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The fuzzy set has its own limitations due to the membership function only. The fuzzy set does 
not describe the negative aspects of an object. The Fermatean fuzzy set covers the negative 
aspects of an object. The complex Fermatean fuzzy set is the most effective tool for handling 
ambiguous and uncertain information. The aim of this research work is to develop new techniques 
for complex decision-making based on complex Fermatean fuzzy numbers. First, we construct 
different aggregation operators for complex Fermatean fuzzy numbers, using Einstein t-norms. 
We define a series of aggregation operators named complex Fermatean fuzzy Einstein weighted 
average aggregation (CFFEWAA), complex Fermatean fuzzy Einstein ordered weighted average 
aggregation (CFFEOWAA), and complex Fermatean fuzzy Einstein hybrid average aggregation 
(CFFEHAA). The fundamental properties of the proposed aggregation operators are discussed 
here. The proposed aggregation operators are applied to the decision-making technique with the 
help of the score functions. We also construct different algorithms based on different aggregation 
operators. The extended TOPSIS method is described for the decision-making problem. We apply 
the proposed extended TOPSIS method to MAGDM problem “selection of an English language 
instructor”. We also compare the proposed models with the existing models.

1. Introduction

Aggregation operators (AOs) are dominant because they collect diverse information in a single format. Aggregation operators 
are good tools in the multicriteria group decision-making (MCGDM) problem for selecting the most capable choice regarding the 
pivotal elements. When humans are unsure which option is the most valuable in the real-world MCGDM model, we use fuzzy set 
theory to solve the problem. In classical set theory, various AOs such as quasiarithmetic mean, harmonic mean, maximum, mini-

mum, geometric mean, minimum weighted operator, median, maximum weighted operator, and arithmetic mean are used to collect 
crisp information. Many researchers presented MCGDM models that made use of Yager AOs. Symmetry, continuity, monotonicity, 
idempotency, associativity, bisymmetry, and invariance are the properties of AOs.

Zadeh [1] in 1965 developed the concept of the classical set into the fuzzy set and defined a few fuzzy set operators. Song et al. 
[2] discussed both the fuzzy set techniques and the attributes. The notion of intuitionistic fuzzy set IFS, put out by Atanassov [3], is 
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one of the successful methods to manipulate unpredictability and uncertainty. A fuzzy set that incorporates degrees of satisfaction 
and dissatisfaction is known as an intuitionistic fuzzy set. For IFS, Yager [4] created the idea of ordered weighted average operators. 
In the intuitionistic fuzzy set (IFS) theory, weighted averaging operators were invented for the first time by Xu [5]. Wei [6] created 
the idea of “induced Geometric AOs for IF Data” and applied it to the multi-attribute decision-making (MADM) problem. The concept 
of generalized aggregating operations for IF information was first put forth by Zhao et al. [7]. The induced IF-correlated geometric 
operators and average aggregation operators were developed by Wei and Zhao and used in MADM. The Hamacher operators of the 
IFS theory were first introduced by Huang [8]. The idea of dynamic intuitionistic normal fuzzy aggregation operators was first forth 
by Yang et al. [9].

However, there are situations when the exports assign belongingness and non-belongingness values that are so high that the sum 
is greater than 1. Yager [10,11] presented another idea called the Pythagorean fuzzy set to solve such issues (PFS). The researchers 
created a wide range of aggregation operations using Pythagorean fuzzy data [12–21]. The study discovered that some values can be 
used to give belongingness and non-belongingness degrees and that their aggregate may be greater than 1. To get over this problem, 
Senapati and Yager [22] created a novel idea known as the Fermatean fuzzy set FFS. Finding higher accuracy than IFS and PFS is the 
area of expertise of FFS. The researchers used Fermatean fuzzy information to present [23–26] several AOs.

Later, Ramot [27] developed a brand-new idea known as the complex fuzzy set, which is better at regulating the restriction 
of fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. To make the most of fuzzy sets, experts can use Ramot’s [28]

illustration of complicated fuzzy logic to deal with such constraints. Geometric and arithmetic AOs are found by Bi et al. [29,30]

using CFNs. In order to extend CFS, Alkouri et al. [31] developed a complex intuitionistic fuzzy set (CIFS) and described its operations. 
Akram et al. [32] put forward an MCDM issue to assess their suggested CIF Hamacher aggregation operators. Garg et al. [33] proposed 
the CIF-weighted geometric operator and the CIF-weighted average operator. Rani et al. [34] introduced power AOs for CIFNs. In 
order to handle more complex data, Akram et al. [35] developed a complex Pythagorean fuzzy set (CPFS) as an addition to CIFS. 
An MCDM based on CPFNs and improved Pythagorean fuzzy Einstein AOs was introduced by Janani et al. [36]. Rahman [37] also 
provided an MCDM model that allows CPFNs to make use of different Einstein Geometric AOs. Akram et al. [38] developed Dombi 
AOs for CPFNs and offered an MCDM challenge. Mahmood et al. [39] applied CPFAOs to an MCDM based on the confidence level for 
CPFNs. The concept of CPFHAOs was defined by Akram et al. [40]. Akram et al. created a hybrid technique for CPFNs in the same 
article. Akram et al. [41] defined Yager AOs for CPFNs as a concept.

In addition to CIFS and CPFS, Chinnadurai et al. [42] presented a complex Fermatean fuzzy set (CFFS). In the same article, Chin-

nadurai et al. introduced several AOs named complex Fermatean fuzzy weighted geometric operator (CFFWGO), complex Fermatean 
fuzzy weighted average operator (CFFWAO), complex Fermatean fuzzy weighted power geometric operator (CFFWPGO), and com-

plex Fermatean fuzzy weighted power average operator to handle more uncertain and imprecise information in MADM problems 
(CFFWPAO).

Garg [43,44], and [45] created various group decision-making based on Einstein geometric aggregation operators and Einstein 
averaging aggregation operators. Wang and Liu [46] introduced the Einstein averaging aggregation procedures for IFS. Zhao and Wei 
[47] created hybrid geometric and aggregation operators using Einstein’s operations. Garg [48] introduced the Pythagorean fuzzy 
Einstein hybrid averaging aggregation operators and also posed a problem that needed to be resolved. Janani et al. [49] developed 
the concept of Einstein averaging aggregation operators for the complex Pythagorean fuzzy set. Rani et al. presented a MULTIMOORA 
method with Fermatean fuzzy Einstein aggregation operators [50].

Jushi and Kumar [51] developed the TOPSIS method, a flexible way of identifying the best choice, with the presentation of a 
MADM problem for IFS. For PFS, Zang and Xu [52] created the TOPSIS approach. Gul et al. [53] presented a TOPSIS approach for FFS. 
In their MADM, Kumar and Chen [54] used the Intuitionistic fuzzy Einstein weighted averaging (IFEWA) operator. Akram et al. [58]

defined the N-Soft sets for CFFNs. Akram et al. [59] developed the VIKOR method and applied to a group decision-making problem. 
Chinnadurai et al. [60] defined the distance measures under CFFNs. Broumi et al. [61] the Complex Fermatean Neutrosophic fuzzy 
set under complex Fermatean fuzzy numbers.

This article has the following motivations:

1. Due to the existence of phase terms, which the FS theory lacks, the CFFEA AOs are more adaptable solutions for handling data 
of a periodic nature.

2. Because they have a cube on both terms, the CFFEA AOs are cleverer at communicating two-dimensional ambiguous data. When 
it comes to periodic information, CFFEA AOs provide good communication tools if the outcomes of CIFEA AOs and CPFEA AOs 
are questionable.

3. If the CFS theory and CIFS theory fall short in terms of performance, the CFFS theory is more adaptable in dealing with periodic 
information in terms of Einstein t-norm and Einstein t-conorm. The experts frequently come up with ambiguous conclusions 
when choosing the best option while applying the CIFEA AOs and CPFEA AOs constraints. The CFFEA AOs are readily applicable 
and can be used to bypass these limitations.

4. When applied to an MAGDM challenge, Einstein AOs are useful tools for discovering more creative and adaptable results. The 
purpose of this paper is to outline the MAGDM issues for CFF information while using Einstein techniques.

5. In terms of Einstein operations, the CFFE-TOPSIS method’s objective is to select the best option from a group of decision 
alternatives based on a variety of factors. It is a multi-criteria decision-making method that chooses the optimal option 
by comparing alternatives relative to the ideal answer. The best option is the one that comes closest to the ideal resolu-
2
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Contribution

In this research study, we present;

1). The concept of the complex Fermatean fuzzy Einstein averaging aggregation operators.

2). We present a MAGDM problem for selecting the best English language instructor.

3). We also propose the TOPSIS method for the complex Fermatean fuzzy Einstein averaging aggregation (CFFEAA) operators.

4). We compare our proposed AOs with existing AOs.

The organization of this study is as follows:

We provide some fundamental definitions in section 2. We provide Einstein’s operations based on CFNs in the same section, which 
inspired us to create the concept of CFFEAAOs and their characteristics in section 3. Section 4 of this paper details the procedure 
for utilizing the CFFEA operator and the CFFE-TOPSIS technique to resolve the MAGDM issue using CFF data. We also provided a 
flowchart for the CFFE-TOPSIS approach in the same section. We create a MAGDM model in section 5 and use the suggested operators 
to solve it. In section 6, a comparison of the proposed operators with existing operators is developed. Section 7 of this research study 
contain the conclusion, future directions, limitation and discussion, author contribution, data availability and declaration of interest.

2. Preliminaries

Definition 1. [55]. If we consider 𝑆 as a universal set, a complex Fermatean fuzzy set 𝑀 over the universal set 𝑆 is defined as:

𝑀 = {⟨𝑠,Ψ𝑀 (𝑠),𝜛𝑀 (𝑠)⟩ ∣ 𝑠 ∈ 𝑆}, (1)

where Ψ𝑀 is called the degree of membership and 𝜛𝑀 is called the degree of nonmembership that has a mapping Ψ𝑀, 𝜛𝑀 ∶ 𝑆 ⟶
{𝑙 ∣ 𝑙 ∈𝐿 ∶ |𝑙| ≤ 1}. For every 𝑠 ∈ 𝑆, the degrees of membership and nonmembership is Ψ𝑀 (𝑠) =𝐴𝑀 (𝑠)𝑒𝑖𝑎𝑀 (𝑠) and 𝜛𝑀 (𝑠) = 𝐵𝑀 (𝑠)𝑒𝑖𝑏𝑀 (𝑠)

respectively. Where 𝐴𝑀, 𝐵𝑀 ∈ [0, 1], 𝑎𝑀, 𝑏𝑀 ∈ [0, 2𝜋], 0 ≤𝐴3
𝑀
(𝑠) +𝐵3

𝑀
(𝑠) ≤ 1, 𝑖 =

√
−1 and 0 ≤ ( 𝑎𝑀 (𝑠)

2𝜋3 ) + ( 𝑏𝑀 (𝑠)
2𝜋3 ) ≤ 1. The pair (Ψ𝑀, 𝜛𝑀 )

represents complex Fermatean fuzzy numbers. Where Ψ𝑀 is a membership function and 𝜛𝑀 is a nonmembership function. Eq. (1)

shows the CFFS.

Definition 2. [55]. The score function of the complex Fermatean fuzzy numbers (CFFNs) 𝐶 = (Ψ𝐶 , 𝜛𝐶 ) has the following formula:

𝑠(𝐶) = (𝐴3 −𝐵3) + 1
8𝜋3

(
𝑎3 − 𝑏3

)
; (2)

where 𝑠(𝐶) ∈ [−2, 2]. Eq. (2) shows the score function.

Definition 3. [55]. The formula for the accuracy function 𝑓 of the CFFNs 𝐶 = (Ψ𝐶 , 𝜛𝐶 ) is given below:

𝑓 (𝐶) = (𝐴3 +𝐵3) + 1
8𝜋3

(
𝑎3 + 𝑏3

)
; (3)

where 𝑓 (𝐶) = [0, 2]. Eq. (3) shows the accuracy function.

Definition 4. [55]. In order to compare two CFFNs 𝐶1 = (𝐴3
1𝑒

𝑖𝑎1 , 𝐵1𝑒
𝑖𝑏1 ) and 𝐶2 = (𝐴2𝑒

𝑖𝑎2 , 𝐵2𝑒
𝑖𝑏2 ) then

(1) 𝐶1 ≻ 𝐶2 (𝐶1 is superior to 𝐶2) if 𝑠(𝐶1) ≻ 𝑠(𝐶2);
(2) If 𝑠(𝐶1) = 𝑠(𝐶2) then

(a) If 𝑓 (𝐶1) ≻ 𝑓 (𝐶2), then 𝐶1 ≻ 𝐶2 (𝐶1 is superior to 𝐶2);
(b) If 𝑓 (𝐶1) = 𝑓 (𝐶2), then 𝐶1 ∼ 𝐶2 (𝐶1 is equivalent to 𝐶2).

2.1. Einstein t-norm and Einstein t-conorm

In fuzzy set theory, t-norm and t-conorm are used to define operations. Einstein developed t-norm and t-conorm into a specific 
form, Einstein sum, and Einstein product respectively. The definition of Einstein’s t-norm and Einstein’s t-conorm are given below:

(𝑇 )𝐸 (𝑞, 𝑟) = 𝑞 ⊗ 𝑟 = 𝑞𝑟

1 + (1 − 𝑞)(1 − 𝑟)
(4)(

𝑇 ∗)𝐸 (𝑞, 𝑟) = 𝑞 ⊕ 𝑟 = 𝑞 + 𝑟

1 + 𝑞𝑟
(5)

for all 𝑞, 𝑟 ∈ [0, 1]. Eq. (4) and (5) represent Einstein’s norms.

2.2. Einstein operations for complex Fermatean fuzzy numbers
3

If we suppose three CFFNs 𝐶 = (𝐴𝐶𝑒
𝑖𝑎𝐶 , 𝐵𝐶𝑒

𝑖𝑏𝐶 ), 𝐶1 = (𝐴𝐶1
𝑒
𝑖𝑎𝐶1 , 𝐵𝐶1

𝑒
𝑖𝑏𝐶1 ), and 𝐶2 = (𝐴𝐶2

𝑒
𝑖𝑎𝐶2 , 𝐵𝐶2

𝑒
𝑖𝑏𝐶2 ). Then we have;
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1.

𝐶1 ⊗𝐶2 =
𝐴3
1𝐴

3
2

3
√

1 + (1 −𝐴3
1)(1 −𝐴3

2)
𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

(𝑎1∕2𝜋)(𝑎2∕2𝜋)

3
√

1+
(
(1−(𝑎1∕2𝜋)3(1−(𝑎2∕2𝜋)3

)
⎞⎟⎟⎟⎠,

3

√√√√𝐵3
1 +𝐵3

2 −𝐵3
1𝐵

3
2

1 +𝐵3
1𝐵

3
2

𝑒
𝑖2𝜋

(
3
√

(𝑏1∕2𝜋)3+(𝑏2∕2𝜋)3−(𝑏1∕2𝜋)3(𝑏2∕2𝜋)3

1+(𝑏1∕2𝜋)3(𝑏2∕2𝜋)3)

)

2.

𝐶1 ⊕𝐶2 =
3

√√√√𝐴3
1 +𝐴3

2 −𝐵3
1𝐵

3
2

1 +𝐴3
1𝐴

3
2

𝑒
𝑖2𝜋

(
3
√

(𝑎1∕2𝜋)3+(𝑎2∕2𝜋)3−(𝑎1∕2𝜋)3(𝑎2∕2𝜋)3

1+(𝑎1∕2𝜋)3(𝑎2∕2𝜋)3)

)
,

𝐵1𝐵2

3
√

1 + (1 −𝐵3
1)(1 −𝐵3

2)
𝑒

𝑖2𝜋

(
(𝑏1∕2𝜋)(𝑏2∕2𝜋)

3
√

1+(1−(𝑏1∕2𝜋)3)(1−(𝑏2∕2𝜋)3)

)

3.

𝛼𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√(
1+𝐴3

1

)𝛼
−(1−𝐴3

1)
𝛼(

1+𝐴3
1

)𝛼
+(1−𝐴3

1)
𝛼
𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝
3

√√√√√(
1+(𝑎∕2𝜋)3

)𝛼
−
(
1−(𝑎∕2𝜋)3

)𝛼(
1+(𝑎∕2𝜋)3

)𝛼
+
(
1−(𝑎∕2𝜋)3

)𝛼
⎞⎟⎟⎟⎠,

3√2(𝐵)𝛼

3
√(

1+(1−𝐵3)
)𝛼+(𝐵3)𝛼

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑏∕2𝜋)𝛼

3
√(

1+
(
1−(𝑏∕2𝜋)3

))𝛼
+(𝑏∕2𝜋)3𝛼

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4.

