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An integrated cyberGIS and machine 
learning framework for fine‑scale prediction 
of Urban Heat Island using satellite remote 
sensing and urban sensor network data
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Abstract 

Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in 
metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity 
is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency cover-
age of a particular urban area. This low temporal frequency has restricted the development of models for predicting 
UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems 
(cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban 
sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by 
rapid advances in urban sensor network technologies and high-performance computing, this framework is designed 
to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the 
Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments 
revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 
degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. 
Humidity, distance to geographic center, and PM2.5 concentration are identified as important factors contributing to 
the model performance. Furthermore, we estimate UHI in Chicago with 10-min temporal frequency and 1-km spatial 
resolution on the hottest day in 2018. It is demonstrated that the RFR model can accurately predict UHI at fine spati-
otemporal scales with high-frequency urban sensor network data integrated with satellite remote sensing data.
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1  Introduction
More than 50 percent of the human population lives 
in cities, and this proportion is projected to reach 60% 
by the end of 2030 with about 5 billion people living 
in urban areas (DESA, 2002; Zhou et  al., 2011). Simi-
larly, urban land cover will increase by 1.2 million km2 
by 2030 if the current trend persists (Seto et al., 2012). 

Rapid urbanization has caused many environmen-
tal and sustainability challenges in cities and beyond. 
Urban Heat Island (UHI) effects, featuring significantly 
higher temperature in parts of metropolitan areas com-
pared to their surrounding areas, have been affecting 
people living in cities (Baklanov et al., 2016), yet these 
effects are mostly studied in macroscope, comparing 
temperature within a city to those in the surrounding 
suburban areas (Somers et  al., 2013). However, tem-
perature is highly variable within an urban area along 
a gradient of urban development (Somers et al., 2013), 
with significant differences from one neighborhood to 
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another as affected by urban form (green space, water, 
residential vs. dense urban, etc.). Consequently, fine-
scale UHI detection is required to study temperature 
among different locations within an urban area. Chi-
cago, in the USA, at 600 km2 and nearly 3 M residents, 
is at the heart of  a 10 M population Metropolitan Sta-
tistical Area (MSA). The city has diverse land cover 
types, from dense urban canyons to residential. Adja-
cent to Lake Michigan, the second largest of the Great 
Lakes at 58,030 km2, the city manages nearly 9,000 
acres (36 km2) of green space—the largest munici-
pal park system in the USA. The city anchors Cook 
County, which manages some 70,000 acres (283 km2) 
of forest preserves and parks. Particularly within the 
city, the diversity of land cover also reflects significant 
challenges with under-resourced communities result-
ing from over a century of social and racial segregation 
issues (Moore, 2016). Consequently, climate change, 
and UHI, have disproportionate impact on these com-
munities, underscoring the criticality of achieving fine-
scale UHI detection by comparing temperature inside 
the city.

UHI is not only directly responsible for worsening the 
adverse health effects from exposure to extreme thermal 
conditions (Tan, 2010), but also exacerbates air pollution 
(Li, 2018), adding to the burden on specific communi-
ties within cities. Therefore, it is important to understand 
UHI effects within a city for improving the health and 
wellbeing of urban population. Researchers in diverse 
domains have used thermal remote sensing images from 
satellites to study UHI, which had to resolve the issues of 
low temporal frequency (Lo et al., 1997; Szymanowski & 
Kryza, 2009). With the widespread implementation of 
location-aware and near real-time sensors in large cit-
ies such as Chicago, spatiotemporal data from such sen-
sors can accurately reflect the changes of dynamic urban 
environments (Wang et al., 2021). Supported by remote 
sensing and high-frequency urban sensor network data, 
this research aims to address the following two research 
questions: 1) how to predict UHI within a city at fine 
spatial and temporal scales? 2) how to integrate high-
frequency urban sensor network data and remote sensing 
data to achieve such prediction using machine learning. 
This study explores these questions in Chicago using 
multiple machine learning models (e.g., Artificial Neural 
Network (ANN), Support Vector Machine (SVM), and 
Random Forest Regression (RFR)) that are integrated into 
a cyber-based geographic information science and sys-
tems (cyberGIS) framework (Wang, 2010). This frame-
work is developed to predict spatiotemporal distributions 
of UHI using high-frequency urban sensor network data 
retrieved from the Array of Things (AoT) (Catlett et al., 

2017) and Landsat 8 Collection-2 Level-2 remote sensing 
satellite imagery focused on Chicago.

