y.; Bellmunt, J.; de Wit, R.; Lee, J.; Fong, L.; Vozelgang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al.
3598-Three-Year Follow-Up From the Phase 3 KEYNOTE-045 Trial: Pembrolizumab (Pembro) Versus Investigator’s Choice
(Paclitaxel, Docetaxel, or Vinflunine) in Recurrent, Advanced Urothelial Cancer (UC). Ann. Oncol. 2019, 30 (Suppl. 5), V356–V402.
[CrossRef]

72. Grivas, P.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulovic, S.; Demey, W.; Ullén, A.; et al.
704MO Avelumab First-Line (1L) Maintenance + Best Supportive Care (BSC) vs BSC Alone with 1L Chemotherapy (CTx)
for Advanced Urothelial Carcinoma (UC): Subgroup Analyses from JAVELIN Bladder 100. Ann. Oncol. 2020, 31, S555–S556.
[CrossRef]

73. Buti, S.; Bersanelli, M.; Perrone, F.; Bracarda, S.; Di Maio, M.; Giusti, R.; Nigro, O.; Cortinovis, D.L.; Aerts, J.G.J.V.; Guaitoli, G.;
et al. Predictive Ability of a Drug-Based Score in Patients with Advanced Non-Small-Cell Lung Cancer Receiving First-Line
Immunotherapy. Eur. J. Cancer 2021, 150, 224–231. [CrossRef] [PubMed]

74. Cortellini, A.; Tucci, M.; Adamo, V.; Stucci, L.S.; Russo, A.; Tanda, E.T.; Spagnolo, F.; Rastelli, F.; Bisonni, R.; Santini, D.; et al.
Integrated Analysis of Concomitant Medications and Oncological Outcomes from PD-1/PD-L1 Checkpoint Inhibitors in Clinical
Practice. J. Immunother. Cancer 2020, 8, e001361. [CrossRef] [PubMed]

75. Petrelli, F.; Iaculli, A.; Signorelli, D.; Ghidini, A.; Dottorini, L.; Perego, G.; Ghidini, M.; Zaniboni, A.; Gori, S.; Inno, A. Survival of
Patients Treated with Antibiotics and Immunotherapy for Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020,
9, 1458. [CrossRef]

http://doi.org/10.4081/oncol.2020.490
http://doi.org/10.1200/JCO.1999.17.10.3173
http://doi.org/10.1200/JCO.2009.25.4599
http://doi.org/10.1016/j.eururo.2012.11.042
http://doi.org/10.1093/jjco/hyy094
http://doi.org/10.1002/cam4.2932
http://doi.org/10.3389/fonc.2019.01365
http://www.ncbi.nlm.nih.gov/pubmed/31921631
http://doi.org/10.1159/000505340
http://doi.org/10.1002/cncr.32645
http://doi.org/10.2147/RRU.S270495
http://doi.org/10.1016/j.esmoop.2021.100090
http://www.ncbi.nlm.nih.gov/pubmed/33740735
http://doi.org/10.1002/cnr2.1398
http://doi.org/10.1007/s10147-019-01613-9
http://www.ncbi.nlm.nih.gov/pubmed/31907720
http://doi.org/10.1093/annonc/mdz249.018
http://doi.org/10.1016/j.annonc.2020.08.776
http://doi.org/10.1016/j.ejca.2021.03.041
http://www.ncbi.nlm.nih.gov/pubmed/33934059
http://doi.org/10.1136/jitc-2020-001361
http://www.ncbi.nlm.nih.gov/pubmed/33154150
http://doi.org/10.3390/jcm9051458


Cancers 2021, 13, 5517 16 of 17

76. Rossi, G.; Pezzuto, A.; Sini, C.; Tuzi, A.; Citarella, F.; McCusker, M.G.; Nigro, O.; Tanda, E.; Russo, A. Concomitant Medications
during Immune Checkpoint Blockage in Cancer Patients: Novel Insights in This Emerging Clinical Scenario. Crit. Rev. Oncol.
Hematol. 2019, 142, 26–34. [CrossRef]

77. Li, C.; Xia, Z.; Li, A.; Meng, J. The Effect of Proton Pump Inhibitor Uses on Outcomes for Cancer Patients Treated with Immune
Checkpoint Inhibitors: A Meta-Analysis. Ann. Transl. Med. 2020, 8, 1655. [CrossRef]