𝐶𝛼 =
3
√
2(𝐴)𝛼

3
√(

1 + (1 −𝐴3
1)
)𝛼 + (𝐴3

1)
𝛼

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑎∕2𝜋)𝛼

3
√(

1+
(
1−(𝑎∕2𝜋)3

))𝛼
+(𝑎∕2𝜋)3𝛼

⎞⎟⎟⎟⎠,

3

√√√√(
1 +𝐵3

)𝛼 − (1 −𝐵3)𝛼(
1 +𝐵3

)𝛼 + (1 −𝐵3)𝛼
𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝
3

√√√√√(
1+(𝑏∕2𝜋)3

)𝛼
−
(
1−(𝑏∕2𝜋)3

)𝛼(
1+(𝑏∕2𝜋)3

)𝛼
+
(
1−(𝑏∕2𝜋)3

)𝛼
⎞⎟⎟⎟⎠

3. Complex Fermatean fuzzy Einstein averaging aggregation operators

In the above section we have developed Einstein operational laws for CFFNs. Now using these developed Einstein operational laws, 
a series of aggregation operators is discussed. These series of aggregation operators is named as complex Fermatean fuzzy Einstein 
weighted average aggregation operators, complex Fermatean fuzzy Einstein ordered weighted average aggregation operators and 
complex Fermatean fuzzy Einstein hybrid weighted average aggregation operators. Also we have discussed the basic properties for 
the developed AOs under CFFS information.

3.1. Complex Fermatean fuzzy Einstein weighted average operator

Definition 5. If we have a collective set of CFFNs denoted by 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with (𝑠 = 1, 2, ..., 𝑛). If the weight vector 
exists and represented by 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 , then we can define a (CFFEWAO) as:

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑝 (6)

where the weight vector of 𝐾𝑝 can be represented by 𝜂𝑝 with the condition Σ𝑛
𝑝=1𝜂𝑝 = 1, where 𝜂𝑝 lies in [0, 1]. Eq. (6) represents the 
4

CFFEWA operator.
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Theorem 6. If there exists a collective set of 𝐶𝐹𝐹𝑁𝑠 represented by 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎1 , 𝐵𝑝𝑒

𝑖𝑏1 ) with (𝑝 = 1, 2, ..., 𝑛). If 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇
represents the weight vector, then the assembled values of CFFNs can be acquired by using the CFFEWA operator that is given as:

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1+𝐴3

1

)𝜂𝑝−
𝑛∏

𝑝=1
(1−𝐴3

1)
𝜂𝑝

𝑛∏
𝑝=1

(
1+𝐴3

1

)𝜂𝑝

+
𝑛∏

𝑝=1
(1−𝐴3

1)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑛∏
𝑝=1

(
1+(𝑎∕2𝜋)3

)𝜂𝑝
−

𝑛∏
𝑝=1

(
1−(𝑎∕2𝜋)3

)𝜂𝑝
𝑛∏

𝑝=1

(
1+(𝑎∕2𝜋)3

)𝜂𝑝
+

𝑛∏
𝑝=1

(
1−(𝑎∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑝=1

3√2(𝐵)
𝜂𝑝

3

√√√√√ 𝑛∏
𝑝=1

(
1+(1−𝐵3)

)𝜂𝑝
+

𝑛∏
𝑝=1

(𝐵3)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑝=1

3√
𝛿(𝑏∕2𝜋)

𝜂𝑝

3

√√√√√√ 𝑛∏
𝑝=1

(
1+

(
1−(𝑏∕2𝜋)3

))𝜂𝑝
+

𝑛∏
𝑝=1

(𝑏∕2𝜋)3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where the weight of 𝐾𝑝 is represented by 𝜂𝑝 that must lie in the interval [0, 1], where the condition that Σ𝑛
𝑝=1𝜂𝑝 = 1 must be satisfied. 

Mathematical induction can be useful to proving the theorem.

Proof. Case 1. Let us check it by the condition that if 𝑛 = 1, so we get □

𝐶𝐹𝐹𝐸𝑊𝐴𝜂(𝐾1, 𝐾2, ..., 𝐾𝑛) = Σ1𝜂1 = 𝜂1( as we know that Σ1 = 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√(
1+𝐴3

1

)𝛼
−(1−𝐴3

1)(
1+𝐴3

1

)
+(1−𝐴3

1)
𝑒

𝑖2𝜋
⎛⎜⎜⎝ 3

√√√√(
1+(𝑎31∕2𝜋)

3
)
−
(
1−(𝑎31∕2𝜋)

3
)

(
1+(𝑎31∕2𝜋)

3
)
+
(
1−(𝑎31∕2𝜋)

3
) ⎞⎟⎟⎠,

3√2(𝐵1)

3
√(

1+(1−𝐵3
1 )
)
+(𝐵3

1 )
𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑏1∕2𝜋)

3
√(

1+
(
1−(𝑏1∕2𝜋)3

))
+(𝑏1∕2𝜋)3

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (𝐴3

1𝑒
𝑖𝑎31 ,𝐵1𝑒

𝑖𝑏1 ) (8)

Here, the result is satisfactory for 𝑛 = 1. Eq. (8) shows the special case of our proposed study.

Case 2. Now let us check the equation for the condition that (𝑛 = 1) and 𝑛 = 𝑟 denotes a natural number, so

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑟) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑟∏

𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝−
𝑟∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑟∏
𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝

+
𝑟∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑟∏
𝑝=1

(
1+(𝑎𝑝∕2𝜋)3

)𝜂𝑝
−

𝑟∏
𝑝=1

(
1−(𝑎𝑝∕2𝜋)3

)𝜂𝑝
𝑟∏

𝑝=1

(
1+(𝑎𝑝∕2𝜋)3

)𝜂𝑝
+

𝑟∏
𝑝=1

(
1−(𝑎𝑝∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑟∏
𝑝=1

3√2(𝐵𝑝)
𝜂𝑝

3

√√√√√ 𝑟∏
𝑝=1

(
1+(1−𝐵3

𝑝 )
)𝜂𝑝

+
𝑟∏

𝑝=1
(𝐵3

𝑝 )
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟∏
𝑝=1

3√2(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑟∏
𝑝=1

(
1+

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+

𝑟∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

suppose that 𝑛 = 𝑟 + 1

𝑛⨁ ⨁

5

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑟+1) =
𝑝=1

𝜂𝑝𝐾𝑝 𝜂𝑟+1𝐾𝑟+1 =
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑟∏

𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝−
𝑟∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑟∏
𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝

+
𝑟∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑟∏
𝑝=1

(
1+(𝑎𝑝∕2𝜋)3

)𝜂𝑝
−

𝑟∏
𝑝=1

(
1−(𝑎𝑝∕2𝜋)3

)𝜂𝑝
𝑟∏

𝑝=1

(
1+(𝑎𝑝∕2𝜋)3

)𝜂𝑝
+

𝑟∏
𝑝=1

(
1−(𝑎𝑝∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑟∏
𝑝=1

3√2(𝐵𝑝)
𝜂𝑝

3

√√√√√ 𝑟∏
𝑝=1

(
1+(1−𝐵3

𝑝 )
)𝜂𝑝

+
𝑟∏

𝑝=1
(𝐵3

𝑝 )
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟∏
𝑝=1

3√2(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑟∏
𝑝=1

(
1+

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+

𝑟∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⨁
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√(
1+𝐴3

𝑟+1

)𝜂𝑟+1−(1−𝐴3
𝑟+1)

𝜂𝑟+1(
1+𝐴3

𝑟+1

)𝑟+1
+(1−𝐴3

𝑟+1)
𝑟+1

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝
3

√√√√√√
(
1+(𝑎𝑟+1∕2𝜋)3

)𝜂𝑟+1
−
(
1−(𝑎𝑟+1∕2𝜋)3

)𝜂𝑟+1
(
1+(𝑎𝑟+1∕2𝜋)3

)𝜂𝑟+1
+
(
1−(𝑎𝑟+1∕2𝜋)3

)𝑟+1
⎞⎟⎟⎟⎠,

3√2(𝐵𝑝)𝑟+1

3
√(

1+(2−1)(1−𝐵3
𝑟+1)

)𝜂𝑟+1
+(2−1)𝐵

3𝜉𝑟+1
𝑟+1

𝑒

2𝜋

⎛⎜⎜⎜⎜⎝
3√2(𝐵𝑟+1∕2𝜋)

𝜂𝑟+1

3
√(

1+
(
1−(𝑏𝑟+1∕2𝜋)3

))𝜂𝑟+1
+(𝑏𝑟+1∕2𝜋)3

𝜂𝑟+1

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑟+1∏
𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝−
𝑟+1∏
𝑝=1

(1−𝐴3
𝑝)

𝜂𝑝

𝑟+1∏
𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝

+
𝑟+1∏
𝑝=1

(1−𝐴3
𝑝)

𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√√

𝑟+1∏
𝑝=1

(
1+(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
−

𝑟+1∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
𝑟+1∏
𝑝=1

(
1+(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
+

𝑟+1∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

3√2
𝑟+1∏
𝑝=1

(𝐵𝑝)
𝜂𝑝

3

√√√√√𝑟+1∏
𝑝=1

(
1+(1−𝐵3

𝑝 )
)𝜂𝑝

+
𝑟+1∏
𝑝=1

𝐵
3𝜂𝑝
𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3√2

𝑟+1∏
𝑝=1

(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√√𝑟+1∏
𝑝=1

(
1+

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+

𝑟+1∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

So we found a satisfactory output for all the values of 𝑛 because for 𝑛 = 𝑟 + 1, the equation is satisfied. Where 𝑛 belongs to natural 
numbers. Eq. (10) is the special case of our proposed work.

Example 7. Suppose that there are three 𝐶𝐹𝐹𝑁𝑠, 𝐾1 =
(
0.68𝑒𝑖2𝜋(0.88),0.82𝑒𝑖2𝜋(0.60)

)
, 𝐾2 =

(
0.85𝑒𝑖2𝜋(0.64),0.63𝑒𝑖2𝜋(0.80)

)
, and 𝐾3 =(

0.83𝑒𝑖2𝜋(0.55),0.73𝑒𝑖2𝜋(0.90)
)
. If the weight vector is 𝜂 = (0.37, 0.43, 0.2)𝑇 . So putting the values in the given equation

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2,𝐾3) =
3⨁

𝑝=1
𝜂𝑝𝐾𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

3

√√√√√√√√√
3∏

𝑝=1

(
1+3𝐴3

𝑝

)𝜂𝑝− 3∏
𝑝=1

(1−𝐴3
𝑝)

𝜂𝑝

3∏
𝑝=1

(
1+3𝐴3

𝑝

)𝜂𝑝

+3
3∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√√

3∏
𝑝=1

(
1+3(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
−

3∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
3∏

𝑝=1

(
1+3(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
+3

3∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

3∏
𝑝=1

3√2(𝐵𝑝)
𝜂𝑝

3

√√√√ 3∏(
3
)𝜂𝑝 3∏ 3 𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∏
𝑝=1

3√2(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√√ 3∏
𝑝=1

(
1+3

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+3

3∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

6

⎜⎝ √
𝑝=1

1+3(1−𝐵𝑝 ) +3
𝑝=1

(𝐵𝑝 ) ⎟⎠
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= 0.8023349885𝑒𝑖2𝜋(0.1188531875),0.7563003774𝑒𝑖2𝜋(0.1018040977)

Theorem 8 (Idempotent property). Let us denote the family of 𝐶𝐹𝐹𝑁𝑠 by 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴3
𝑝𝑒

𝑖𝑎𝑝 , 𝐵𝑝𝑒
𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛). Suppose that 

𝐾𝑝 =𝐾 ∀𝑝, then:

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =𝐾. (11)

Proof. As it is known that 𝐾𝑝 =𝐾 = (𝐴𝑝𝑒
𝑖𝑎, 𝐵𝑝𝑒

𝑖𝑏)∀𝑝, so equation (7) implies that: □

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝−
𝑛∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑛∏
𝑝=1

(
1+𝐴3

𝑝

)𝜂𝑝

+
𝑛∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑛∏
𝑝=1

(
1+(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
−

𝑛∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
𝑛∏

𝑝=1

(
1+(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
+

𝑛∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑝=1

3√2(𝐵𝑝)
𝜂𝑝

3

√√√√√ 𝑛∏
𝑝=1

(
1+(1−𝐵3

𝑝 )
)𝜂𝑝

+
𝑛∏

𝑝=1
(𝐵3

𝑝 )
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑝=1

3√2(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑛∏
𝑝=1

(
1+

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+

𝑛∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (𝐴𝑒𝑖𝑎,𝐵𝑒𝑖𝑏) =𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3

√(
1+𝐴3)−(1−𝐴3)(
1+𝐴3)+(1−𝐴3) 𝑒

𝑖2𝜋
⎛⎜⎜⎝ 3

√√√√(
1+(𝑎∕2𝜋)3

)
−
(
1−(𝑎∕2𝜋)3

)
(
1+(𝑎∕2𝜋)3

)
+
(
1−(𝑎∕2𝜋)3

) ⎞⎟⎟⎠,
3√2(𝐵)

3
√(

1+(1−𝐵3)
)
+(𝐵3)

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑏∕2𝜋)
3
√(

1+
(
1−(𝑏∕2𝜋)3

))
+(𝑏∕2𝜋)3

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(12)

So the result is

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =𝐾. (13)

Eq. (13) shows that the idempotent property is satisfied.

Theorem 9 (Boundedness property). Let us denote the family of 𝐶𝐹𝐹𝑁𝑠 by 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛). Suppose 
that 𝐾𝑝 =𝐾 ∀𝑝, then

𝐾+ =
(
max
𝑝

𝐴𝑝𝑒
𝑖max𝑝 𝑎𝑝 ,min

𝑝
𝐵𝑝𝑒

𝑖min𝑝 𝑏𝑝
)

(14)

and

𝐾− =
(
min
𝑝

𝐴𝑝𝑒
𝑖min𝑝 𝑎𝑝 ,max

𝑝
𝐵𝑝𝑒

𝑖max𝑝 𝑏𝑝
)

(15)

then

𝐾−
≤ 𝐶𝐹𝐹𝐸𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) ≤𝐾+. (16)

Eq. (14) and (15) show the maximum and minimum parts of the family of the complex Fermatean fuzzy numbers respectively. 
While Eq. (16) shows the value of CFFEWA operator.

Theorem 10 (Monotonicity). Let us consider families of CFFNs by 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) and 𝐾∗
𝑝 = (Ψ∗

𝑝, 𝜛∗
𝑝 ) = (𝐴∗

𝑝𝑒
𝑖𝑎𝑝∗, 𝐵∗

𝑝 𝑒
𝑖𝑏𝑝∗)

with (𝑝 = 1, 2, ..., 𝑛) so if 𝐴𝑝 ≤𝐴∗
𝑝 , 𝑎𝑝 ≤ 𝑎∗𝑝, 𝐵𝑝 ≥ 𝐵∗

𝑝 and 𝑏𝑝 ≥ 𝑏∗𝑝 then

𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) ≤ 𝐶𝐹𝐹𝐸𝑊𝐴𝜂(𝐾∗
1 ,𝐾

∗
2 , ...,𝐾

∗
𝑛 ). (17)
7

Eq. (17) shows the monotonicity of the CFFEWA operator.
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3.2. Complex Fermatean fuzzy Einstein ordered weighted average operator

Definition 11. Suppose that a collective set of the CFFNs is denoted by 𝐾𝑝 that is 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛), 
where the weight vector is given as 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 , then we can define a complex Fermatean fuzzy Einstein ordered weighted 
average (CFFEOWA) operator as:

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑓 (𝑝), (18)

here the permutation of (1, 2, 3, ..., 𝑛), is denoted by 𝑓 (1), 𝑓 (2), ..., 𝑓 (𝑛) and ∀𝑠 = 1, 2, 3, ..., 𝑛 −1, 𝑍𝑓 (𝑝) ≥𝑍𝑓 (𝑝+1), where the 𝜂𝑝 denotes the 

weight vector of 𝐾𝑝 that lies in the interval [0, 1] with a satisfactory condition of 
𝑛∏

𝑝=1
𝜂𝑝 = 1. Eq. (18) shows the CFFEOWA operator.