As the extensive body of prior UHI studies were con-
ducted using thermal remote sensing data from satellites 
like Landsat and Aster that record measurements for the 
same location weekly or bi-weekly, data availability is 
inadequate to take advantage of machine learning mod-
els for fine-scale characterization of UHI. The temporal 
aspect of UHI was often not adequately addressed due 
to the data limitation. The cyberGIS framework aims to 
fill this gap by predicting UHI within Chicago at fine spa-
tial and temporal scales. The framework also is designed 
to gain better understanding about the relationships 
between UHI and multiple environmental factors such as 
air quality indicators (e.g., particulate matter 2.5 (PM2.5) 
concentration), humidity, light intensity, and land surface 
characteristics.

2 � Related work
UHI, a phenomenon involving increased air tempera-
ture of a city compared to the surrounding area, causes 
increased energy use and health problems (Oh et  al., 
2020). Especially in megacities, it is important to under-
stand spatial and temporal patterns of UHI within a city 
as urban temperature is different across space and over 
time (Somers et al., 2013). In Chicago—our study area—
despite the cooling effects of the Lake Michigan, urban 
parks, and green spaces, approximately 25 percent of 
the urban area experienced UHI effects (Alfraihat et al., 
2016). Many factors, including population increase and 
precipitation change (Zhao et  al., 2014), unhealthy air 
quality (Li, 2018), change of thermal properties of build-
ing materials in urban areas (Mohajerani et  al., 2017; 
Stempihar et  al., 2012), impervious surfaces caused by 
decrease in urban albedo (Yang et al., 2015), and increase 
in urban land use transformation (Li, 2021), are possi-
ble contributors to UHI effects. Combined with global 
warming, the expanding urban population, especially 
those who live in central areas of megacities, not only 
experience significantly higher summer temperatures but 
also suffer from adverse health conditions (Tan, 2010) 
and Urban Pollution Island (UPI) (Li, 2018) side effects 
of UHI. Machine learning methods including artificial 
neural network, support vector machine, random for-
est model, and fuzzy time series have been used to bet-
ter understand such effects (Oh et  al., 2020; Radhika & 
Shashi, 2009; Chen and Hwang, 2000, Gardes et  al., 
2020).

Spatial and temporal resolutions are critical for predict-
ing UHI in urban areas (Li et al., 2013). Yet temperature 
is not measured with the spatial or temporal scales neces-
sary to reveal the spatiotemporal dynamics of neighbor-
hood-scale UHI. This is especially true in lower income, 
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higher-minority regions of cities like Chicago. For exam-
ple, perhaps the densest weather network is Weather 
Underground, and this shows virtually no weather sta-
tions on the South and West sides of Chicago—where 
over half of the city’s population resides (Fig. 1).

As human health is sensitive to even small tempera-
ture changes, there is a demand for fine spatiotemporal 
granularity prediction of UHI. To achieve fine-resolu-
tion spatial delineation of UHI, previous research (Shen 
et al., 2016; Shi et al., 2018) studies have employed land 
use regression models, along with multi-temporal and 
multi-sensor remote sensed data. However, the temporal 
limitation remains challenging as UHI is modeled using 
weekly- or biweekly thermal remote sensing imageries. 

During the past few decades, with the rapid advances 
in location-aware devices and sensors, urban sensor 
networks have been deployed to actively collect multi-
dimensional data with fine temporal granularity (Arm-
strong et al., 2019; Li et al., 2021). Urban sensor networks, 
which have been used to actively monitor air quality, pre-
dict crime, record traffic volume (Boyle et al., 2013; Lee 
et  al., 2006; Mead et  al., 2013; Nellore & Hancke, 2016; 
Rathore et al., 2016; Fan et al., 2021) are used in this study 
to achieve prediction of UHI clusters with fine spatial and 
temporal granularity.

As urban sensors collect massive high-frequency and 
multi-dimensional data, harnessing such dynamic data 
requires novel geospatial data science approaches. Many 

Fig. 1  Weather Underground, among the densest weather station networks, is absent in vast regions on Chicago’s South and West sides. (Source: 
www.​wunde​rgrou​nd.​com)

http://www.wunderground.com
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platforms, including for example PlanetSense, are devel-
oped to handle spatial and temporal analysis of such big 
data (Thakur et  al., 2015). In this paper, the data col-
lected from urban sensors (over 500 GB) is handled using 
cyberGIS-Jupyter (Yin et  al., 2019). As a new genera-
tion of GIS based on advanced cyberinfrastructure rep-
resenting a frontier of geospatial data science, cyberGIS 
comprises a seamless integration of advanced cyberinfra-
structure, GIS, and spatial analysis and modeling capa-
bilities while leading to widespread research advances 
(Anselin & Rey, 2012; Kang et al., 2020; Lyu et al., 2021; 
Wang, 2010;   Wang, 2016;  Wang & Goodchild, 2019). 
Our cyberGIS framework supports computational repro-
ducibility by integrating our scientific workflow and 
related data into a cyberGIS-Jupyter notebook that takes 
advantage of high-performance computing resources 
(Lyu et al., 2019).