78. Xu, H.; He, A.; Liu, A.; Tong, W.; Cao, D. Evaluation of the Prognostic Role of Platelet-Lymphocyte Ratio in Cancer Patients
Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Int. Immunopharmacol. 2019, 77, 105957.
[CrossRef] [PubMed]

79. Lee, K.A.; Shaw, H.M.; Bataille, V.; Nathan, P.; Spector, T.D. Role of the Gut Microbiome for Cancer Patients Receiving Im-
munotherapy: Dietary and Treatment Implications. Eur. J. Cancer 2020, 138, 149–155. [CrossRef]

80. Hopkins, A.M.; Kichenadasse, G.; Karapetis, C.S.; Rowland, A.; Sorich, M.J. Concomitant Proton Pump Inhibitor Use and Survival
in Urothelial Carcinoma Treated with Atezolizumab. Clin. Cancer Res. 2020, 26, 5487–5493. [CrossRef]

81. Hopkins, A.M.; Kichenadasse, G.; Karapetis, C.S.; Rowland, A.; Sorich, M.J. Concomitant Antibiotic Use and Survival in Urothelial
Carcinoma Treated with Atezolizumab. Eur. Urol. 2020, 78, 540–543. [CrossRef]

82. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [CrossRef]
83. Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.;

Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. J.
Natl. Cancer Inst. 2014, 106, dju124. [CrossRef]

84. Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Seruga, B.; Ocaña, A.; Tannock, I.F.;
Amir, E. Prognostic Role of Platelet to Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Cancer
Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [CrossRef] [PubMed]

85. Kumarasamy, C.; Sabarimurugan, S.; Madurantakam, R.M.; Lakhotiya, K.; Samiappan, S.; Baxi, S.; Nachimuthu, R.;
Gothandam, K.M.; Jayaraj, R. Prognostic Significance of Blood Inflammatory Biomarkers NLR, PLR, and LMR in Cancer-A
Protocol for Systematic Review and Meta-Analysis. Medicine 2019, 98, e14834. [CrossRef] [PubMed]

86. Rossi, L.; Santoni, M.; Crabb, S.J.; Scarpi, E.; Burattini, L.; Chau, C.; Bianchi, E.; Savini, A.; Burgio, S.L.; Conti, A.; et al. High
Neutrophil-to-Lymphocyte Ratio Persistent during First-line Chemotherapy Predicts Poor Clinical Outcome in Patients with
Advanced Urothelial Cancer. Ann. Surg. Oncol. 2015, 22, 1377–1384. [CrossRef] [PubMed]

87. Yuk, H.D.; Ku, J.H. Role of Systemic Inflammatory Response Markers in Urothelial Carcinoma. Front. Oncol. 2020, 10, 1473.
[CrossRef]

88. Wu, S.; Zhao, X.; Wang, Y.; Zhong, Z.; Zhang, L.; Cao, J.; Ai, K.; Xu, R. Pretreatment Neutrophil-Lymphocyte Ratio as a Predictor
in Bladder Cancer and Metastatic or Unresectable Urothelial Carcinoma Patients: A Pooled Analysis of Comparative Studies.
Cell. Physiol. Biochem. 2018, 46, 1352–1364. [CrossRef]

89. Xu, H.; Xu, X.; Wang, H.; Ge, W.; Cao, D. The Association between Antibiotics Use and Outcome of Cancer Patients Treated with
Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2020, 149, 102909. [CrossRef]
[PubMed]

90. Sacdalan, D.B.; Lucero, J.A.; Sacdalan, D.L. Prognostic Utility of Baseline Neutrophil-to-Lymphocyte Ratio in Patients Receiving
Immune Checkpoint Inhibitors: A Review and Meta-Analysis. Onco Targets Ther. 2018, 11, 955–965. [CrossRef]

91. Banna, G.L.; Signorelli, D.; Metro, G.; Galetta, D.; De Toma, A.; Cantale, O.; Banini, M.; Friedlaender, A.; Pizzutillo, P.;
Garassino, M.C.; et al. Neutrophil-to-Lymphocyte Ratio in Combination with PD-L1 or Lactate Dehydrogenase as Biomarkers for
High PD-L1 Non-Small Cell Lung Cancer Treated with First-Line Pembrolizumab. Transl. Lung Cancer Res. 2020, 9, 1533–1542.
[CrossRef] [PubMed]