Theorem 12. Let us consider a collective set of CFFNs denoted by 𝐾𝑝 and defied as 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛), a 
weight vector 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 , the assembled value can be got by utilizing CFFEOWA operator, where the assembled value should also be a 
CFFN is the following:

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑓 (𝑝) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝− 𝑛∏
𝑝=1

(1−𝐴3
𝑓 (𝑝))

𝜂𝑝

𝑛∏
𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝

+
𝑛∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑛∏
𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
−

𝑛∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
𝑛∏

𝑝=1

(
1+(𝐴𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
+

𝑛∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑝=1

3√2(𝐵𝑓 (𝑝))
𝜂𝑝

3

√√√√√ 𝑛∏
𝑝=1

(
1+(1−𝐵3

𝑓 (𝑝))
)𝜂𝑝

+
𝑛∏

𝑝=1
(𝐵3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑝=1

3√2(𝑏𝑓 (𝑝)∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑛∏
𝑝=1

(
1+

(
1−(𝑏𝑓 (𝑝)∕2𝜋)3

))𝜂𝑝
+

𝑛∏
𝑝=1

(𝑏𝑓 (𝑝)∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

here the permutation of (1, 2, 3, ..., 𝑛), is denoted by 𝑓 (1), 𝑓 (2), ..., 𝑓 (𝑛) and ∀𝑠 = 1, 2, 3, ..., 𝑛 − 1, 𝑍𝑓 (𝑝) ≥ 𝑍𝑓 (𝑝+1), where the 𝜂𝑝 denotes the 

weight vector of 𝐾𝑝 that lies in the interval [0, 1] with a satisfactory condition of 
𝑛∏

𝑝=1
𝜂𝑝 = 1. Eq. (19) shows the CFFEOWA operator.

Example 13. Let us consider three CFFNs 𝐾1 =
(
0.65𝑒𝑖2𝜋(0.53),0.25𝑒𝑖2𝜋(0.48)

)
, 𝐾2 =

(
0.66𝑒𝑖2𝜋(0.73),0.21𝑒𝑖2𝜋(0.49)

)
and 𝐾3 = (0.38𝑒𝑖2𝜋(0.19),

0.16𝑒𝑖2𝜋(0.17)). Suppose that the weight vector is 𝜂 = (0.42, 0.3, 0.28)𝑇 , then by applying equation (2), the calculated score function is 
given as:

𝑠(𝐾1) = (0.65)3 − (0.25)3 + (0.53)3 − (0.48)3 = 0.297285

𝑠(𝐾2) = (0.66)3 − (0.21)3 + (0.73)3 − (0.49)3 = 0.549603

𝑠(𝐾3) = (0.38)3 − (0.16)3 + (0.19)3 − (0.17)3 = 0.052722

so we have

𝑠(𝐾2) ≻ 𝑠(𝐾1) ≻ 𝑠(𝐾3).

Now we can write

𝐾𝑓 (2) =𝐾2 =
(
0.66𝑒𝑖2𝜋(0.73),0.21𝑒𝑖2𝜋(0.49)

)
𝐾𝑓 (1) =𝐾1 =

(
0.65𝑒𝑖2𝜋(0.53),0.25𝑒𝑖2𝜋(0.48)

)
𝐾𝑓 (3) =𝐾3 =

(
0.38𝑒𝑖2𝜋(0.19),0.16𝑒𝑖2𝜋(0.17)

)
.

3⨁

8

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2,𝐾3) =
𝑝=1

𝜂𝑝𝐾𝑝
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
3∏

𝑝=1

(
1+3𝐴3

𝑝

)𝜂𝑝−
3∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

3∏
𝑝=1

(
1+3𝐴3

𝑝

)𝜂𝑝

+3
3∏

𝑝=1
(1−𝐴3

𝑝)
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√√

3∏
𝑝=1

(
1+3(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
−

3∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
3∏

𝑝=1

(
1+3(𝑎3𝑝∕2𝜋)3

)𝜂𝑝
+3

3∏
𝑝=1

(
1−(𝑎3𝑝∕2𝜋)3

)𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

3∏
𝑝=1

3√2(𝐵𝑝)
𝜂𝑝

3

√√√√√ 3∏
𝑝=1

(
1+3(1−𝐵3

𝑝 )
)𝜂𝑝

+3
3∏

𝑝=1
(𝐵3

𝑝 )
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∏
𝑏=1

3√2(𝑏𝑝∕2𝜋)
𝜂𝑝

3

√√√√√√√ 3∏
𝑝=1

(
1+3

(
1−(𝑏𝑝∕2𝜋)3

))𝜂𝑝
+3

3∏
𝑝=1

(𝑏𝑝∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
we get

= (0.5965357531𝑒𝑖2𝜋(0.1589770329),0.1969876180𝑒𝑖2𝜋(0.05665173660))

Theorem 14 (Idempotent property). Let us consider a collective set of the CFFNs denoted by 𝐾𝑝 and defied as: 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) =
(𝐴𝑝𝑒

𝑖𝑎𝑝 , 𝐵𝑝𝑒
𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛), and a weight vector 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 , the assembled value can be got by utilizing the CFFEOWA 

operator, where the assembled value should also be a CFFN is the following.

Proof. As it is known that 𝐾𝑝 =𝐾 = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 )∀𝑝, then equation (11) becomes: □

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝− 𝑛∏
𝑝=1

(1−𝐴3
𝑓 (𝑝))

𝜂𝑝

𝑛∏
𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝

+
𝑛∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑛∏
𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
−

𝑛∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
𝑛∏

𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
+

𝑛∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑝=1

3√2(𝐵3
𝑓 (𝑝))

𝜂𝑝

3

√√√√√ 𝑛∏
𝑝=1

(
1+(1−𝐵3

𝑓 (𝑝))
)𝜂𝑝

+
𝑛∏

𝑝=1
(𝐵3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑝=1

3√2(𝑏𝑓 (𝑝)∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑛∏
𝑝=1

(
1+

(
1−(𝑏𝑓 (𝑝)∕2𝜋)3

))𝜂𝑝
+

𝑛∏
𝑝=1

(𝑏𝑓 (𝑝)∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√(
1+𝐴3

1

)
−(1−𝐴3

1)(
1+𝐴3

1

)
+(1−𝐴3

1)
𝑒

𝑖2𝜋
⎛⎜⎜⎝ 3

√√√√(
1+(𝑎∕2𝜋)3

)
−
(
1−(𝑎∕2𝜋)3

)
(
1+(𝑎∕2𝜋)3

)
+
(
1−(𝑎∕2𝜋)3

) ⎞⎟⎟⎠,

3√2(𝐵)
3
√(

1+(1−𝐵3)
)
+(𝐵3)

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑏∕2𝜋)
3
√(

1+
(
1−(𝑏∕2𝜋)3

))
+(𝑏∕2𝜋)3

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (𝐴𝑒𝑖𝑎,𝐵𝑒𝑖𝑏) =𝐾 (20)

Eq. (20) shows the idempotent property.

So it is proved that

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) =𝐾.

Theorem 15 (Boundedness property). Let us consider a collective set of CFFNs denoted by 𝐾𝑝 and defied as 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 )
with (𝑝 = 1, 2, ..., 𝑛). If

𝐾+ =
(
max
𝑝

𝐴𝑝𝑒
𝑖max𝑝 𝑎𝑝 ,min

𝑝
𝐵𝑝𝑒

𝑖min𝑝 𝑏𝑝
)
, (21)

𝐾− =
(
min𝐴 𝑒𝑖min𝑝 𝑎𝑝 ,max𝐵 𝑒𝑖max𝑝 𝑏𝑝

)

9

𝑝 𝑝
𝑝

𝑝
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then

𝐾−
≤ 𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) ≤𝐾+. (22)

Eq. (21) shows the maximum and minimum values of the CFFEOWA operator, where Eq. (22) shows the boundedness property of the 
CFFEOWA operator.

Theorem 16 (Monotonicity). Let us consider two collective sets of CFFNs 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) and 𝐾∗
𝑝 = (Ψ∗

𝑝, 𝜛∗
𝑝 ) =

(𝐴∗
𝑝𝑒

𝑖𝑎𝑝∗, 𝐵∗
𝑝 𝑒

𝑖𝑏𝑝∗) with (𝑝 = 1, 2, ..., 𝑛), if 𝐴𝑝 ≤𝐴∗
𝑝 , 𝑎𝑝 ≤ 𝑎∗𝑝, 𝐵𝑝 ≥ 𝐵∗

𝑝 and 𝑏𝑝 ≥ 𝑏∗𝑝 then

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2, ...,𝐾𝑛) ≤ 𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾∗
1 ,𝐾

∗
2 , ...,𝐾

∗
𝑛 ) (23)

Eq. (23) shows the monotonic property of the CFFEOWA operator.

The application of the CFFEWA operator is to weight the CFFNs while arranging the CFFNs in order, the CFFEOWA operator 
is used. To get the complex Fermatean fuzzy Einstein average (CFFEA) operator, we collect the above two properties as a single 
operator.

3.3. Complex Fermatean fuzzy Einstein hybrid aggregation operator

Definition 17. Let us consider a collective set of the CFFNs denoted by 𝐾𝑝 and defined as 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with 
(𝑝 = 1, 2, ..., 𝑛), so the CFFEHA operator has the following definition:

𝐶𝐹𝐹𝐸𝐻𝐴𝜂,𝜗(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑓 (𝑝), (24)

where the connected weight vector is denoted by 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 with Σ𝑛
𝑝=1𝜂𝑝 = 1 and 𝜂𝑝 ∈ [0, 1], for (1, 2, 3, ..., 𝑛), the permutation 

is denoted by 𝑓 (1), 𝑓 (2), ..., 𝑓 (𝑛) such as 𝐾𝑓 (𝑝) ≥𝐾𝑓 (𝑝+1), ∀𝑝 = (1, 2, 3, ..., 𝑛 − 1). Here, 𝐾𝑓 (𝑝) = 𝑛𝜗𝐾𝑝 with (𝑝 = 1, 2, 3, ..., 𝑛), here 𝑛 denotes 
a balancing coefficient. Here 𝜗 = (𝜗1, 𝜗2, 𝜗3, ..., 𝜗𝑛) is the weight vector ∋ Σ𝑛

𝑝=1𝜗𝑝 = 1 and 𝜗𝑝 ∈ [0, 1]. Eq. (24) represents the CFFEHA 
operator.

Theorem 18. Let us consider a collective set of the CFFNs denoted by 𝐾𝑝 and defined as 𝐾𝑝 = (Ψ𝑝, 𝜛𝑝) = (𝐴𝑝𝑒
𝑖𝑎𝑝 , 𝐵𝑝𝑒

𝑖𝑏𝑝 ) with (𝑝 = 1, 2, ..., 𝑛), 
making the use of 𝐶𝐹𝐹𝐸𝐻𝐴 operator, we get the following precise value:

𝐶𝐹𝐹𝐸𝐻𝐴𝜂,𝜗(𝐾1,𝐾2, ...,𝐾𝑛) =
𝑛⨁

𝑝=1
𝜂𝑝𝐾𝑓 (𝑝)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝−
𝑛∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

𝑛∏
𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝

+
𝑛∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√

𝑛∏
𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
−

𝑛∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
𝑛∏

𝑝=1

(
1+𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
+

𝑛∏
𝑝=1

(
1−𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

3√2
𝑛∏

𝑝=1
(𝐵𝑓 (𝑝))

𝜂𝑝

3

√√√√√ 𝑛∏
𝑝=1

(
1+(1−𝐵3

𝑓 (𝑝))
)𝜂𝑝

+
𝑛∏

𝑝=1
(𝐵3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

3√2

𝑛∏
𝑝=1

(�̃�𝑓 (𝑝)∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑛∏
𝑝=1

(
1+

(
1−(�̃�𝑓 (𝑝)∕2𝜋)3

))𝜂𝑝
+

𝑛∏
𝑝=1

(�̃�𝑓 (𝑝)∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

where the connected weight vector is denoted by 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑛)𝑇 with Σ𝑛
𝑝=1𝜂𝑝 = 1 and 𝜂𝑝 ∈ [0, 1], for (1, 2, 3, ..., 𝑛) the permutation is denoted 

by 𝑓 (1), 𝑓 (2), ..., 𝑓 (𝑛), such as, 𝐾𝑓 (𝑝) ≥𝐾𝑓 (𝑝+1), ∀𝑝 = (1, 2, 3, ..., 𝑛 − 1). Here, 𝐾𝑓 (𝑝) = 𝑛𝜗𝐾𝑝 with (𝑝 = 1, 2, 3, ..., 𝑛), here 𝑛 denotes a balancing 
coefficient. Here 𝜗 = (𝜗1, 𝜗2, 𝜗3, ..., 𝜗𝑛) is the weight vector ∋ Σ𝑛

𝑝=1𝜗𝑝 = 1 and 𝜗𝑝 ∈ [0, 1]. Where the output is always a 𝐶𝐹𝐹𝑁 . Eq. (25) shows 
the value of the CFFEHA operator.

Proof. Here we use some special cases. □

Case (1). Suppose that 𝜂 = (1∕𝑛, 1∕𝑛, ..., 1∕𝑛)𝑇 , so the CFFEHA operator converts to the CFFEWA operator.
10

Case (2). Suppose that 𝜗 = (1∕𝑛, 1∕𝑛, ..., 1∕𝑛), so the CFFEHA operator converts to the CFFEOWA operator.
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Case (3). Suppose that 𝑎𝑝 = 𝑏𝑝 = 0 ∀𝑝, so the CFFEHA operator is given below:

𝐶𝐹𝐹𝐸𝐻𝐴𝜂,𝜗(𝐾1,𝐾2, ...,𝐾𝑛) =

3

√√√√√√√√√
𝑛∏

𝑝=1

(
1 +𝐴3

𝑓 (𝑝)

)𝜂𝑝
−

𝑛∏
𝑝=1

(1 −𝐴3
𝑓 (𝑝))

𝜂𝑝

𝑛∏
𝑝=1

(
1 +𝐴3

𝑓 (𝑝)

)𝜂𝑝

+
𝑛∏

𝑝=1
(1 −𝐴3

𝑓 (𝑝))
𝜂𝑝

, (26)

3
√
2

𝑛∏
𝑝=1

(𝐵𝑓 (𝑝))
𝜂𝑝

3

√
𝑛∏

𝑝=1

(
1 + (1 −𝐵3

𝑓 (𝑝))
)𝜂𝑝

+
𝑛∏

𝑝=1
(𝐵3

𝑓 (𝑝))
𝜂𝑝

Eq. (26) shows the Fermatean fuzzy Einstein Averaging Aggregation operator.