3 � Data
Chicago is selected as the study area. Although the city 
of Chicago benefits from Lake Michigan, especially by 
the lake breeze as a UHI mitigator, the city still suffers 
from UHI effects (Sharma et  al., 2016). Moreover, it is 
predicted that future heatwaves in Chicago will be more 
intense, more frequent, and longer lasting in the sec-
ond half of the twenty-first century (Meehl and Tebalde, 
2004). To forecast and analyze UHI effects in Chicago, 
our study integrates both urban sensor network data and 
satellite remote sensing data.

With more than 130 nodes deployed in Chicago by 
the end of 2019, AoT is a sensor network that aimed to 
collect high-frequency data on urban environments, 
infrastructure, and activities (Catlett et  al., 2017). As 
shown in Fig.  2, AoT nodes were distributed across the 
city of Chicago, with each node including both sensors 
and embedded computing resources to analyze images 
from sky-facing and ground-facing cameras. From 2016 
through 2020, the AoT nodes collected data including 
temperature, relative humidity, barometric pressure, 
light, vibration, carbon monoxide, nitrogen dioxide, sul-
fur dioxide, ozone, and ambient sound pressure with 
a time interval of about 30  s (Wang et  al., 2021, Catlett 
et  al., 2022). From nearly 4.2 billion measurements col-
lected during its 5  years of operation in Chicago, our 
study focuses on the summer periods (June 21st to Sep-
tember 23rd) from 2018 to 2020. Due to an insufficient 
number of AoT nodes deployed in the first phase of the 
AoT project, 2016 and 2017 are excluded from this study. 
Another data source used in this study is satellite remote 
sensing data. In particular, Landsat 8 Collection-2 Level-2 
data covering the city of Chicago during the summer of 
2018 to 2020 are used to provide important information 
regarding the surrounding physical microenvironment 

of each AoT node. Landsat-8 Collection-2 Level-2 data 
provides high-quality images that have gone through 
geometric-related preprocessing including Terrain Pre-
cision Correction, Systematic Terrain Correction, and 
Geometric Systematic Correction as well as atmospheric 
correction using the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) and Land Surface 
Reflectance Code (LaSRC) surface reflectance algorithms 
(USGS, 2020; USGS, n.d.a; USGS, n.d.b). All 7 bands 
available are used to describe the physical environment of 
the study area. However, as the temperature is measured 
with AoT sensors instead of the Landsat Surface Tem-
peratures (LSTs) from Landsat-8 images, the LSTs are not 
used in this study. Further, we filter out the remote sens-
ing image tiles with cloud cover larger than 10% to make 
sure the physical environments of the study area are well-
described by the remote sensing data. About 12  GB of 
Landsat 8 Collection-2 Level-2 remote sensing data that 
were collected biweekly are used in this study.

Among all the data attributes obtained with AoT 
nodes and satellite remote sensing imagery, Table  1 
shows a selected number of attributes used in this 
study. The dependent variable is temperature that we 
aim to predict. The independent variables are organized 
into four categories: 1) environment variables includ-
ing relative humidity and light intensity measure of 
the microenvironment around each AoT sensor; 2) air 
quality variables including PM2.5, sulfur dioxide (SO2), 
and 10 μm particles are hypothesized to have a positive 
correlation with UHI effects; 3) physical environmen-
tal variables including Band1 to Band7 values collected 
from Landsat 8 Collection-2 Level-2 and the Euclidean 
distance between each AoT node to the geographic 
center of the city of Chicago (Hagan, 2019); 4) tempo-
ral variables including the time of day and day of year 
recording the timestamps when data measurements 
were taken. An independent variable is selected if the 
variable has been proven to have correlation with UHI 
formation by previous work in literature and there are 
sufficient reliable data captured at different times. All 
the attributes listed in Table  1 are used as input to fit 
and predict temperature and UHI clusters in this study. 
Different AoT sensor configurations listed in Table  1 
can be found at the AoT data download site, https://​
github.​com/​waggle-​sensor/​senso​rs/​tree/​master/​senso​
rs/​datas​heets.