92. Ogihara, K.; Kikuchi, E.; Shigeta, K.; Okabe, T.; Hattori, S.; Yamashita, R.; Yoshimine, S.; Shirotake, S.; Nakazawa, R.;
Matsumoto, K.; et al. The Pretreatment Neutrophil-to-Lymphocyte Ratio Is a Novel Biomarker for Predicting Clinical Re-
sponses to Pembrolizumab in Platinum-Resistant Metastatic Urothelial Carcinoma Patients. Urol. Oncol. 2020, 38, 602.e1–602.e10.
[CrossRef] [PubMed]

93. Shimizu, T.; Miyake, M.; Hori, S.; Ichikawa, K.; Omori, C.; Iemura, Y.; Owari, T.; Itami, Y.; Nakai, Y.; Anai, S.; et al. Clinical Impact
of Sarcopenia and Inflammatory/Nutritional Markers in Patients with Unresectable Metastatic Urothelial Carcinoma Treated
with Pembrolizumab. Diagnostics 2020, 10, 310. [CrossRef] [PubMed]

94. Brown, J.T.; Liu, Y.; Shabto, J.M.; Martini, D.J.; Ravindranathan, D.; Hitron, E.E.; Russler, G.A.; Caulfield, S.; Yantorni, L.B.;
Joshi, S.S.; et al. Baseline Modified Glasgow Prognostic Score Associated with Survival in Metastatic Urothelial Carcinoma
Treated with Immune Checkpoint Inhibitors. Oncologist 2021, 26, 397–405. [CrossRef] [PubMed]

95. Yamamoto, Y.; Yatsuda, J.; Shimokawa, M.; Fuji, N.; Aoki, A.; Sakano, S.; Yamamoto, M.; Suga, A.; Tei, Y.; Yoshihiro, S.; et al. Prognostic
Value of Pre-Treatment Risk Stratification and Post-Treatment Neutrophil/Lymphocyte Ratio Change for Pembrolizumab in
Patients with Advanced Urothelial Carcinoma. Int. J. Clin. Oncol. 2021, 26, 169–177. [CrossRef]

96. Nassar, A.H.; Mouw, K.W.; Jegede, O.; Shinagare, A.B.; Kim, J.; Liu, C.-J.; Pomerantz, M.; Harshman, L.C.; Van Allen, E.M.;
Wei, X.X.; et al. A Model Combining Clinical and Genomic Factors to Predict Response to PD-1/PD-L1 Blockade in Advanced
Urothelial Carcinoma. Br. J. Cancer 2020, 122, 555–563. [CrossRef]

http://doi.org/10.1016/j.critrevonc.2019.07.005
http://doi.org/10.21037/atm-20-7498
http://doi.org/10.1016/j.intimp.2019.105957
http://www.ncbi.nlm.nih.gov/pubmed/31677498
http://doi.org/10.1016/j.ejca.2020.07.026
http://doi.org/10.1158/1078-0432.CCR-20-1876
http://doi.org/10.1016/j.eururo.2020.06.061
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1093/jnci/dju124
http://doi.org/10.1158/1055-9965.EPI-14-0146
http://www.ncbi.nlm.nih.gov/pubmed/24793958
http://doi.org/10.1097/MD.0000000000014834
http://www.ncbi.nlm.nih.gov/pubmed/31192906
http://doi.org/10.1245/s10434-014-4097-4
http://www.ncbi.nlm.nih.gov/pubmed/25234022
http://doi.org/10.3389/fonc.2020.01473
http://doi.org/10.1159/000489152
http://doi.org/10.1016/j.critrevonc.2020.102909
http://www.ncbi.nlm.nih.gov/pubmed/32146284
http://doi.org/10.2147/OTT.S153290
http://doi.org/10.21037/tlcr-19-583
http://www.ncbi.nlm.nih.gov/pubmed/32953525
http://doi.org/10.1016/j.urolonc.2020.02.005
http://www.ncbi.nlm.nih.gov/pubmed/32139290
http://doi.org/10.3390/diagnostics10050310
http://www.ncbi.nlm.nih.gov/pubmed/32429323
http://doi.org/10.1002/onco.13727
http://www.ncbi.nlm.nih.gov/pubmed/33634507
http://doi.org/10.1007/s10147-020-01784-w
http://doi.org/10.1038/s41416-019-0686-0