Example 19. Let us consider three CFFNs 𝐾1 =
(
0.79𝑒𝑖2𝜋(0.83),0.81𝑒𝑖2𝜋(0.77)

)
, 𝐾2 =

(
0.82𝑒𝑖2𝜋(0.73), 0.73𝑒𝑖2𝜋(0.90)

)
, and 𝐾3 = (0.74𝑒𝑖2𝜋(0.86),

0.86𝑒𝑖2𝜋(0.78)). Suppose that the weight vector is 𝜂 = (0.35, 0.2, 0.45)𝑇 , so we get:

𝐾1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√(
1+𝐴3

1

)𝑛𝜗1 −(1−𝐴3
1)

𝑛𝜗1

(
1+𝐴3

1

)𝑛𝜗1
+(1−𝐴3

1)
𝑛𝜗1

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎝
3

√√√√√√√
(
1+(𝑎31∕2𝜋)

3
)𝑛𝜗1

−
(
1−(𝑎31∕2𝜋)

3
)𝑛𝜗1

(
1+(𝑎31∕2𝜋)

3
)𝑛𝜗1

+
(
1−(𝑎31∕2𝜋)

3
)𝑛𝜗1

⎞⎟⎟⎟⎟⎠,

3√2(𝐵1)𝑛𝜗1

3
√(

1+(1−𝐵3
1 )
)𝑛𝜗1 +(𝐵3

1 )
𝑛𝜗1

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎝
3√2(𝑏1∕2𝜋)

𝑛𝜗1

3
√(

1+
(
1−(𝑏1∕2𝜋)3

))𝑛𝜗1
+(𝑏1∕2𝜋)

3𝑛𝜗1

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.3519354072𝑒𝑖2𝜋(0.1039863070),0.9563545178𝑒𝑖2𝜋(0.5632075528)

𝐾2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√(
1+𝐴3

2

)𝑛𝜗2 −(1−𝐴3
2)

𝑛𝜗2

(
1+𝐴3

2

)𝑛𝜗2
+(1−𝐴3

2)
𝑛𝜗2

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎝
3

√√√√√√√
(
1+(𝑎2∕2𝜋)3

)𝑛𝜗2
−
(
1−(𝑎2∕2𝜋)3

)𝑛𝜗2
(
1+(𝑎2∕2𝜋)3

)𝑛𝜗2
+
(
1−(𝑎2∕2𝜋)3

)𝑛𝜗2
⎞⎟⎟⎟⎟⎠,

3√2(𝐵2)𝑛𝜗2

3
√(

1+(1−𝐵3
2 )
)𝑛𝜗2

+(𝐵3
2 )

𝑛𝜗2

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎝
3√2(𝑏2∕2𝜋)

𝑛𝜗2

3
√(

1+
(
1−(𝑏2∕2𝜋)3

))𝑛𝜗2
+(𝑏2∕2𝜋)

3𝑛𝜗2

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.7621121775𝑒𝑖2𝜋(0.1206210029),0.8227024826𝑒𝑖2𝜋(0.4347093067)

𝐾3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√(
1+𝐴3

3

)𝑛𝜗3−(1−𝐴3
3)

𝑛𝜗3(
1+𝐴3

3

)𝑛𝜗3+(1−𝐴3
3)

𝑛𝜗3
𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝
3

√√√√√(
1+(𝑎3∕2𝜋)3

)𝑛𝜗3 −(1−(𝑎3∕2𝜋)3)𝑛𝜗3(
1+(𝑎3∕2𝜋)3

)𝑛𝜗3 +(1−(𝑎3∕2𝜋)3)𝑛𝜗3
⎞⎟⎟⎟⎠,

3√2(𝐵3)𝑛𝜗3

3
√(

1+(1−𝐵3
3 )
)𝑛𝜗3+(𝐵3

3 )
𝑛𝜗3

𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝

3√2(𝑏3∕2𝜋)
𝑛𝜗3

3
√(

1+
(
1−(𝑏3∕2𝜋)3

))𝑛𝜗3 +(𝑏3∕2𝜋)3𝑛𝜀3
⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.09928770717𝑒𝑖2𝜋(0.06812658535),0.9496746077𝑒𝑖2𝜋(0.8186759338)

Where the score grades are determined below:

𝑠(𝐾1) = (0.35)3 − (0.95)3 + (0.10)3 − (0.56)3 = −0.989116

𝑠(𝐾2) = (0.76)3 − (0.82)3 + (0.12)3 − (0.43)3 = −0.190171

𝑠(𝐾3) = (0.99)3 − (0.94)3 + (0.06)3 − (0.81)3 = −0.391510

so we have,
11

𝑠(𝐾2) ≻ 𝑠(𝐾3) ≻ 𝑠(𝐾1).
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Now we can write

𝐾𝑓 (2) =𝐾2 =
(
0.76𝑒𝑖2𝜋(0.12),0.82𝑒𝑖2𝜋(0.43)

)
𝐾𝑓 (3) =𝐾3 =

(
0.99𝑒𝑖2𝜋(0.06),0.94𝑒𝑖2𝜋(0.81)

)
𝐾𝑓 (1) =𝐾1 =

(
0.35𝑒𝑖2𝜋(0.10),0.95𝑒𝑖2𝜋(0.56)

)
Now put the values of 𝐾1, 𝐾2 and 𝐾3 in the given equation

𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝐾1,𝐾2,𝐾3) =
3⨁

𝑝=1
𝜂𝑝𝐾𝑝

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√
3∏

𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝−
3∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

3∏
𝑝=1

(
1+𝐴3

𝑓 (𝑝)

)𝜂𝑝

+
3∏

𝑝=1
(1−𝐴3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√√

3∏
𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
−

3∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
3∏

𝑝=1

(
1+(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝
+

3∏
𝑝=1

(
1−(𝑎𝑓 (𝑝)∕2𝜋)3

)𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

3∏
𝑝=1

3√2(𝐵𝑓 (𝑝))
𝜂𝑝

3

√√√√√ 3∏
𝑝=1

(
1+(1−𝐵3

𝑓 (𝑝))
)𝜂𝑝

+
3∏

𝑝=1
(𝐵3

𝑓 (𝑝))
𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∏
𝑝=1

3√2(�̃�𝑓 (𝑝)∕2𝜋)
𝜂𝑝

3

√√√√√√√ 3∏
𝑝=1

(
1+

(
1−(�̃�𝑓 (𝑝)∕2𝜋)3

))𝜂𝑝
+

3∏
𝑝=1

(�̃�𝑓 (𝑝)∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.9151424793𝑒𝑖2𝜋(0.02222526438),0.9339538724𝑒𝑖2𝜋(0.1044026993)

4. Multi-attribute group decision-making model

In order to find the best choice, here we present the MAGDM model to utilize the CFFEWA operator and the CFFEOWA operator. 
The following form is the general form of a MAGDM model.

4.1. For complex Fermatean fuzzy Einstein hybrid aggregation operator

Let us consider the set of alternatives by 𝐺 = {𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑔}. If 𝑙1, 𝑙2, 𝑙3, ..., 𝑙𝑐 represent the decision standard numbers. The aim 
is to choose the optimal choice from the set of alternatives on the basis of decision standard numbers. A policymaker’s basic need 
for the MAGDM problem is to examine it. If 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑤)𝑇 is the weight vector then it is the normalized weight vector of the 
decision standard. According to the performance, the specialist judges the power of the alternative 𝐺𝑔 respective to the given criteria 
𝑙𝑐 to allocate it as a CFFN that can be represented as 𝐷𝑞𝑟 = (Ψ𝑞𝑟, 𝜛𝑞𝑟) = (𝐴𝑞𝑟𝑒

𝑖𝑎𝑞𝑟 , 𝐵𝑞𝑟𝑒
𝑖𝑏𝑞𝑟 ). A complex Fermatean fuzzy decision matrix 

(CFFDM) 𝜑 is organized in the given form.

𝜑 =

⎛⎜⎜⎜⎜⎝
Ψ11,𝜛11 Ψ12,𝜛12 ... Ψ1𝑐 ,𝜛1𝑐
Ψ21,𝜛21 Ψ22,𝜛22 ... Ψ2𝑐 ,𝜛2𝑐

∶ ∶ ∶ ∶
Ψ𝑔1,𝜛𝑔1 Ψ𝑔2,𝜛𝑔2 ... Ψ𝑔𝑐 ,𝜛𝑔𝑐

⎞⎟⎟⎟⎟⎠
In order to solve the MAGDM problem, the given procedure is adopted:

Step (1): Arrange the CFFNs allocated by policy maker specialists in the form of a matrix called a CFFDM.

Step (2): Perceive the value of 𝐷𝑞 = (Ψ𝑞 , 𝜛𝑞) = (𝐴𝑞𝑒
𝑖𝑎𝑞 , 𝐵𝑞𝑒

𝑖𝑏𝑞 ) of each choice 𝑂𝑞 by applying the given operator.

Put 𝑂 = {𝑂1, 𝑂2, 𝑂3, ..., 𝑂𝑗} represent alternatives set with criteria numbers 𝑙1, 𝑙2, 𝑙3, ..., 𝑙𝑐 and the weight vector 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑤)𝑇 .

𝑤⨁

12

𝑂𝑞 = 𝐶𝐹𝐹𝐸𝑊 𝐴𝜂(𝑉𝑞1, 𝑉𝑞2, ..., 𝑉𝑞𝑤) =
𝑟=1

𝜂𝑟𝐾𝑞𝑟 =
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√
𝑤∏
𝑟=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑝−
𝑤∏
𝑟=1

(1−𝐴3
𝑞𝑟)

𝜂𝑝

𝑤∏
𝑟=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑝

+
𝑤∏
𝑟=1

(1−𝐴3
𝑞𝑟)

𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√
𝑤∏
𝑟=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑝
−

𝑤∏
𝑟=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑝
𝑤∏
𝑟=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑝
+

𝑤∏
𝑟=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑤∏
𝑟=1

3√2(𝐵𝑞𝑟)
𝜂𝑝

3

√√√√√ 𝑤∏
𝑟=1

(
1+(1−𝐵3

𝑞𝑟)
)𝜂𝑝

+
𝑤∏
𝑟=1

(𝐵3
𝑞𝑟)

𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑤∏
𝑟=1

3√2(𝑏𝑞𝑟∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑤∏
𝑟=1

(
1+

(
1−(𝑏𝑞𝑟∕2𝜋)3

))𝜂𝑝
+

𝑤∏
𝑟=1

(𝑏𝑞𝑟∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where for CFFEOWA operator, the formula is given below:

𝑂𝑞 = 𝐶𝐹𝐹𝐸𝑂𝑊𝐴𝜂(𝑉𝑞1, 𝑉𝑞2, ..., 𝑉𝑞𝑤) =
𝑤⨁
𝑟=1

𝜂𝑝𝐾𝑞𝑓 (𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√
𝑤∏
𝑟=1

(
1+𝐴3

𝑞𝑓 (𝑟)

)𝜂𝑝−
𝑤∏
𝑟=1

(1−𝐴3
𝑞𝑓 (𝑟))

𝜂𝑝

𝑤∏
𝑟=1

(
1+𝐴3

𝑞𝑓 (𝑟)

)𝜂𝑝

+
𝑤∏
𝑟=1

(1−𝐴3
𝑞𝑓 (𝑟))

𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√
𝑤∏
𝑟=1

(
1+(𝑎𝑞𝑓 (𝑟)∕2𝜋)3

)𝜂𝑝
−

𝑤∏
𝑟=1

(
1−(𝑎𝑞𝑓 (𝑟)∕2𝜋)3

)𝜂𝑝
𝑤∏
𝑟=1

(
1+(𝑎𝑞𝑓 (𝑟)∕2𝜋)3

)𝜂𝑝
+

𝑤∏
𝑟=1

(
1−(𝑎𝑞𝑓 (𝑟)∕2𝜋)3

)𝜂𝑝
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑤∏
𝑟=1

3√2(𝐵𝑞𝑓 (𝑟))
𝜂𝑝

3

√√√√√ 𝑤∏
𝑟=1

(
1+(1−𝐵3

𝑞𝑓 (𝑟))
)𝜂𝑝

+
𝑤∏
𝑟=1

(𝐵3
𝑞𝑓 (𝑟))

𝜂𝑝

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑤∏
𝑟=1

3√2(𝑏𝑞𝑓 (𝑟)∕2𝜋)
𝜂𝑝

3

√√√√√√ 𝑤∏
𝑟=1

(
1+

(
1−(𝑏𝑞𝑓 (𝑟)∕2𝜋)3

))𝜂𝑝
+

𝑤∏
𝑟=1

(𝑏𝑞𝑓 (𝑟)∕2𝜋)
3𝜂𝑝

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here (1, 2, 3, ..., 𝑤) has the permutation 𝑓 (1), 𝑓 (2), ..., 𝑓 (𝑤) where 𝑉𝑞𝑓 (𝑟) ≥ 𝑉𝑞𝑓 (𝑟+1) for all 𝑟 = (1, 2, 3, ..., 𝑤 − 1).

Step (3): The formula for score functions 𝑠(𝑂𝑞) of predilection value for each option 𝑂𝑞 is 𝑠(𝑂𝑞) =𝐴3
𝑞 −𝐵3

𝑞 + ( 𝑎𝑞2𝜋 )
3 − ( 𝑏𝑞2𝜋 )

3.

Step (4): If two options have the same score functions, then apply the formula of accuracy degrees, that is: 𝑓 (𝑂𝑞) =𝐴3
𝑞 +𝐵3

𝑞 + ( 𝑎𝑞2𝜋 )
3 +

( 𝑏𝑞2𝜋 )
3.

Result: The solution to a MAGDM problem is the alternative of a higher score function among all the alternatives.

4.2. For complex Fermatean fuzzy Einstein TOPSIS method

In this section, we aim to develop a new idea named CFFE-TOPSIS to comprise the CFFE data by solving a MAGDM problem. The 
proposed concept of the CFFE-TOPSIS method is a good option to find the alternative nearer to the positive ideal solution PIS and 
more away from the negative ideal solution NIS.

Let us consider the set of alternatives by 𝐺 = {𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑔}. If 𝑙1, 𝑙2, 𝑙3, ..., 𝑙𝑐 represent the decision criteria numbers. The aim 
is to choose the optimal choice from the set of alternatives on the basis of decision standard numbers. A policymaker is the basic 
need of the multi-attribute decision-making matrix MADM to examine it. Here the set of the policy makers is denoted by Ĕ= { Ĕ1, 
Ĕ2, Ĕ3, ..., Ĕ𝑛}. If 𝜂 = (𝜂1, 𝜂2, ..., 𝜂𝑥)𝑇 is the weight vector, where the weight vector must satisfy the condition ∑𝑤

𝑖=1 𝜂𝑖 = 1. According to 
the performance, the specialist judges the power of the alternative 𝐺𝑔 respective to the given criteria 𝑙𝑐 to allocate it as a CFFEN that 
can be represented as ⋓(𝑥) = (𝑢(𝑥)𝑞𝑟 )𝑔×𝑐 , where

𝑢(𝑥)𝑞𝑟 = (Ψ(𝑥)
𝑞𝑟 ,𝜛

(𝑥)
𝑞𝑟 , 𝜏

(𝑥)
𝑞𝑟 ) = (𝐴(𝑥)

𝑞𝑟 𝑒
𝑖𝑎
(𝑥)
𝑞𝑟 ,𝐵(𝑥)

𝑞𝑟 𝑒
𝑖𝑏
(𝑥)
𝑞𝑟 ,𝑍(𝑥)

𝑞𝑟 𝑒𝑖𝑧
(𝑥)
𝑞𝑟 ).

The evaluation of hesitancy is

𝜏(𝑥)𝑞𝑟 = 3
√

1 − (𝐴(𝑥)
𝑞𝑟 )3 − (𝐵(𝑥)

𝑞𝑟 )3𝑒
𝑖2𝜋

⎛⎜⎜⎝
3
√

1−(
𝑎
(𝑥)
𝑞𝑟

2𝜋 )3−(
𝑏
(𝑥)
𝑞𝑟

2𝜋 )3
⎞⎟⎟⎠
13

The CFFEDM of the policymakers Ĕ𝑥, denoted by ⋓(𝑥), is given as:
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⋓(𝑥) =

⎛⎜⎜⎜⎜⎝
Ψ(𝑥)
11 ,𝜛

(𝑥)
11 , 𝜏

(𝑥)
11 Ψ(𝑥)

12 ,𝜛
(𝑥)
12 , 𝜏

(𝑥)
12 ... Ψ(𝑥)

1𝑐 ,𝜛
(𝑥)
1𝑐 , 𝜏

(𝑥)
1𝑐

Ψ(𝑥)
21 ,𝜛

(𝑥)
21 , 𝜏

(𝑥)
21 Ψ(𝑥)

22 ,𝜛
(𝑥)
22 , 𝜏

(𝑥)
22 ... Ψ(𝑥)

2𝑐 ,𝜛
(𝑥)
2𝑐 , 𝜏

(𝑥)
2𝑐

∶ ∶ ∶ ∶
Ψ(𝑥)

𝑔1 ,𝜛
(𝑥)
𝑔1 , 𝜏

(𝑥)
𝑔1 Ψ(𝑥)

𝑔2 ,𝜛
(𝑥)
𝑔2 , 𝜏

(𝑥)
𝑔2 ... Ψ(𝑥)

𝑔𝑐 ,𝜛
(𝑥)
𝑔𝑐 , 𝜏

(𝑥)
𝑔𝑐

⎞⎟⎟⎟⎟⎠
Our aim is to choose the most appropriate option. So we develop a procedure for the CFFE-TOPSIS method.

Step (1): compute the weights of the DMs.

The judgment value of policymakers is to be assigned in the form of linguistic terms and should be a CFFNs. If 𝑈𝑥 = (Ψ𝑥, 𝜛𝑥, 𝜏𝑥) =
(𝐴𝑥𝑒

𝑖𝑎𝑥 , 𝐵𝑥𝑒
𝑖𝑏𝑥 , 𝑍𝑥𝑒

𝑖𝑧𝑥 ) denotes the integrity of decision maker, then the weight of 𝑥𝑡ℎ decision makers can be computed as:

𝜂𝑥 =

(
𝐴𝑥 +𝑍𝑥

(
𝐴𝑥

𝐴𝑥+𝐵𝑥

))
+ 𝑎𝑥

2𝜋 + 𝑧𝑥
2𝜋

( 𝑎𝑥
2𝜋

𝑎𝑥
2𝜋 + 𝑏𝑥

2𝜋

)
𝑛∑

𝑥=1

(
𝐴𝑥 +𝑍𝑥

(
𝐴𝑥

𝐴𝑥+𝐵𝑥

))
+ 𝑎𝑥

2𝜋 + 𝑧𝑥
2𝜋

( 𝑎𝑥
2𝜋

𝑎𝑥
2𝜋 + 𝑏𝑥

2𝜋

) (27)

where the condition 
𝑛∑

𝑥=1
𝜂𝑥 = 1 must be satisfied by 𝜂𝑥 ∈ [0, 1]. Eq. (27) shows the weight of expert.