4 � Method
Our method is centered on a cyberGIS framework for 
integrating multiple machine learning models into a 
multi-step workflow encompassing five major compo-
nents – data preparation, data preprocessing, mode-
ling, validation, and prediction. As shown in Fig.  3, the 

https://github.com/waggle-sensor/sensors/tree/master/sensors/datasheets
https://github.com/waggle-sensor/sensors/tree/master/sensors/datasheets
https://github.com/waggle-sensor/sensors/tree/master/sensors/datasheets
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high-frequency urban sensing data is collected from the 
AoT urban sensor network with a temporal frequency 
of 26  s on average (Wang et  al., 2021). Combined with 
remote sensing data collected from Landsat 8 (Col-
lection-2 Level-2), we further process the urban sens-
ing data by doing data filtering, anomaly detection, and 
missing value interpolation. For Landsat data, we extract 
the band value, which is the Digital Number (DN) of the 

band, for the location of each AoT node. As the tem-
poral granularity for physical environment indicators 
measured by remote sensing images are coarse especially 
compared with the AoT sensor data, a linear interpola-
tion is conducted on the weekly or bi-weekly collected 
remote sensing data to generate daily remote sensing 
images and corresponding DN as physical environment 
indicators. RFR, ANN, SVM, and polynomial regression 

Fig. 2  Network of 130 Array of Things (AoT) intelligent sensor nodes in Chicago
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are used in predicting UHI in Chicago. To evaluate the 
performance of each model, Mean Square Error (MSE) 
and Mean Absolute Error (MAE) are used as metrics. 
In the last step, cartographic maps and 3-D visualiza-
tion of fine spatiotemporal granularity representation of 
predicted UHI are integrated into the workflow. Com-
putational reproducibility is supported using a cyberGIS 
platform where all the code, data, and required software 
libraries are maintained for reproducing this study.

4.1 � Data preprocessing
Data preprocessing was conducted using cyberGIS-
Jupyter. First, the AoT data, which exceeds 500  GB in 
size, is filtered based on their geospatial location and 
time periods for this study that focuses on the summers 
of 2018, 2019, and 2020. Second, the high-frequency data 
is reduced into time-series data that has a time interval 
of 10 min. The data is first segregated based on its node 
location before being reduced into time-series data. Each 
sensor’s attributes are the average of all values under that 
time span recorded by the same sensor. Then, the anom-
aly values, those with a temperature that have erroneous 
records found in the raw AoT data, or beyond the exist-
ing boundary of each sensor or the predefined cutoff 
values are removed. After filtering out those abnormal 
values, further outlier detection methods are applied to 
the values from different sensors from the same node 
at the same time to get the outlier cutoff value. Here, 
since there is a situation where there are multiple sen-
sors in one node monitoring the same attributes at the 
same time, there is a need for anomaly detection to filter 

out the erroneous values. The fence is defined as: [Q1 – 
1.5IQR, Q3 + 1.5IQR], where Q1 is the first quantile, Q3 
is the third quantile, and IQR is the difference between 
Q3 and Q1 (Rousseeuw & Hubert, 2011). After filtering 
out the outliers, the valid values from different sensors 
are aggregated as their mean value and the output of the 
attributes for one certain AoT node at that time. While 
processing AoT data, another computing thread work-
ing with Landsat 8 Collection-2 Level-2 data is executed 
in parallel. For each AoT node, the band values from the 
remote sensing image pixel that contains the node are 
extracted based on the location of each AoT node to rep-
resent the physical microenvironment. Since the remote 
sensing imageries are available bi-weekly in our study, 
the band values are extracted using linear interpolation 
with remote sensing imageries from the two closest days 
available.

The last step for data preprocessing is data integration, 
where the processed AoT data is merged with the remote 
sensing imagery data based on their geographic locations. 
However, the integrated data cannot be used directly 
as an input to the machine learning models due to the 
existence of missing values. Especially for the AoT data-
set, not all types of sensors are equipped on each AoT 
node and there was often a time when certain sensors on 
a node were not functioning. To deal with missing val-
ues, a random forest-based Multivariate Imputation by 
Chained Equations (MICE) method is used to fill in the 
missing values (Wilson, 2021). MICE is a state-of-the-art 
method for treating complex incomplete data and is often 

Table 1  Summary of Variables

Variable Definition Unit Measurement Source

Dependent variable: temperature measured by AoT sensors

TEMP Temperature °C AoT AoT sensors: bmp180, htu21d, pr103j2, 
tmp112, tsys01, hih6130, htu21d