Cancers 2021, 13, 5517 17 of 17

97. Khaki, A.R.; Diamantopoulos, L.N.; Li, A.; Devitt, M.E.; Drakaki, A.; Shreck, E.; Joshi, M.; Velho, P.I.; Alonso, L.; Nelson, A.A.; et al.
Outcomes of Patients (Pts) with Metastatic Urothelial Cancer (MUC) and Poor Performance Status (PS) Receiving Anti-PD(L)1
Agents. JCO 2019, 37, 4525. [CrossRef]

98. Banna, G.L.; Di Quattro, R.; Malatino, L.; Fornarini, G.; Addeo, A.; Maruzzo, M.; Urzia, V.; Rundo, F.; Lipari, H.; De Giorgi, U.; et al.
Neutrophil-to-Lymphocyte Ratio and Lactate Dehydrogenase as Biomarkers for Urothelial Cancer Treated with Immunotherapy.
Clin. Transl. Oncol. 2020, 22, 2130–2135. [CrossRef]

99. Prelaj, A.; Rebuzzi, S.E.; Pizzutilo, P.; Bilancia, M.; Montrone, M.; Pesola, F.; Longo, V.; Del Bene, G.; Lapadula, V.; Cassano, F.; et al.
EPSILoN: A Prognostic Score Using Clinical and Blood Biomarkers in Advanced Non-Small-Cell Lung Cancer Treated With
Immunotherapy. Clin. Lung Cancer 2020, 21, 365–377.e5. [CrossRef]

100. Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al.
Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced
Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [CrossRef]

101. Chrom, P.; Zolnierek, J.; Bodnar, L.; Stec, R.; Szczylik, C. External Validation of the Systemic Immune-Inflammation Index as
a Prognostic Factor in Metastatic Renal Cell Carcinoma and Its Implementation within the International Metastatic Renal Cell
Carcinoma Database Consortium Model. Int. J. Clin. Oncol. 2019, 24, 526–532. [CrossRef] [PubMed]

102. Martini, D.J.; Liu, Y.; Shabto, J.M.; Carthon, B.C.; Hitron, E.E.; Russler, G.A.; Caulfield, S.; Kissick, H.T.; Harris, W.B.;
Kucuk, O.; et al. Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint
Inhibitors. Oncologist 2020, 25, e484–e491. [CrossRef] [PubMed]

103. Rebuzzi, S.E.; Signori, A.; Banna, G.L.; Maruzzo, M.; De Giorgi, U.; Pedrazzoli, P.; Sbrana, A.; Zucali, P.A.; Masini, C.;
Naglieri, E.; et al. Inflammatory Indices and Clinical Factors in Metastatic Renal Cell Carcinoma Patients Treated with Nivolumab:
The Development of a Novel Prognostic Score (Meet-URO 15 Study). Ther. Adv. Med. Oncol. 2021, 13, 17588359211019642.
[CrossRef] [PubMed]

104. Fornarini, G.; Rebuzzi, S.E.; Banna, G.L.; Calabrò, F.; Scandurra, G.; De Giorgi, U.; Masini, C.; Baldessari, C.; Naglieri, E.;
Caserta, C.; et al. Immune-Inflammatory Biomarkers as Prognostic Factors for Immunotherapy in Pretreated Advanced Urinary
Tract Cancer Patients: An Analysis of the Italian SAUL Cohort. ESMO Open 2021, 6, 100118. [CrossRef]

105. Sonpavde, G.; Manitz, J.; Gao, C.; Tayama, D.; Kaiser, C.; Hennessy, D.; Makari, D.; Gupta, A.; Abdullah, S.E.; Niegisch, G.; et al.
Five-Factor Prognostic Model for Survival of Post-Platinum Patients with Metastatic Urothelial Carcinoma Receiving PD-L1
Inhibitors. J. Urol. 2020, 204, 1173–1179. [CrossRef] [PubMed]

106. Abuhelwa, A.Y.; Kichenadasse, G.; McKinnon, R.A.; Rowland, A.; Hopkins, A.M.; Sorich, M.J. Machine Learning for Prediction of
Survival Outcomes with Immune-Checkpoint Inhibitors in Urothelial Cancer. Cancers 2021, 13, 2001. [CrossRef]
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