Step (2): As ⋓(𝑥) = (𝑢(𝑥)𝑞𝑟 )𝑔×𝑐 represents the matrix of CFFDM model of each policymaker Ĕ𝑥 with weight 𝜂𝑥. To tabulate the matrix, 
every alternative has an aggregated value by all the experts regarding specific criteria. This matrix is called a complex Fermatean 
fuzzy Einstein decision matrix denoted by ⋓ = (𝑢(𝑥)𝑞𝑟 )𝑔×𝑐 . Now using the CFFEWA operator

𝑢𝑞𝑟 = 𝐶𝐹𝐹𝐸𝑊𝐴𝜂(𝑢(1)𝑞𝑟 , 𝑢
(2)
𝑞𝑟 , ..., 𝑢

(𝑛)
𝑟 )

𝑢𝑞𝑟 = 𝜂1𝑢
(1)
𝑞𝑟 ⊕ 𝜂2𝑢

(2)
𝑞𝑟 ⊕ ... ⊕ 𝜂𝑛𝑢

(𝑛)
𝑞𝑟

𝑢𝑞𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√
𝑛∏

𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥−
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥

+
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
−

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
+

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑥=1

3√2(𝐵𝑞𝑟)
𝜂𝑥

3

√√√√√ 𝑛∏
𝑥=1

(
1+(1−𝐵3

𝑞𝑟)
)𝜂𝑥

+
𝑛∏

𝑥=1
(𝐵3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑥=1

3√2(𝑏𝑞𝑟∕2𝜋)
𝜂𝑥

3

√√√√√√ 𝑛∏
𝑥=1

(
1+

(
1−(𝑏𝑞𝑟∕2𝜋)3

))𝜂𝑥
+

𝑛∏
𝑥=1

(𝑏𝑞𝑟∕2𝜋)3𝜂𝑥

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

Eq. (28) shows the value of aggregated CFFEWA operator.

𝜏𝐺𝑞
(𝑙𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√1 −

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥− 𝑛∏
𝑥=1

(1−𝐴3
𝑞𝑟)

𝜂𝑥

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥

+
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

−

⎛⎜⎜⎝
𝑛∏

𝑥=1
2(𝐵𝑞𝑟)

𝜂𝑥
⎞⎟⎟⎠
3

𝑛∏
𝑥=1

(
1+(1−𝐵3

𝑞𝑟)
)𝜂𝑥

+
𝑛∏

𝑥=1
(𝐵3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√√√1−

𝑛∏
𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
−

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
+

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥 −

⎛⎜⎜⎜⎝
𝑛∏

𝑥=1
2(𝑏𝑞𝑟∕2𝜋)

𝜂𝑥
⎞⎟⎟⎟⎠
3

𝑛∏
𝑥=1

(
1+

(
1−(𝑏𝑞𝑟∕2𝜋)3

))𝜂𝑥
+

𝑛∏
𝑥=1

(𝑏𝑞𝑟∕2𝜋)3𝜂𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

where 𝑢𝑞𝑟 = (Ψ𝐺𝑞
(𝑙𝑟), 𝜛𝐺𝑞

(𝑙𝑟), 𝜏𝐺𝑞
(𝑙𝑟)) = (𝐴𝐺𝑞

(𝑙𝑟)𝑒
𝑖𝑎𝐺𝑞

(𝑙𝑟), 𝐵𝐺𝑞
(𝑙𝑟)𝑒

𝑖𝑏𝐺𝑞
(𝑙𝑟), 𝑍𝐺𝑞

(𝑙𝑟)𝑒
𝑖𝑧𝐺𝑞

(𝑙𝑟)), 𝑞 = 1, 2, 3, ..., 𝑔, and 𝑟 = 1, 2, 3, ..., 𝑐. Eq. (29) shows 
degree of indeterminacy.

So, ⋓ = (𝑢𝑞𝑟)𝑔×𝑐 is tabulated as:

⋓ =

⎛⎜⎜⎜⎜⎝
(Ψ𝐺1

(𝑙1),𝜛𝐺1
(𝑙1), 𝜏𝐺1

(𝑙1)) (Ψ𝐺1
(𝑙2),𝜛𝐺1

(𝑙2), 𝜏𝐺1
(𝑙2)) ... (Ψ𝐺1

(𝑙𝑐),𝜛𝐺1
(𝑙𝑐 ), 𝜏𝐺1

(𝑙𝑐 ))
(Ψ𝐺2

(𝑙1),𝜛𝐺2
(𝑙1), 𝜏𝐺2

(𝑙1)) (Ψ𝐺2
(𝑙2),𝜛𝐺2

(𝑙2), 𝜏𝐺2
(𝑙2)) ... (Ψ𝐺2

(𝑙𝑐),𝜛𝐺2
(𝑙𝑐 ), 𝜏𝐺2

(𝑙𝑐 ))
∶ ∶ ∶ ∶

(Ψ𝐺𝑔
(𝑙1),𝜛𝐺𝑔

(𝑙1), 𝜏𝐺𝑔
(𝑙1)) (Ψ𝐺𝑔

(𝑙2),𝜛𝐺𝑔
(𝑙2), 𝜏𝐺𝑔

(𝑙2)) ... (Ψ𝐺𝑔
(𝑙𝑐 ),𝜛𝐺𝑔

(𝑙𝑐), 𝜏𝐺𝑔
(𝑙𝑐))

⎞⎟⎟⎟⎟⎠
Step (3): The criteria have different values according to their importance. Each decision-making expert Ĕ𝑥 evaluates all the criteria 
14

and allocates weight in the form of complex Fermatean fuzzy Einstein number (CFFEN) to each criterion. Suppose that 𝑆(𝑥)
𝑟 =
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(Ψ(𝑥)
𝑟 , 𝜛(𝑥)

𝑟 , 𝜏(𝑥)𝑟 ) = (𝐴(𝑥)
𝑟 𝑒𝑖𝑎

(𝑥)
𝑟 , 𝐵(𝑥)

𝑟 𝑒𝑖𝑏
(𝑥)
𝑟 , 𝑍(𝑥)

𝑟 𝑒𝑖𝑧
(𝑥)
𝑟 ) is the CFFE weight allocated to the criteria 𝑙𝑟 by the decision maker Ĕ𝑥. The discrete 

point of view of the decision makers are collected in the form of matrix called weight matrix, denoted by 𝑆 using CFFEWA operator. 
𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑟)𝑇 where 𝑟 = 1, 2, 3, ..., 𝑐.

𝑠𝑟 = 𝐶𝐹𝐹𝐸𝑊𝐴𝜂(𝑠(1)𝑟 , 𝑠(2)𝑟 , ..., 𝑠(𝑛)𝑟 )

𝑠𝑟 = 𝜂1𝑠
(1)
𝑟 ,⊕𝜂2𝑠

(2)
𝑟 ⊕ ... ⊕ 𝜂𝑛𝑠

(𝑛)
𝑟

𝑠𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√
𝑛∏

𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥− 𝑛∏
𝑥=1

(1−𝐴3
𝑞𝑟)

𝜂𝑥

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥

+
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝
3

√√√√√√√√√√√
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
−

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
+

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
⎞⎟⎟⎟⎟⎟⎟⎠,

𝑛∏
𝑥=1

3√2(𝐵𝑞𝑟)
𝜂𝑥

3

√√√√√ 𝑛∏
𝑥=1

(
1+(1−𝐵3

𝑞𝑟)
)𝜂𝑥

+
𝑛∏

𝑥=1
(𝐵3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

𝑛∏
𝑥=1

3√2(𝑏𝑞𝑟∕2𝜋)
𝜂𝑥

3

√√√√√√ 𝑛∏
𝑥=1

(
1+

(
1−(𝑏𝑞𝑟∕2𝜋)3

))𝜂𝑥
+

𝑛∏
𝑥=1

(𝑏𝑞𝑟∕2𝜋)3𝜂𝑥

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

Eq. (30) shows the weight allocated to every criteria by the decision makers.

𝜏𝑠(𝑙𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√1 −

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥−
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

𝑛∏
𝑥=1

(
1+𝐴3

𝑞𝑟

)𝜂𝑥

+
𝑛∏

𝑥=1
(1−𝐴3

𝑞𝑟)
𝜂𝑥

−

⎛⎜⎜⎝
𝑛∏

𝑥=1
2(𝐵𝑞𝑟)

𝜂𝑥
⎞⎟⎟⎠
3

𝑛∏
𝑥=1

(
1+(1−𝐵3

𝑞𝑟)
)𝜂𝑥

+
𝑛∏

𝑥=1
(𝐵3

𝑞𝑟)
𝜂𝑥

𝑒

𝑖2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√√√√√1−

𝑛∏
𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
−

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
𝑛∏

𝑥=1

(
1+(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥
+

𝑛∏
𝑥=1

(
1−(𝑎𝑞𝑟∕2𝜋)3

)𝜂𝑥 −

⎛⎜⎜⎜⎝
𝑛∏

𝑥=1
2(𝑏𝑞𝑟∕2𝜋)

𝜂𝑥
⎞⎟⎟⎟⎠
3

𝑛∏
𝑥=1

(
1+

(
1−(𝑏𝑞𝑟∕2𝜋)3

))𝜂𝑥
+

𝑛∏
𝑥=1

(𝑏𝑞𝑟∕2𝜋)3𝜂𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

here 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑐)𝑇 and 𝑠𝑟 = (Ψ𝑠(𝑙𝑟), 𝜛𝑠(𝑙𝑟), 𝜏𝑠(𝑙𝑟)) = (𝐴𝑠(𝑙𝑟)𝑒𝑖𝑎𝑠(𝑙𝑟), 𝐵𝑠(𝑙𝑟)𝑒𝑖𝑏𝑠(𝑙𝑟), 𝑍𝑠(𝑙𝑟)𝑒𝑖𝑧𝑠(𝑙𝑟)) where 𝑟 = 1, 2, 3, ..., 𝑐. Eq. (31) shows the 
degree of indeterminacy for each expert.

Step (4): By using the aggregated complex Fermatean fuzzy Einstein decision matrix (ACFFEDM) and weighted matrix 𝑆, the aggre-

gated weighted complex Fermatean fuzzy Einstein decision matrix (AWCFFEDM) ⋓∗ = (𝑢∗𝑞𝑟)𝑔×𝑐 can be obtained. Here 𝑢∗𝑞𝑟 = 𝑢𝑞𝑟 ⊗ 𝑠𝑟.

𝑢∗𝑞𝑟 =𝐴𝐺𝑞
(𝑙𝑟)𝐴𝑠(𝑙𝑟)𝑒

𝑖2𝜋
(

𝑎𝐺𝑞
(𝑙𝑟 )

2𝜋

)(
𝑎𝑠 (𝑙𝑟 )
2𝜋

)
, 3
√

𝐵3
𝐺𝑞
(𝑙𝑟) +𝐵3

𝑠 (𝑙𝑟) −𝐵3
𝐺𝑞
(𝑙𝑟)𝐵3

𝑠 (𝑙𝑟) (32)

𝑒

𝑖2𝜋
⎛⎜⎜⎝
3
√(

𝑏𝐺𝑞
(𝑙𝑟 )

2𝜋

)3
+
(

𝑏𝑠(𝑙𝑟 )
2𝜋

)3
−
(

𝑏𝐺𝑞
(𝑙𝑟 )

2𝜋

)3(
𝑏𝑠 (𝑙𝑟 )
2𝜋

)3⎞⎟⎟⎠
Eq. (31) shows the values of aggregated complex Fermatean fuzzy Einstein decision matrix.

The following matrix is the construction of AWCFFEDM:

⋓∗ =

⎛⎜⎜⎜⎜⎝
(Ψ∗

𝐺1
(𝑙1),𝜛∗

𝐺1
(𝑙1), 𝜏∗𝐺1

(𝑙1)) (Ψ∗
𝐺1
(𝑙2),𝜛∗

𝐺1
(𝑙2), 𝜏∗𝐺1

(𝑙2)) ... (Ψ∗
𝐺1
(𝑙𝑐 ),𝜛∗

𝐺1
(𝑙𝑐), 𝜏∗𝐺1

(𝑙𝑐))
(Ψ∗

𝐺2
(𝑙1),𝜛∗

𝐺2
(𝑙1), 𝜏∗𝐺2

(𝑙1)) (Ψ∗
𝐺2
(𝑙2),𝜛∗

𝐺2
(𝑙2), 𝜏∗𝐺2

(𝑙2)) ... (Ψ∗
𝐺2
(𝑙𝑐 ),𝜛∗

𝐺2
(𝑙𝑐), 𝜏∗𝐺2

(𝑙𝑐))
∶ ∶ ∶ ∶

(Ψ∗
𝐺𝑔

(𝑙1),𝜛∗
𝐺𝑔

(𝑙1), 𝜏∗𝐺𝑔
(𝑙1)) (Ψ∗

𝐺𝑔
(𝑙2),𝜛∗

𝐺𝑔
(𝑙2), 𝜏∗𝐺𝑔

(𝑙2)) ... (Ψ∗
𝐺𝑔

(𝑙𝑐),𝜛∗
𝐺𝑔

(𝑙𝑐), 𝜏∗𝐺𝑔
(𝑙𝑐))

⎞⎟⎟⎟⎟⎠
Where 𝑢∗𝑞𝑟 = (Ψ∗

𝐺𝑞
(𝑙𝑟), 𝜛∗

𝐺𝑞
(𝑙𝑟), 𝜏∗𝐺𝑞

(𝑙𝑟)) = (𝐴∗
𝐺𝑞
(𝑙𝑟)𝑒

𝑖𝑎∗
𝐺𝑞

(𝑙𝑟)
, 𝐵∗

𝐺𝑞
(𝑙𝑟)𝑒

𝑖𝑏∗
𝐺𝑞

(𝑙𝑟)
, 𝑍∗

𝐺𝑞
(𝑙𝑟)𝑒

𝑖𝑧∗
𝐺𝑞

(𝑙𝑟)), 𝑞 = 1, 2, 3, ..., 𝑔 and 𝑟 = 1, 2, 3, ..., 𝑐. Here

𝜏∗
𝐺𝑞
(𝑙𝑟) = 3

√
1 − (𝐴∗

𝐺𝑞
(𝑙𝑟))3 − (𝐵∗

𝐺𝑞
(𝑙𝑟))3𝑒

𝑖2𝜋
⎛⎜⎜⎜⎝
3
√

1−(
𝑎∗
𝐺𝑞

(𝑙𝑟 )

2𝜋 )3−(
𝑏∗
𝐺𝑞

(𝑙𝑟)

2𝜋 )3
⎞⎟⎟⎟⎠

Step (5): As each CFFN has complex degrees of satisfaction and non-satisfaction and two complex numbers cannot be compared with 
15

each other. So in order to get the positive ideal solution PIS and negative ideal solution NIS, the AWCFFED matrix ⋓∗ is not helpful. 
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In such a situation, the formula of score degrees of CFFNs is applicable. For this requirement, we need to find the score matrix 
⋓{ = (𝑢{𝑞𝑟)𝑔×𝑐 by computing the score degrees of each entry in ⋓∗.

Here we have,

𝑢{𝑞𝑟 =
(
𝐴
{
𝐺𝑞
(𝑙𝑟)

)3
−
(
𝐵
{
𝐺𝑞
(𝑙𝑟)

)3
+ (

𝑎
{
𝐺𝑞
(𝑙𝑟)

2𝜋
)3 − (

𝑏
{
𝐺𝑞
(𝑙𝑟)

2𝜋
)3 (33)

⋓{ =

⎛⎜⎜⎜⎜⎝
𝑢
{
11 𝑢

{
12 ... 𝑢

{
1𝑐

𝑢
{
21 𝑢

{
22 ... 𝑢

{
2𝑐

∶ ∶ ∶ ∶
𝑢
{
𝑔1 𝑢

{
𝑔2 ... 𝑢

{
𝑔𝑐

⎞⎟⎟⎟⎟⎠
Eq. (33) represents the score degree of each entry.