Independent variable: environment variable

HUMD Relative humidity RH AoT AoT sensors: hih4030, htu21d, hih6130

Light Light intensity uW/cm^2 AoT AoT sensors: tsl260rd, mlx75305, tsl250rd

Independent variable: air quality variable

PM2.5 Particles with diameters 2.5 µm and smaller μg/m^3 AoT AoT sensors: opc_n2, psm7003

SO2 Sulfur dioxide concentration ppm AoT AoT sensors: 3SP_SO2_20

10 μm Microparticle in diameters less than 10 μm μg/m^3 AoT AoT sensors: Psm7003

Independent variable: physical variable

B1 – B7 Band value from 1 to 7 with wavelength W/m2/μm Pixel (30 m × 30 m) Landsat 8 Collection-2 Level-2

DoC Euclidean distance between each AoT node to the 
geographic center of the city of Chicago

m Distance Map

Independent variable: temporal variables

ToD Time of day minutes AoT AoT timestamp

DoY Day of year day AoT AoT timestamp
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used for numeric data to resolve missing values (Buuren 
& Groothuis-Oudshoorn, 2011).

4.2 � Model and validation
Due to computational intensity of handling the large 
dataset, machine learning model training was conducted 
using Bridges-2 – a high-performance computer at the 
Pittsburgh Supercomputing Center. Graphics processing 
unit (GPU) Tesla v100 is equipped within Bridges-2 for 
model training. After normalizing the independent vari-
ables (Table  1), the dataset is randomly divided into 80 
percent training data and 20 percent testing data.

Polynomial regression is straightforward as we fit the 
regression model with the equation below:

Temp = β0 +

15

i=1

βixi +

15

i=1

15

j=1

βijxixj + ε

where Temp is temperature, which is the target func-
tion, the total number of independent variables is 15 
(Table 1), xi is the value corresponding to the ith attrib-
ute and ε is the residual variable from the model. The 
polynomial regression model serves as a baseline for 
the prediction. Compared with machine learning mod-
els, polynomial regression is relatively straightforward. 
Thus, the performance of our chosen machine learning 
models can be evaluated by comparing them with this 
polynomial regression model. ANN is designed with 
3 hidden layers. As other researchers have used ANN 
for predicting UHI effects (Oh et al., 2020), ANN can 
serve as a base line for our model validation. In addi-
tion, SVM and RFR are incorporated into the frame-
work of this study. To avoid overfitting, we choose 16 
as max depths for the RFR model as we are dealing 
with 15 independent variables.

Fig. 3  cyberGIS framework
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To evaluate the performance of each model, Mean 
Square Error (MSE) and Mean Absolute Error (MAE) 
are adopted as evaluation metrics:

where temp is the target temperature in the testing 
sample and temppredict is the temperature predicted 
with our framework.

4.3 � Prediction
Fine spatiotemporal granularity prediction of tempera-
ture and spatiotemporal clusters of UHI in Chicago is 
conducted with the best-performing machine learning 
method. 1  km and 10  min are selected as spatial and 
temporal resolution respectively. For each spatiotem-
poral point, the urban sensor-related independent 
variables are estimated using inverse-distance weigh-
ing (IDW) spatial interpolation based on the values of 
nearby AoT nodes. Remote sensing imagery-related 
independent variables are estimated daily using linear 
interpolation based on the two most recent remote 
sensing imageries covering Chicago at the location we 
are interested in.

5 � Result
First in Sect. 5.1, the validation of each machine learning 
model is conducted to identify the best machine learning 
model. Then in Sect. 5.2, fine spatiotemporal granularity 
prediction of UHI in Chicago is described.

5.1 � Validation
The testing metrics of polynomial regression and 
machine learning models are shown in Table 2. The RFR 
model outperforms the other machine learning mod-
els and the regression model in all three years based on 
both MAE and MSE. The MAE of RFR in all three years 

MSE =
1

n
(temp− temppredict)

2

MAE =
1

n
|temp− temppredict |

ranges from 0.45 to 0.8 degrees Celsius while MSE ranges 
from 0.4 to 1.3 square degrees Celsius. First, the evalua-
tion results of the RFR model are positive. Even in 2018, 
when the RFR model performs the worst, the evalua-
tion result is still acceptable. The MAE is less than 0.8, 
showing the average difference between predicted tem-
perature and the actual temperature monitored by urban 
sensors is less than 0.8. Given the fact that the mecha-
nism underlying the formation of UHI remains unclear 
and complicated, prediction accuracy with MAE less 
than 0.8 and MSE less than 1.3 is better compared with 
the benchmark from Amato et al. (2020) where the MAE 
is 1.15 degree Celsius. Second, the evaluation result in 
2020 is slightly better than the results in 2018 and 2019, 
which could be caused by the reduction of human activi-
ties during the COVID-19 pandemic. In this study, we 
consider the environmental, physical, temporal aspects 
as well as variables related to air quality to predict tem-
perature in the microenvironment. One factor we did 
not take into explicit consideration is human activities 
due to the limitation of high-frequency human activities 
data. It is understood that there is a positive correlation 
between UHI effects and human activities (Lai & Cheng, 
2010; Xie et al., 2010). However, during the pandemic in 
the US, there was a travel restriction on individuals and 
consequently human activities decreased in the summer 
of 2020 compared with 2018 and 2019. There is evidence 
that such lockdowns and travel restrictions triggered by 
COVID-19 pandemic had a significant impact on the 
heat emission and air quality indicators, which are used 
as input in this study (Wong et al., 2021). That might be 
a reason why we got better evaluation results in 2020 
compared with 2018 and 2019 as human activities are 
not taken into consideration in our model. Last, the RFR 
model performs consistently well. Admittedly, there is a 
difference between the evaluation results in three years. 
However, the difference is not significant, compared with 
other models like the regression model where the gap 
of MSE between 2018 and 2020 is about 6.5, the perfor-
mance of RFR is consistent in all three years.

For 2018 and 2019, both ANN and SVM models out-
perform the polynomial regression model. However, in 

Table 2  Model Evaluation

2018 2019 2020

MSE MAE MSE MAE MSE MAE

Polynomial
Regression

13.027 2.837 12.110 2.707 6.645 2.033

ANN 12.716 2.747 11.232 2.308 22.201 2.044

SVM 11.543 2.649 9.259 2.336 7.752 2.189

Random Forest Regression 1.268 0.794 1.24 0.784 0.443 0.455
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2020, the result with the polynomial regression model is 
better than the results from ANN and SVM. As the most 
straightforward model, the polynomial regression model 
did not perform well in predicting UHI as expected. The 
R-square value for polynomial regression in 2018, 2019 
and 2020 are 0.335, 0.385 and 0.697 and the adjusted 
r-square from 2018 to 2020 are 0.335, 0.384 and 0.696 
respectively. Both the r-square and the evaluating met-
rics, including MSE and MAE, show that polynomial 
regression cannot be used effectively in predicting UHI 
with the current data we have.

To compare between two machine learning models 
ANN and SVM, the MSE evaluation result from ANN is 
generally more significant, especially in 2020. High MSE 
and relatively low MAE indicate some extreme values 
predicted by ANN, showing the model can be unstable 
in the prediction of temperature. Even though the SVM 
model outperforms ANN with MSE used as the evalu-
ation metric, the ANN outperforms SVM in 2019 and 
2020 with MAE as the evaluation metric. The effective-
ness of ANN and SVM are considered similar in predict-
ing temperature with the existing dataset. However, these 
two models are not appropriate to be used in real-world 
scenarios because their prediction results are mediocre 
and the RFR model outperforms both models by a large 
margin. Because human activities could play a signifi-
cant role in the generation of UHI effects (Lai & Cheng, 
2010), the better prediction performance for 2020 than 
2018 and 2019 indicated by MAE can be explained by the 
relative absence of human activities in 2020 due to the 
COVID-19 pandemic.

As the RFR model performs the best in the valida-
tion phase, we investigated the decision trees from the 
model to understand the model’s functional mechanism. 
Figure 4 shows the first three layers of the first decision 
tree and importance of each feature after fitting the RFR 
model from 2018 to 2020. Figure 4 shows the first 3 lay-
ers for the first decision and depicts the contribution of 
each attribute to the performance of the RFR model. On 
the three layers of the tree for each fitted model from 
2018 to 2020, the attributes of humidity, time of the day, 
distance to the geographic center, PM2.5, day of the year, 
and band2 from remote sensing imagery play significant 
roles. Temporal factors, intuitively, are critical in predict-
ing temperature. Other than that, the PM2.5 indicator is 
significant in 2019. Since the humidity attribute is promi-
nent in all three years, it could be a deciding factor for 
predicting temperature. From the perspective of physi-
cal environment variables, the distance to the geographic 
center variable plays a significant role in the prediction 
for 2018 and 2019, which can be explained by the higher 
temperature around the geographic center of the city 
where the central business district is located in the city 