Step (6): If the set of benefit criteria is represented by ℜ𝜆 and the set of cost criteria is represented by ℑ𝜚. So the PIS 𝐺+ and NIS 𝐺−

are the following:

𝐺+ = {𝐺+(𝑙1),𝐺+(𝑙2), ...,𝐺+(𝑙𝑐 )}

𝐺+ = {𝐺−(𝑙1),𝐺−(𝑙2), ...,𝐺−(𝑙𝑐 )}

Where, on the basis of criteria 𝑙𝑟 the PIS and NIS can be assessed as:

𝐺+(𝑙𝑟) = {(max
𝑞

𝑢{𝑞𝑟|𝑙𝑟 ∈ℜ𝜆), (min
𝑞

𝑢{𝑞𝑟|𝑙𝑟 ∈ℑ𝜚)|𝑞 = 1,2,3, ..., 𝑔} (34)

𝐺−(𝑙𝑟) = {(min
𝑞

𝑢{𝑞𝑟|𝑙𝑟 ∈ℜ𝜆), (max
𝑞

𝑢{𝑞𝑟|𝑙𝑟 ∈ℑ𝜚)|𝑞 = 1,2,3, ..., 𝑔} (35)

Eq. (34) and (35) represent the PIS and NIS respectively.

Step (7): In real-world MAGDM, it is impossible to find the most suitable option (Positive ideal solution), and the worst option 
(negative ideal solution). To handle such a problem, we determine distance measures and calculate the distance of PIS 𝑑(𝐺𝑞, 𝐺+) and 
NIS 𝑑(𝐺𝑞, 𝐺−) from each alternative 𝐺𝑞 . For this requirement, the formula of Euclidean distance between the two sets can be utilized. 
So the Euclidean distance of PIS 𝑑(𝐺𝑞, 𝐺+) and Euclidean distance of NIS 𝑑(𝐺𝑞, 𝐺−) can be defined as:

𝑑(𝐺𝑞,𝐺
+) = 3

√√√√ 𝑐∑
𝑟=1

(
𝐺𝑞(𝑙𝑟) −𝐺+(𝑙𝑟)

)3
(36)

𝑑(𝐺𝑞,𝐺
−) = 3

√√√√ 𝑐∑
𝑟=1

(
𝐺𝑞(𝑙𝑟) −𝐺−(𝑙𝑟)

)3
(37)

Eq. (36) and (37) represent the Ecluidean distance of PIS and NIS respectively.

Step (8): The following formula can be utilized to calculate the relative closeness index of an alternative 𝐺𝑞 .

ℝ𝑞+ =
𝑑(𝐺𝑞,𝐺

−)
𝑑(𝐺𝑞,𝐺

+) + 𝑑(𝐺𝑞,𝐺
−)

(38)

where 𝑞 = 1, 2, 3, ..., 𝑔. Eq. (38) represents the relative closeness index.

Later on, it was proved by the two researchers Hadi-Vencheh and Mirajberi [56] that there are some specific situations, in which 
the closeness cannot give proper output. To handle such kinds of problems, the revised closeness index Æ was introduced by them. 
Which is given as:

Æ
(
𝐺𝑞

)
=

𝑑(𝐺𝑞,𝐺
−)

𝑑max(𝐺𝑞,𝐺
−)

−
𝑑(𝐺𝑞,𝐺

+)
𝑑min(𝐺𝑞,𝐺

+)
(39)

Eq. (39) shows the revised closeness index.

Where 𝑞 = 1, 2, 3, ..., 𝑔.

The separation from NIS and closeness to the positive ideal solution be measured by the revised closeness index formula of an 
alternative. The most suitable option (alternative) is with the most revised closeness index.

Step (9): At the end, the alternatives of revised closeness index Æ
(
𝐺𝑞

)
are ranked in descending order. The final result is selecting 

the alternative 𝐺 with the highest value of the revised closeness index.( ) ( )

16

𝐺 = {𝐺𝑞 ∶ (𝑞,Æ 𝐺𝑞 = max
1≤𝑦≤𝑔

Æ 𝐺𝑦 )} (40)
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Fig. 1. The Flow-chart of Proposed Fuzzy TOPSIS Method.

Eq. (40) shows the alternative with the highest value as an optimal choice.

Fig. 1 shows the flow chart for the proposed fuzzy TOPSIS method.

5. Mathematical model for multi-attribute group decision-making

5.1. Selection of an English language instructor

An announcement for a job posting for an English language instructor who teaches English has been made by a private school. 
The business owner hopes to employ a qualified teacher for this position. For the position of teacher, a total of 5 applicants have 
submitted applications. The approach utilized in the MCDM problem mentioned above is applied here. The purpose of this MCDM 
problem is to choose the best qualified applicant for the position of principle. In this intricate Fermatean fuzzy model, we apply the 
proposed named, operators CFFEWA and CFFEOWA. The options in a model are the following contenders:

𝐺1: Shafiq Khan

𝐺2: Shakeela Bibi

𝐺3: Afaq Khan

𝐺4: Sadia Alam

𝐺5: Usman Khan

The business owner has assembled a team to conduct interviews and choose the best candidate for the open position. The best 
qualified applicant for this position will be chosen by a specially organized group of decision-makers and DMs. The experts will 
consider a candidate’s skills when choosing an English language teacher (criteria).

𝑙1 = Qualification

𝑙2 = Accent

𝑙3 = English communication skill

𝑙4 = English grammar

6. TOPSIS method under CFFS information

In order to get benefit from the CFFE-TOPSIS method, we solve the above MAGDM problem by the CFFS-TOPSIS method.
17

Step (1): The linguistic terms of experts and criteria are shown in Table 1 given below:
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Table 1

The experts and criterion in the form of linguistic terms and their weights.

Linguistic terms CFFNs weights
(
𝜂𝑥
)

Very very intelligent (VVI) [0.93𝑒𝑖2𝜋(0.87) ,0.54𝑒𝑖2𝜋(0.63) ,0.33𝑒𝑖2𝜋(0.45)] 0.2196917951

Very intelligent (VI) [0.85𝑒𝑖2𝜋(0.83) ,0.60𝑒𝑖2𝜋(0.69) ,0.55𝑒𝑖2𝜋(0.46)] 0.2239733444

Normal (N) [0.77𝑒𝑖2𝜋(0.74) ,0.64𝑒𝑖2𝜋(0.71) ,0.65𝑒𝑖2𝜋(0.61)] 0.2152769679

Fair (F) [0.66𝑒𝑖2𝜋(0.62) ,0.77𝑒𝑖2𝜋(0.79) ,0.63𝑒𝑖2𝜋(0.64)] 0.1822907122

Less intelligent (LI) [0.60𝑒𝑖2𝜋(0.58) ,0.85𝑒𝑖2𝜋(0.87) ,0.55𝑒𝑖2𝜋(0.52)] 0.1587671803

Table 1 shows the linguistic terms and weights of alternatives.

Where the weights are calculated by Eq. (26).

To calculate the weight vector, we take the set of experts denoted by Ĕ= { Ĕ1, Ĕ2, Ĕ3} and assign value to every expert in the 
form of linguistic terms. Thus by using Eq. (26), we get the weight of experts as:

Table 2

The importance of experts and their weights.

Experts Linguistic terms CFFNs weights
(
𝜂𝑥
)

Ĕ1 Very very intelligent (VVI) [0.93𝑒𝑖2𝜋(0.87) ,0.54𝑒𝑖2𝜋(0.63) ,0.33𝑒𝑖2𝜋(0.45)] 0.1078578256

Ĕ2 Intelligent (I) [0.85𝑒𝑖2𝜋(0.83) ,0.60𝑒𝑖2𝜋(0.69) ,0.55𝑒𝑖2𝜋(0.46)] 0.4549025631

Ĕ3 Normal (N) [0.77𝑒𝑖2𝜋(0.74) ,0.64𝑒𝑖2𝜋(0.71) ,0.65𝑒𝑖2𝜋(0.61)] 0.4372396113

Table 2 shows the linguistic term and weight vector for each expert.

Step (2): The candidates relative to their capability are rated in the form of linguistic terms in Table 3:

Table 3

Linguistic terms for rating the researchers.

Linguistic terms CFFNs

Very very intelligent (VVI) [0.93𝑒𝑖2𝜋(0.87) ,0.51𝑒𝑖2𝜋(0.58) ,0.40𝑒𝑖2𝜋(0.52)]

Very intelligent (VI) [0.89𝑒𝑖2𝜋(0.84) ,0.62𝑒𝑖2𝜋(0.68) ,0.38𝑒𝑖2𝜋(0.45)]

Intelligent (I) [0.86𝑒𝑖2𝜋(0.80) ,0.67𝑒𝑖2𝜋(0.70) ,0.40𝑒𝑖2𝜋(0.52)]

Normal good (NG) [0.80𝑒𝑖2𝜋(0.78) ,0.69𝑒𝑖2𝜋(0.75) ,0.54𝑒𝑖2𝜋(0.47)]

Normal (N) [0.77𝑒𝑖2𝜋(0.74) ,0.64𝑒𝑖2𝜋(0.71) ,0.65𝑒𝑖2𝜋(0.61)]

Less normal (LN) [0.71𝑒𝑖2𝜋(0.70) ,0.73𝑒𝑖2𝜋(0.71) ,0.63𝑒𝑖2𝜋(0.67)]

Very less normal (VLN) [0.70𝑒𝑖2𝜋(0.68) ,0.76𝑒𝑖2𝜋(0.73) ,0.60𝑒𝑖2𝜋(0.67)]

Normal bad (NB) [0.60𝑒𝑖2𝜋(0.54) ,0.85𝑒𝑖2𝜋(0.79) ,0.55𝑒𝑖2𝜋(0.70)]

Bad (B) [0.50𝑒𝑖2𝜋(0.48) ,0.90𝑒𝑖2𝜋(0.87) ,0.47𝑒𝑖2𝜋(0.61)]

Very bad (VB) [0.44𝑒𝑖2𝜋(0.39) ,0.95𝑒𝑖2𝜋(0.94) ,0.38𝑒𝑖2𝜋(0.48)]

In order to form a collective result, the judgment of individual policymakers are collected and forms a matrix named, the CFFDMs. 
The judgment of every policymaker is shown in the following Tables 4, 5, and 6.

Table 4

The value assessed by Ĕ1.

⋓1 𝑙1 𝑙2

𝐺1 [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)] [0.81𝑒𝑖2𝜋(0.80) ,0.62𝑒𝑖2𝜋(0.64) ,0.61𝑒𝑖2𝜋(0.61)]

𝐺2 [0.80𝑒𝑖2𝜋(0.79) ,0.68𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺3 [0.91𝑒𝑖2𝜋(0.89) ,0.59𝑒𝑖2𝜋(0.56) ,0.34𝑒𝑖2𝜋(0.50)] [0.81𝑒𝑖2𝜋(0.77) ,0.60𝑒𝑖2𝜋(0.56) ,0.63𝑒𝑖2𝜋(0.72)]

𝐺4 [0.76𝑒𝑖2𝜋(0.79) ,0.72𝑒𝑖2𝜋(0.75) ,0.57𝑒𝑖2𝜋(0.44)] [0.80𝑒𝑖2𝜋(0.79) ,0.68𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)]

𝐺5 [0.81𝑒𝑖2𝜋(0.80) ,0.62𝑒𝑖2𝜋(0.64) ,0.61𝑒𝑖2𝜋(0.61)] [0.92𝑒𝑖2𝜋(0.88) ,0.55𝑒𝑖2𝜋(0.54) ,0.38𝑒𝑖2𝜋(0.54)]

⋓1 𝑙3 𝑙4

𝐺1 [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)] [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)]

𝐺2 [0.93𝑒𝑖2𝜋(0.89) ,0.62𝑒𝑖2𝜋(0.59) ,0.48𝑒𝑖2𝜋(0.48)] [0.80𝑒𝑖2𝜋(0.79) ,0.68𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)]

𝐺3 [0.90𝑒𝑖2𝜋(0.89) ,0.63𝑒𝑖2𝜋(0.59) ,0.27𝑒𝑖2𝜋(0.48)] [0.86𝑒𝑖2𝜋(0.84) ,0.63𝑒𝑖2𝜋(0.61) ,0.48𝑒𝑖2𝜋(0.56)]

𝐺4 [0.80𝑒𝑖2𝜋(0.79) ,0.68𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺5 [0.80𝑒𝑖2𝜋(0.77) ,0.68𝑒𝑖2𝜋(0.71) ,0.56𝑒𝑖2𝜋(0.57)] [0.93𝑒𝑖2𝜋(0.89) ,0.62𝑒𝑖2𝜋(0.59) ,0.48𝑒𝑖2𝜋(0.48)]
18
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Table 5

The value assessed by Ĕ2.

⋓2 𝑙1 𝑙2

𝐺1 [0.86𝑒𝑖2𝜋(0.84) ,0.63𝑒𝑖2𝜋(0.61) ,0.48𝑒𝑖2𝜋(0.56)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺2 [0.79𝑒𝑖2𝜋(0.79) ,0.69𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)] [0.93𝑒𝑖2𝜋(0.89) ,0.62𝑒𝑖2𝜋(0.59) ,0.48𝑒𝑖2𝜋(0.48)]

𝐺3 [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)] [0.86𝑒𝑖2𝜋(0.84) ,0.63𝑒𝑖2𝜋(0.61) ,0.48𝑒𝑖2𝜋(0.56)]

𝐺4 [0.81𝑒𝑖2𝜋(0.77) ,0.60𝑒𝑖2𝜋(0.56) ,0.63𝑒𝑖2𝜋(0.72)] [0.82𝑒𝑖2𝜋(0.80) ,0.61𝑒𝑖2𝜋(0.59) ,0.61𝑒𝑖2𝜋(0.66)]

𝐺5 [0.76𝑒𝑖2𝜋(0.71) ,0.69𝑒𝑖2𝜋(0.68) ,0.41𝑒𝑖2𝜋(0.69)] [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)]

⋓2 𝑙3 𝑙4

𝐺1 [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)] [0.92𝑒𝑖2𝜋(0.88) ,0.55𝑒𝑖2𝜋(0.54) ,0.38𝑒𝑖2𝜋(0.54)]

𝐺2 [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)] [0.90𝑒𝑖2𝜋(0.89) ,0.63𝑒𝑖2𝜋(0.59) ,0.27𝑒𝑖2𝜋(0.48)]

𝐺3 [0.81𝑒𝑖2𝜋(0.77) ,0.60𝑒𝑖2𝜋(0.56) ,0.63𝑒𝑖2𝜋(0.72)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺4 [0.93𝑒𝑖2𝜋(0.89) ,0.62𝑒𝑖2𝜋(0.59) ,0.48𝑒𝑖2𝜋(0.48)] [0.86𝑒𝑖2𝜋(0.84) ,0.63𝑒𝑖2𝜋(0.61) ,0.48𝑒𝑖2𝜋(0.56)]

𝐺5 [0.85𝑒𝑖2𝜋(0.80) ,0.65𝑒𝑖2𝜋(0.63) ,0.48𝑒𝑖2𝜋(0.62)] [0.90𝑒𝑖2𝜋(0.89) ,0.63𝑒𝑖2𝜋(0.59) ,0.27𝑒𝑖2𝜋(0.48)]

Table 6

The value assessed by Ĕ3.