of Chicago. Lastly, the band2 attributes are worth noting 
in the decision tree in 2019. In Landsat 8, Band 2 is the 
band with a wavelength between 450 to 510 nm. As Band 
2 is often used in studies related to vegetation (Acharya & 
Yang, 2015), vegetation index and greenness of microen-
vironments could be a potential key to reduction of UHI 
effects (Imhoff, 2010). Gini importance, which is also 
known as the impurity-based feature importance, is the 
total decrease in node impurity averaged over all trees 
of the ensemble and it is one of the most used method 
for investigating the importance of features for random 
forest-based models (Menze et al., 2009). The three most 
import features, as shown in Fig. 4, are the temporal vari-
ables including day of the year and time of the day as well 
as humidity. In the cases of 2018 and 2019, the distance 
to the geographic center attribute plays a significant role 
as well. On the other hand, in 2019 and 2020, PM2.5 con-
centration contributes to the model performance to a 
relatively large degree.

To further evaluate the performance of the RFR model, 
we analyze the stability of the model in four months in 
each summer of the selected years from June to Septem-
ber. Figure 5 shows the boxplot of the fitted MAE for the 
model regarding the four months in each selected year. 
Even though the boxplot differs regarding different years 
and different months, the performance of the model is 
relatively stable, with the median being around 0.5 degree 
Celsius. Some outliers are likely caused by the noises of 
the urban sensor network data. Compared with the other 
methods, including ANN and SVM, which are used in 
previous studies to predict UHI, the RFR model stead-
ily outperforms in different years and months. While the 
actual MAE from the RFR model is about 0.8 in 2018 and 
2019 and 0.45 in 2020, the performance of the RFR model 
is stable throughout the summer in each year.

To demonstrate how the RFR model predicts spatial 
patterns of UHI, we create heatmaps to visualize UHI 
on the hottest day in Chicago in 2018 and 2019 as shown 
in Figs.  6 and 7. The hottest day in Chicago in 2018 is 
August 27th, with temperature ranging from 96 degrees 
Fahrenheit (35.6 degrees Celsius) to 78 degrees Fahren-
heit (25.6 degrees Celsius) based on the weather report 
from the National Oceanic and Atmospheric Administra-
tion (NOAA) and AccuWeather. On that day, there were 
in total 46 functioning AoT nodes available in Chicago.

For all the active AoT nodes in Chicago, based on the 
highest temperature recorded by each node on August 
27th, 2018, a heatmap of UHI is generated using the aver-
age observed temperature from those AoT nodes based 
on bilinear interpolation. Similarly, the UHI distribu-
tion heatmaps are generated with the temperature pre-
dicted with the RFR model and ANN model respectively. 
Figure 6 shows that the observed heatmap for UHI and 
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the predicted heatmap with RFR is highly consistent. 
Based on the heatmap generated from the temperature 
recorded with AoT on the left of Fig.  6, there is a heat 
island near the loop area of Chicago. The area close to 
the loop generally has a higher temperature than the sur-
rounding areas. However, the predicted heatmap from 
the ANN model, which works as a benchmark, is differ-
ent from the observed heatmap as there are three pre-
dicted heat islands located in the loop area of Chicago, 

the northern part of Chicago, and the southeast part of 
Chicago.

The same process is applied to the hottest day in 2019 
to generate heatmaps for comparison. Based on the 
weather report from NOAA and AccuWeather, the hot-
test day in Chicago in 2019 is July 20th with the highest 
temperature of 96 degrees Fahrenheit (35.6 degrees Cel-
sius) and the lowest temperature on that day being 76 
degrees Fahrenheit (24.4 degrees Celsius). On July 20th, 
2019, there were 39 functioning AoT nodes recording 

Fig. 4  The first three layers of the first decision tree and feature importance in the random forest approach (2018, 2019 and 2020)
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the surrounding environmental attributes including tem-
perature, humidity, PM2.5, etc. As we can see from Fig. 7, 
there are 7 heat islands with the observed data from 
AoT. Though the predicted heatmap with the RFR model 
shows a similar pattern, some of the heat islands includ-
ing two heat islands in the northern part of Chicago and 
one heat island in the southwestern part of Chicago are 
not as strong as they are on the observed heatmap. The 
predicted heatmaps from random forest regression and 
ANN are similar.

Figure  8 shows the predicted temperature using the 
RFR model against the temperature detected by AoT 
sensors on 2018.8.27 and 2019.7.20. Based on the test-
ing results, we argue that the RRF model can be used 

to accurately predict temperature with integrated high-
frequency urban sensor network and satellite remote 
sensing data. The RFR model outperforms the polyno-
mial regression model, SVM, and ANN in our case study 
focused on the city of Chicago.

5.2 � Spatiotemporal clusters of UHI
We apply the RFR model with 1 km as spatial resolution 
and 10  min as temporal granularity to delineate spati-
otemporal clusters of UHI within Chicago on the hot-
test day in 2018. Spatiotemporal points with extreme 
high temperature are clustered for visual interpretation. 
As shown in Fig.  9, the visualization depicts multiple 
spatiotemporal UHI clusters with fine spatiotemporal 

Fig. 5  Temporal distribution of MAE for random forest regression

Fig. 6  From left to right for 2018.8.27: observed UHI pattern, UHI pattern predicted with RFR, and UHI pattern predicted with ANN
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granularity. One major spatiotemporal cluster of UHI 
centered around East Village, Chicago where the latitude 
is 41.9 and longitude is -87.67 around 3 p.m. in the after-
noon. Apart from the major cluster, a minor heat island 
is detected in the north part of Chicago near Evanston. 
From the temporal perspective, a UHI cluster was first 
spotted around 9 a.m. in the downtown area of Chicago 
and ended around 8 p.m. Around 3 p.m., the tempera-
ture reached the highest. Instead of using the tempera-
ture recorded in different subareas of the city based on 
weather reports, our cyberGIS framework provides a way 

to detect UHI at fine spatiotemporal scales. Especially 
from the temporal perspective, the framework employed 
high-frequency urban sensor network data to study the 
temporal dimension of UHI, which has not been well 
addressed by previous work.

6 � Conclusions and future work
This study has developed a framework to integrate 
cyberGIS and machine learning for fine spatiotemporal 
granularity prediction of UHI with satellite remote sens-
ing data and high-frequency urban sensor network data. 

Fig. 7  From left to right on 2019.7.20: observed UHI pattern, UHI pattern predicted with RFR, and UHI pattern predicted with ANN

Fig. 8  Predicted temperature with the RFR model against temperature detected by AoT sensors on the hottest day in 2018 and 2019 respectively
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This framework is designed to assess the performance of 
the polynomial regression model, SVM, ANN, and RFR 
model in predicting spatial and temporal patterns of UHI 
in Chicago for the years of 2018, 2019, and 2020. First, 
the RFR model is found to achieve the best performance 
among all the machine learning models with MAE being 
0.45 degrees Celsius in 2020 and around 0.8 in 2018 and 
2019. Humidity, distance to geographic center and PM2.5 
concentration are found to be important factors contrib-
uting to the model performance of RFR model. Second, 
the RFR model is stable as the performance of the model 
is consistent during all four months in the summers of 
2018, 2019, and 2020. We constructed heatmaps to com-
pare the observed UHI and predicted UHI on the hottest 
day in 2018 and 2019. The heatmaps show that the pre-
dicted spatial patterns are similar to the corresponding 
patterns from the observed UHI based on the urban sen-
sor network data. Last, the framework is applied to delin-
eate fine-scale spatiotemporal patterns of UHI with 1-km 
spatial resolution and 10-min temporal resolution using 
the RFR model on the hottest day in 2018. Our frame-
work has demonstrated that the RFR model can be used 
effectively to predict spatiotemporal distributions of UHI.

We plan to conduct future work in three aspects. First, 
human activities are not fully addressed in our study, 
especially for the travel activities involving vehicles, as 
they emit not only heat but also exhaust gas, which is 
believed to cause UHI. Also, manufacturing activities and 
even the use of electric appliance such air conditioners 
by city residents may result in temperature increases in 
some places. As different human activities may contrib-
ute to the formation of UHI, the framework could be 
improved by integrating human activities data. Second, 
as machine learning models perform better with more 
high-quality data, the framework could be improved 
with more sensors and nodes deployed in urban envi-
ronments. Finally, two AoT follow-on projects are under 
way that are providing new, near real-time urban sens-
ing data. First, nodes with more powerful edge proces-
sors that can be customized with project-specific sensor 
packages are being deployed to replace AoT nodes in 
Chicago as part of a National Science Foundation Mid-
Scale Research Infrastructure development project called 
SAGE (Beckman et  al., 2019). Second, the AoT team 
partnered with Microsoft Research, JCDecaux, and the 
Environmental Law and Policy Center in 2021 to deploy 

Fig. 9  Prediction of UHI clusters in Chicago on 2018.8.27
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115 sensor nodes on bus shelters throughout Chicago, 
each measuring PM2.5, temperature, relative humid-
ity, and multiple air pollutant gases (Daepp et al., 2022). 
Using these and other new data sources, the framework 
will be enhanced to pursue near real-time prediction of 
UHI, which is critical to help people living urban areas to 
be better prepared for extreme heat situations.
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