⋓3 𝑙1 𝑙2

𝐺1 [0.82𝑒𝑖2𝜋(0.80) ,0.61𝑒𝑖2𝜋(0.59) ,0.61𝑒𝑖2𝜋(0.66)] [0.94𝑒𝑖2𝜋(0.91) ,0.50𝑒𝑖2𝜋(0.49) ,0.35𝑒𝑖2𝜋(0.50)]

𝐺2 [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺3 [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)] [0.91𝑒𝑖2𝜋(0.89) ,0.59𝑒𝑖2𝜋(0.56) ,0.34𝑒𝑖2𝜋(0.50)]

𝐺4 [0.81𝑒𝑖2𝜋(0.77) ,0.60𝑒𝑖2𝜋(0.56) ,0.63𝑒𝑖2𝜋(0.72)] [0.76𝑒𝑖2𝜋(0.79) ,0.72𝑒𝑖2𝜋(0.75) ,0.57𝑒𝑖2𝜋(0.44)]

𝐺5 [0.82𝑒𝑖2𝜋(0.80) ,0.61𝑒𝑖2𝜋(0.59) ,0.61𝑒𝑖2𝜋(0.66)] [0.81𝑒𝑖2𝜋(0.80) ,0.62𝑒𝑖2𝜋(0.64) ,0.61𝑒𝑖2𝜋(0.61)]

⋓3 𝑙3 𝑙4

𝐺1 [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)] [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)]

𝐺2 [0.80𝑒𝑖2𝜋(0.79) ,0.68𝑒𝑖2𝜋(0.75) ,0.56𝑒𝑖2𝜋(0.44)] [0.88𝑒𝑖2𝜋(0.84) ,0.60𝑒𝑖2𝜋(0.63) ,0.47𝑒𝑖2𝜋(0.54)]

𝐺3 [0.86𝑒𝑖2𝜋(0.84) ,0.63𝑒𝑖2𝜋(0.61) ,0.48𝑒𝑖2𝜋(0.56)] [0.81𝑒𝑖2𝜋(0.77) ,0.60𝑒𝑖2𝜋(0.56) ,0.63𝑒𝑖2𝜋(0.72)]

𝐺4 [0.90𝑒𝑖2𝜋(0.89) ,0.63𝑒𝑖2𝜋(0.59) ,0.27𝑒𝑖2𝜋(0.48)] [0.92𝑒𝑖2𝜋(0.88) ,0.55𝑒𝑖2𝜋(0.54) ,0.38𝑒𝑖2𝜋(0.54)]

𝐺5 [0.77𝑒𝑖2𝜋(0.78) ,0.70𝑒𝑖2𝜋(0.71) ,0.58𝑒𝑖2𝜋(0.55)] [0.90𝑒𝑖2𝜋(0.89) ,0.63𝑒𝑖2𝜋(0.59) ,0.27𝑒𝑖2𝜋(0.48)]

Now, we use the linguistic terms assigned by Expert Ĕ1, Expert Ĕ2, and Expert Ĕ3 of each alternative relative to it’s criteria shown 
in Table 7.

Table 7

Assigning the linguistic terms.

𝑙1 𝑙2

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Ĕ1 VI NG VVI N NG NG N NG NG VVI

Ĕ2 I NG VI NG N N VVI I NG VI

Ĕ3 NG N VI NG NG VVI N VVI N NG

𝑙3 𝑙4

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Ĕ1 N VVI VI NG NG VI NG I N VVI

Ĕ2 N VI NG VVI I VVI VI N I VI

Ĕ3 VI NG I VI N N VI NG VVI VI

Table 7 shows the linguistic terms assigned by Expert Ĕ1, Expert Ĕ2, and Expert Ĕ3 of each alternative relative to it’s criteria.

Now to find the ACFFED matrix, we aggregate the opinion of policymakers about each alternatives. In this case, we use a special 
19

operator defined in Eq. (27). Table 8 shows the aggregated complex Fermatean fuzzy Einstein decision matrix ⋓.
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Table 8

ACFFEDM ⋓.

⋓ 𝑙1

𝐺1 [0.8463𝑒𝑖2𝜋(0.1647) ,0.4904𝑒𝑖2𝜋(0.0762) ,0.6510𝑒𝑖2𝜋(0.9983)]

𝐺2 [0.7826𝑒𝑖2𝜋(0.1573) ,0.5502𝑒𝑖2𝜋(0.0924) ,0.7074𝑒𝑖2𝜋(0.9984)]

𝐺3 [0.8836𝑒𝑖2𝜋(0.1693) ,0.4753𝑒𝑖2𝜋(0.0785) ,0.5874𝑒𝑖2𝜋(0.9982)]

𝐺4 [0.8051𝑒𝑖2𝜋(0.1546) ,0.4860𝑒𝑖2𝜋(0.0730) ,0.7135𝑒𝑖2𝜋(0.9986)]

𝐺5 [0.7937𝑒𝑖2𝜋(0.1525) ,0.5134𝑒𝑖2𝜋(0.0802) ,0.7917𝑒𝑖2𝜋(0.9986)]

⋓ 𝑙2

𝐺1 [0.8744𝑒𝑖2𝜋(0.1689) ,0.4755𝑒𝑖2𝜋(0.0754) ,0.6072𝑒𝑖2𝜋(0.9982)]

𝐺2 [0.8659𝑒𝑖2𝜋(0.1679) ,0.5262𝑒𝑖2𝜋(0.0824) ,0.5896𝑒𝑖2𝜋(0.9982)]

𝐺3 [0.8806𝑒𝑖2𝜋(0.1713) ,0.4869𝑒𝑖2𝜋(0.0735) ,0.5864𝑒𝑖2𝜋(0.9981)]

𝐺4 [0.7936𝑒𝑖2𝜋(0.1591) ,0.5275𝑒𝑖2𝜋(0.0849) ,0.7070𝑒𝑖2𝜋(0.9984)]

𝐺5 [0.8595𝑒𝑖2𝜋(0.1657) ,0.4786𝑒𝑖2𝜋(0.0788) ,0.6344𝑒𝑖2𝜋(0.9983)]

⋓ 𝑙3

𝐺1 [0.8270𝑒𝑖2𝜋(0.1616) ,0.5201𝑒𝑖2𝜋(0.0851) ,0.6647𝑒𝑖2𝜋(0.9983)]

𝐺2 [0.8213𝑒𝑖2𝜋(0.1651) ,0.5051𝑒𝑖2𝜋(0.0852) ,0.6819𝑒𝑖2𝜋(0.9982)]

𝐺3 [0.8448𝑒𝑖2𝜋(0.1633) ,0.4891𝑒𝑖2𝜋(0.0738) ,0.6542𝑒𝑖2𝜋(0.9984)]

𝐺4 [0.9082𝑒𝑖2𝜋(0.1761) ,0.5005𝑒𝑖2𝜋(0.0764) ,0.5006𝑒𝑖2𝜋(0.9980)]

𝐺5 [0.8135𝑒𝑖2𝜋(0.1578) ,0.5356𝑒𝑖2𝜋(0.0849) ,0.6753𝑒𝑖2𝜋(0.9984)]

⋓ 𝑙4

𝐺1 [0.8672𝑒𝑖2𝜋(0.1610) ,0.4909𝑒𝑖2𝜋(0.0781) ,0.6122𝑒𝑖2𝜋(0.9984)]

𝐺2 [0.8832𝑒𝑖2𝜋(0.1718) ,0.4936𝑒𝑖2𝜋(0.0787) ,0.5757𝑒𝑖2𝜋(0.9981)]

𝐺3 [0.7995𝑒𝑖2𝜋(0.1567) ,0.5141𝑒𝑖2𝜋(0.0795) ,0.7067𝑒𝑖2𝜋(0.9985)]

𝐺4 [0.8842𝑒𝑖2𝜋(0.1705) ,0.4772𝑒𝑖2𝜋(0.0742) ,0.5848𝑒𝑖2𝜋(0.9982)]

𝐺5 [0.9037𝑒𝑖2𝜋(0.1781) ,0.4991𝑒𝑖2𝜋(0.0745) ,0.5163𝑒𝑖2𝜋(0.9979)]

Step (3): Here we will find the weight assigned to each criterion 𝑙𝑐 by each policy maker Ĕ𝑛, and then we compute the decision of 
each criteria by each policy maker Ĕ𝑛 and form a new matrix named, weight matrix constructed as ß={ß1, ß2, ß3, ..., ß𝑤}𝑇 . Now 
using Eq. (29) we get:

Table 9

Weighted matrix Ĕ1 .

Criteria Ĕ1

𝑙1 0.8456𝑒𝑖2𝜋(0.1653) ,0.6398𝑒𝑖2𝜋(0.1051) ,0.5110𝑒𝑖2𝜋(0.9981)

𝑙2 0.8254𝑒𝑖2𝜋(0.1605) ,0.6321𝑒𝑖2𝜋(0.1014) ,0.5699𝑒𝑖2𝜋(0.9982)

𝑙3 0.8594𝑒𝑖2𝜋(0.1666) ,0.6597𝑒𝑖2𝜋(0.1052) ,0.4275𝑒𝑖2𝜋(0.9980)

𝑙4 0.8561𝑒𝑖2𝜋(0.1656) ,0.6552𝑒𝑖2𝜋(0.1047) ,0.4502𝑒𝑖2𝜋(0.9981)

Table 9 shows the aggregated values assigned by Expert Ĕ1 to each criteria.

Table 10

Weighted matrix Ĕ2 .

Criteria Ĕ2

𝑙1 0.8292𝑒𝑖2𝜋(0.1598) ,0.6403𝑒𝑖2𝜋(0.1025) ,0.5510𝑒𝑖2𝜋(0.9982)

𝑙2 0.8633𝑒𝑖2𝜋(0.1666) ,0.6342𝑒𝑖2𝜋(0.0995) ,0.4664𝑒𝑖2𝜋(0.9981)

𝑙3 0.8563𝑒𝑖2𝜋(0.1635) ,0.6329𝑒𝑖2𝜋(0.0991) ,0.4913𝑒𝑖2𝜋(0.9982)

𝑙4 0.8788𝑒𝑖2𝜋(0.1715) ,0.6263𝑒𝑖2𝜋(0.0964) ,0.4229𝑒𝑖2𝜋(0.9980)
20

Table 10 shows the aggregated values assigned by Expert Ĕ2 to each criteria.



Heliyon 9 (2023) e19170M. Zaman, F. Ghani, A. Khan et al.

Table 11

Weighted matrix Ĕ3 .

Criteria Ĕ3

𝑙1 0.8240𝑒𝑖2𝜋(0.1600) ,0.6255𝑒𝑖2𝜋(0.0983) ,0.5806𝑒𝑖2𝜋(0.9983)

𝑙2 0.8630𝑒𝑖2𝜋(0.1683) ,0.6200𝑒𝑖2𝜋(0.0983) ,0.4917𝑒𝑖2𝜋(0.9980)

𝑙3 0.8508𝑒𝑖2𝜋(0.1662) ,0.6451𝑒𝑖2𝜋(0.1042) ,0.4872𝑒𝑖2𝜋(0.9980)

𝑙4 0.8620𝑒𝑖2𝜋(0.1661) ,0.6164𝑒𝑖2𝜋(0.0965) ,0.5003𝑒𝑖2𝜋(0.9981)

Table 11 shows the aggregated values assigned by Expert Ĕ3 to each criteria.

Table 12

The significance of criteria in the form of linguistic terms and their weights.

Criteria Ĕ1 Ĕ2 Ĕ3 CFFE weights

𝑙1 I I I 0.8288𝑒𝑖2𝜋(0.0321) ,0.5030𝑒𝑖2𝜋(0.0127) ,0.6719𝑒𝑖2𝜋(0.9999882917)

𝑙2 I I I 0.8595𝑒𝑖2𝜋(0.0334) ,0.4982𝑒𝑖2𝜋(0.0125) ,0.6226𝑒𝑖2𝜋(0.9999869289)

𝑙3 I I I 0.8542𝑒𝑖2𝜋(0.0330) ,0.5088𝑒𝑖2𝜋(0.0128) ,0.6257𝑒𝑖2𝜋(0.9999873218)

𝑙4 I I I 0.8693𝑒𝑖2𝜋(0.0337) ,0.4960𝑒𝑖2𝜋(0.0122) ,0.6046𝑒𝑖2𝜋(0.9999866370)

Table 12 shows the linguistic terms of each Expert Ĕ1, Ĕ2, and Ĕ3 assigned to each criteria as well as the aggregated values 
assigned by each Expert Ĕ1, Ĕ2, and Ĕ3 to each criteria.

Where the weights of Table 12 can be calculated by using Eq. (27) which are given below:(
𝜂𝑥
)
= {0.2478136647,0.2493897429,0.2530980770,0.2496985154}

Step (4): Find aggregated weighted complex Fermatean fuzzy decision matrix (AWCFFDM) ⋓{.

In this step, the required matrix can be found by using Eq. (31).

Table 13

AWCFFEDM ⋓{ .

⋓{ 𝑙1

𝐺1 0.7014𝑒𝑖2𝜋(0.00013) ,0.6128𝑒𝑖2𝜋(0.01214) ,0.7516𝑒𝑖2𝜋(0.9999994036)

𝐺2 0.6486𝑒𝑖2𝜋(0.00012) ,0.6484𝑒𝑖2𝜋(0.01471) ,0.7688𝑒𝑖2𝜋(0.9999989390)

𝐺3 0.7323𝑒𝑖2𝜋(0.00013) ,0.6045𝑒𝑖2𝜋(0.01251) ,0.7282𝑒𝑖2𝜋(0.9999993474)

𝐺4 0.6672𝑒𝑖2𝜋(0.00012) ,0.8687𝑒𝑖2𝜋(0.01163) ,0.3614𝑒𝑖2𝜋(0.9999994757)

𝐺5 0.6578𝑒𝑖2𝜋(0.00012) ,0.6260𝑒𝑖2𝜋(0.01278) ,0.7774𝑒𝑖2𝜋(0.9999993042)

⋓{ 𝑙2

𝐺1 0.7515𝑒𝑖2𝜋(0.00014) ,0.6017𝑒𝑖2𝜋(0.01201) ,0.7098𝑒𝑖2𝜋(0.9999994226)

𝐺2 0.7442𝑒𝑖2𝜋(0.00014) ,0.6310𝑒𝑖2𝜋(0.01312) ,0.6955𝑒𝑖2𝜋(0.9999992472)

𝐺3 0.7568𝑒𝑖2𝜋(0.00014) ,0.6080𝑒𝑖2𝜋(0.01171) ,0.6990𝑒𝑖2𝜋(0.9999994648)

𝐺4 0.6820𝑒𝑖2𝜋(0.00013) ,0.6318𝑒𝑖2𝜋(0.01352) ,0.7550𝑒𝑖2𝜋(0.9999991762)

𝐺5 0.7387𝑒𝑖2𝜋(0.00014) ,0.6034𝑒𝑖2𝜋(0.01224) ,0.7224𝑒𝑖2𝜋(0.9999993887)

⋓{ 𝑙3

𝐺1 0.7064𝑒𝑖2𝜋(0.00013) ,0.6331𝑒𝑖2𝜋(0.01355) ,0.7328𝑒𝑖2𝜋(0.9999991707)

𝐺2 0.7015𝑒𝑖2𝜋(0.00013) ,0.6245𝑒𝑖2𝜋(0.01357) ,0.7435𝑒𝑖2𝜋(0.9999991671)

𝐺3 0.7216𝑒𝑖2𝜋(0.00013) ,0.6156𝑒𝑖2𝜋(0.01176) ,0.7311𝑒𝑖2𝜋(0.9999994579)

𝐺4 0.7757𝑒𝑖2𝜋(0.00014) ,0.6219𝑒𝑖2𝜋(0.01217) ,0.6638𝑒𝑖2𝜋(0.9999993992)

𝐺5 0.6948𝑒𝑖2𝜋(0.00013) ,0.6424𝑒𝑖2𝜋(0.01352) ,0.7364𝑒𝑖2𝜋(0.9999991762)

⋓{ 𝑙4

𝐺1 0.7538𝑒𝑖2𝜋(0.00013) ,0.6090𝑒𝑖2𝜋(0.01244) ,0.7018𝑒𝑖2𝜋(0.9999993583)

𝐺2 0.7677𝑒𝑖2𝜋(0.00014) ,0.6105𝑒𝑖2𝜋(0.01254) ,0.6838𝑒𝑖2𝜋(0.9999993427)

𝐺3 0.6950𝑒𝑖2𝜋(0.00013) ,0.6225𝑒𝑖2𝜋(0.01266) ,0.7506𝑒𝑖2𝜋(0.9999993236)

𝐺4 0.7686𝑒𝑖2𝜋(0.00014) ,0.6013𝑒𝑖2𝜋(0.01182) ,0.6899𝑒𝑖2𝜋(0.9999994495)

𝐺5 0.7855𝑒𝑖2𝜋(0.00015) ,0.6137𝑒𝑖2𝜋(0.01187) ,0.6573𝑒𝑖2𝜋(0.9999994425)
21

Table 13 shows the aggregated weighted complex Fermatean fuzzy decision matrix (AWCFFDM).
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Step (5): Use Eq. (32) to compute the score function of each CFFN, where the score matrix is denoted by ⋓∗ and shown in Table 14.

Table 14

Score matrix ⋓∗ .

⋓∗ 𝑙1 𝑙2 𝑙3 𝑙4

𝐺1 0.11488 0.20661 0.09865 0.20252

𝐺2 0.00024 0.16089 0.10167 0.22495

𝐺3 0.17176 0.20876 0.14247 0.09438

𝐺4 −0.35860 0.06505 0.22631 0.23667

𝐺5 0.03928 0.18343 0.07042 0.25363

Step (6): Eq. (34) is used to find the useful criteria that is positive ideal solution (PIS) and Eq. (35) is used to find the unuseful criteria 
that is negative ideal solution (NIS).

𝐺+ = {0.17176,0.20876,0.22631,0.25363}

𝐺− = {−0.35860,0.06505,0.07042,0.09438}

Step (7): Use Eq. (36) and Eq. (37) to find the distance of each alternative 𝐺𝑞 from PIS as well as from NIS, respectively. Also, use 
Eq. (38) to compute the relative closeness index.

Table 15

Distance of alternatives from PIS and NIS and their ranking.

Alternative 𝑑(𝐺𝑞,𝐺
+) 𝑑(𝐺𝑞,𝐺

−) Revised closeness index Ranking

𝐺1 0.03162 0.33206 −0.45258 2

𝐺2 0.06975 0.22213 −2.30514 4

𝐺3 0.02427 0.39054 0 1

𝐺4 0.38635 0.08166 −15.70973 5

𝐺5 0.04572 0.26207 −1.21276 3

Table 15 shows the PIS and NIS of each alternative along with revised closeness index and the ranking of each alternative.

Step (8): According to the revised closeness indices, the rank of alternative is as follows:

𝐺3 ≻𝐺1 ≻𝐺5 ≻𝐺2 ≻𝐺4.

From the output, we found that 𝐺3 is the most capable candidate for the required post.

6.1. Complex Fermatean fuzzy Einstein weighted averaging aggregation operator

We apply the CFFEWA operator to Table 8 and get the result shown in Table 16.

Table 16

Aggregated values.

𝐺1 0.8547944585𝑒𝑖2𝜋(0.03290493968) ,0.4941145334𝑒𝑖2𝜋(0.01251540944)

𝐺2 [0.8429664160𝑒𝑖2𝜋(0.03322743331) ,0.5183241568𝑒𝑖2𝜋(0.01345134553)

𝐺3 0.8556726274𝑒𝑖2𝜋(0.03315169706) ,0.4912121037𝑒𝑖2𝜋(0.01213802337)

𝐺4 0.8564521002𝑒𝑖2𝜋(0.03320260065) ,0.4975352617𝑒𝑖2𝜋(0.01225381105)

𝐺5 0.8488865802𝑒𝑖2𝜋(0.03290429589) ,0.5064307876𝑒𝑖2𝜋(0.01265762474)

Table 16 shows the aggregated values of each alternative.

Now, compute the score function of each alternative 𝐺𝑞 shown in Table 17.

Table 17

Score and ranking.

Alternatives 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Score 0.5039 0.4597 0.5080 0.5050 0.4818

Ranking 3 5 1 2 4
22

From the output shown in Table 17, we found that 𝐺3 is the best option for the required post.
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6.2. For complex Fermatean fuzzy Einstein ordered weighted averaging aggregation operator

To find the required result, first we find the order of Table 8 and arrange the alternatives in descending order according to the 
score function of each alternative shown in Table 18.

Table 18

ACFFEODM ⋓.

⋓ 𝑙1

𝐺1 [0.8744𝑒𝑖2𝜋(0.1689) ,0.4755𝑒𝑖2𝜋(0.0754) ,0.6072𝑒𝑖2𝜋(0.9982)]

𝐺2 [0.8832𝑒𝑖2𝜋(0.1718) ,0.4936𝑒𝑖2𝜋(0.0787) ,0.5757𝑒𝑖2𝜋(0.9981)]

𝐺3 [0.8836𝑒𝑖2𝜋(0.1693) ,0.4753𝑒𝑖2𝜋(0.0785) ,0.5874𝑒𝑖2𝜋(0.9982)]

𝐺4 [0.9082𝑒𝑖2𝜋(0.1761) ,0.5005𝑒𝑖2𝜋(0.0764) ,0.5006𝑒𝑖2𝜋(0.9980)]

𝐺5 [0.9037𝑒𝑖2𝜋(0.1781) ,0.4991𝑒𝑖2𝜋(0.0745) ,0.5163𝑒𝑖2𝜋(0.9979)]

⋓ 𝑙2

𝐺1 [0.8672𝑒𝑖2𝜋(0.1610) ,0.4909𝑒𝑖2𝜋(0.0781) ,0.6122𝑒𝑖2𝜋(0.9984)]

𝐺2 [0.8659𝑒𝑖2𝜋(0.1679) ,0.5262𝑒𝑖2𝜋(0.0824) ,0.5896𝑒𝑖2𝜋(0.9982)]

𝐺3 [0.8806𝑒𝑖2𝜋(0.1713) ,0.4869𝑒𝑖2𝜋(0.0735) ,0.5864𝑒𝑖2𝜋(0.9981)]

𝐺4 [0.8842𝑒𝑖2𝜋(0.1705) ,0.4772𝑒𝑖2𝜋(0.0742) ,0.5848𝑒𝑖2𝜋(0.9982)]

𝐺5 [0.8595𝑒𝑖2𝜋(0.1657) ,0.4786𝑒𝑖2𝜋(0.0788) ,0.6344𝑒𝑖2𝜋(0.9983)]

⋓ 𝑙3

𝐺1 [0.8463𝑒𝑖2𝜋(0.1647) ,0.4904𝑒𝑖2𝜋(0.0762) ,0.6510𝑒𝑖2𝜋(0.9983)]

𝐺2 [0.8213𝑒𝑖2𝜋(0.1651) ,0.5051𝑒𝑖2𝜋(0.0852) ,0.6819𝑒𝑖2𝜋(0.9982)]

𝐺3 [0.8448𝑒𝑖2𝜋(0.1633) ,0.4891𝑒𝑖2𝜋(0.0738) ,0.6542𝑒𝑖2𝜋(0.9984)]

𝐺4 [0.8051𝑒𝑖2𝜋(0.1546) ,0.4860𝑒𝑖2𝜋(0.0730) ,0.7135𝑒𝑖2𝜋(0.9986)]

𝐺5 [0.8135𝑒𝑖2𝜋(0.1578) ,0.5356𝑒𝑖2𝜋(0.0849) ,0.6753𝑒𝑖2𝜋(0.9984)]

⋓ 𝑙4

𝐺1 [0.8270𝑒𝑖2𝜋(0.1616) ,0.5201𝑒𝑖2𝜋(0.0851) ,0.6647𝑒𝑖2𝜋(0.9983)]

𝐺2 [0.7826𝑒𝑖2𝜋(0.1573) ,0.5502𝑒𝑖2𝜋(0.0924) ,0.7074𝑒𝑖2𝜋(0.9984)]

𝐺3 [0.7995𝑒𝑖2𝜋(0.1567) ,0.5141𝑒𝑖2𝜋(0.0795) ,0.7067𝑒𝑖2𝜋(0.9985)]

𝐺4 [0.7936𝑒𝑖2𝜋(0.1591) ,0.5275𝑒𝑖2𝜋(0.0849) ,0.7070𝑒𝑖2𝜋(0.9984)]

𝐺5 [0.7937𝑒𝑖2𝜋(0.1525) ,0.5134𝑒𝑖2𝜋(0.0802) ,0.7917𝑒𝑖2𝜋(0.9986)]

Table 18 shows the order of each order of alternatives.

Now we aggregated the values of each alternative 𝐺𝑞 of the above table which are shown in Table 19.

Table 19

Aggregated values.

𝐺1 0.8548001383𝑒𝑖2𝜋(0.03290604787) ,0.4940390978𝑒𝑖2𝜋(0.01251082334)

𝐺2 0.8427827224𝑒𝑖2𝜋(0.03322230033) ,0.5184303918𝑒𝑖2𝜋(0.01345541503)

𝐺3 0.8556726274𝑒𝑖2𝜋(0.03315169706) ,0.4912121037𝑒𝑖2𝜋(0.01213802337)

𝐺4 0.8558553814𝑒𝑖2𝜋(0.03317906151) ,0.4974735247𝑒𝑖2𝜋(0.01225137317)

𝐺5 0.8486699050𝑒𝑖2𝜋(0.03289444166) ,0.5064577510𝑒𝑖2𝜋(0.01265938376)

Now, we compute the score function of each alternative 𝐺𝑞 to find the ranking of alternatives given in Table 20.

Table 20

Score and ranking.

Alternatives 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Score 0.5040 0.4593 0.5080 0.5038 0.4813

Ranking 2 5 1 3 4

From the output shown in Table 20, we found that 𝐺3 is the suitable candidate for the required post.

The final ranking of the decision-making study solved with the help of CFFEWA operator shown in Table 17, CFFEOWA operator 
23

shown in Table 20 and CFFE-TOPSIS shown in Table 15 are shown in Table 21.
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Table 21

Comparative analysis of proposed operators with CFFE-TOPSIS 
method.

Method Ranking Best alternative

CFFEWA operator 𝐺3 ≻𝐺4 ≻𝐺1 ≻𝐺5 ≻𝐺2 𝐺3

CFFEOWA operator 𝐺3 ≻𝐺1 ≻𝐺4 ≻𝐺5 ≻𝐺2 𝐺3

CFFE-TOPSIS 𝐺3 ≻𝐺1 ≻𝐺5 ≻𝐺2 ≻𝐺4 𝐺3

7. Comparison and advantages of proposed operators

Here we compare the CFFEAA operators with other existing operators to see their importance. For this, we take a decision-making 
problem MCDM [57]. The purpose of taking an MCDM model is to seek a more affective option with the help of proposed CFFEA 
AOs. In every result, we found the same alternative as the most affective option. The specialty of the CFFEAA operators is to solve 
the phenomena of periodicity and result in a more specific form than the existing operators. The CFFEAA operators can usefully be 
applied to two-dimensional models more clearly because of their phase term. Another specialty of the CFFEAA operators is that they 
can handle any information on one-dimensional phenomena when its phase term is taken as zero.

1. Here, we use the complex Fermatean fuzzy Einstein weighted average CFFEWA operator, the CFFEOWA operator, and the 
CFFEHA operator.

2. The comparison between CFFEA AOs and CIFEA AOs show us the consistency of CFFEA AOs and has been represented in the 
graph in figure (2).

3. Because of cube on it’s both functions, the CFFEA AOs work sufficiently in the decision-making information and cover the 
restrictions of all endure AOs which cannot handle two-dimensional information.

4. Our CFFEA AOs deal with the data of CFFNs, CPFNs, and CIFNS in terms of Einstein generalization in a decision-making problem.

5. Some AOs have been used to solve the data of the CPF model, but they have some restrictions. Sometimes CIFEA AOs cannot 
handle the data because the sum of the both functions is more than 1. In these conditions, we use CFFEA AOs to give us 
a suitable answer. So our proposed operators of CFFEWA, CFFEOWA, and CFFEHA are more helpful than CIFEWA operator, 
CIFEOWA operator, and CIFEHA operator.

6. To secure the parametric structure and generalized structure of Einstein t-conorm and Einstein t-norm, the operators we have 
proposed lie in a parametric construction.

7. Apart from the selected decision-making scheme, the considered operators observe a large-scale approach in different popular 
decision-making approaches, considering the aggregation of separate information to assess a group’s adequate solution in terms 
of Einstein t-conorm and Einstein t-norm.

Table 22 shows the comparison between our proposed CFFEAA operators with other existing operators [57] to see their impor-

tance. For this, we have taken a multicriteria group decision-making MCGDM problem consisting of three experts. The purpose of an 
MCGDM model is to seek a more affective infection with the help of CFFEA AOs.

Table 22

Value of alternatives.

𝜃 Proposed operators 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

1
CIFWA [57]

CFFWA

1.1605

0.3722

0.8812

0.2144

0.3491

0.1078

0.6484

0.1474

1.2545

0.5647

1
CIFOWA [57]

CFFOWA

1.1478

0.3464

0.9458

0.1771

0.6687

0.1995

0.6774

0.1743

1.2719

0.5319

1
CIFHA [57]

CFFHA

1.3249

0.3666

1.0153

0.2289

0.4290

0.1996

0.7917

0.2118

1.3421

0.5714

2
CIFEWA [57]

CFFEWA

1.1468

0.3705

0.8650

0.2079

0.3096

0.0994

0.1693

0.1424

1.2501

0.5563

2
CIFEOWA [57]

CFFEOWA

1.1359

0.3452

0.9306

0.1708

0.6339

0.1992

0.6539

0.1714

1.2675

0.5258

2
CIFEHA [57]

CFFEHA

1.3352

0.3644

1.0264

0.2229

0.3598

0.1923

0.8005

0.2073

1.3611

0.5639
24

Now, according to Table 22, we find the ranking of each alternative 𝐺𝑞 shown in Table 23.
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Fig. 2. The graph of comparative study.

Table 23

Rank of alternatives.

𝜃 Proposed operators Ranking

1
CIFWA [57]

CFFWA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺3 ≻𝐺3

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

1
CIFOWA [57]

CFFOWA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

𝐺5 ≻𝐺1 ≻𝐺3 ≻𝐺2 ≻𝐺4

1
CIFHA [57]

CFFHA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

𝐺5 ≻𝐺1 ≻𝐺3 ≻𝐺2 ≻𝐺4

2
CIFEWA [57]

CFFEWA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

2
CIFEOWA [57]

CFFEOWA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺3 ≻𝐺4

𝐺5 ≻𝐺1 ≻𝐺3 ≻𝐺4 ≻𝐺2

2
CIFEHA [57]

CFFEHA

𝐺5 ≻𝐺1 ≻𝐺2 ≻𝐺4 ≻𝐺3

𝐺5 ≻𝐺1 ≻𝐺3 ≻𝐺4 ≻𝐺2

Table 22 represents the values of every each alternatives and Table 23 shows the ranking of each alternatives.

Fig. 2 shows the statistical analysis of the comparative study.

8. Conclusion

In case to handle the one-dimensional inexact data, the model of fuzzy set theory FST is conventionally applied. But some real-life 
information often involves different attributes that have compelled the researchers to expand the models to handle more unclarity. 
Certainly, a number of decision-making models appear with periodic information that cannot be handled by the models of FS, IFS, 
PFS, and FFS. Specifically, an extended concept was required to handle such problems. For this purpose, Ramot proposed the idea 
of CFSs which was helpful to overcome the restriction involved in some real phenomena. In order to overcome the issue of non-

satisfaction degree, this concept was further developed into some extended concepts named CIFSs, CPFSs, and CFFSs. Due to finding 
more uncertainty in two-dimensional phenomena, the CFFSs have a better tendency than CIFSs and CPFSs. With an eye on use in 
decision-making processes, we have combined the benefits of the Einstein operator and the adaptability of CFFS in this study to 
develop several AOs.

In this research study, we introduced some AOs called CFFEAA operators to address more unclear information about MAGDM. 
For the CFFEA operator, we have also created a TOPSIS technique. Our suggested AOs are simple to use with CFF data. For the 
CFFE-TOPSIS technique and the CFFEAA operators, we have proposed two algorithms. Additionally, we have created a MAGDM 
25

issues that use the suggested operators. The CFFEAA operators are more flexible when employed to solve a MAGDM problem due to 
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the cube on their degrees. So that we can produce a more versatile result, we can apply our suggested operators to two-dimensional 
data.

Future directions

In short, numerous recent extensions of fuzzy sets under Einstein operators provide significant benefits to scenarios involving 
decision-making. In the future, our aim is to extend our study to

1. Complex Fermatean fuzzy Frank AOs.

2. Complex Fermatean Power AOs.

3. Complex Fermatean fuzzy Hamacher geometric AOs.

4. Complex Fermatean fuzzy Logarithmic AOs.

5. Complex Fermatean fuzzy Yager AOs.

6. Complex Fermatean fuzzy Dombi AOs.

7. We will also develop some methods like GRA, EDAS, CODAS, COPRAS and some other methods for the proposed work.

Besides the highlighted efficiencies of the proposed operators, there is a notable deficiency in these operators owing to the 
restrictions of the CFFS. Therefore, it will also be a beneficial task to exploit the competency of the Einstein t-norms to construct 
more practical and flexible operators by employing the theoretical background of the border and generalized model, namely, the 
complex Fermatean cubic fuzzy set.

Limitation & Discussion

1. Our study is limited to MCDM and MCGDM problems.

2. This study is applicable for unknown weights.

3. Our study is limited to Einstein generalization and required further improvement to deal with other generalization like 
Hamacher.

4. This research work deals with two-dimensional data.
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