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ABSTRACT
Objectives: To investigate the association between
methylation of transposable elements Alu and long-
interspersed nuclear elements (LINE-1) and lung
function.
Design: Cohort study.
Setting: Outpatient Veterans Administration facilities in
greater Boston, Massachusetts, USA.
Participants: Individuals from the Veterans
Administration Normative Aging Study, a longitudinal
study of aging in men, evaluated between 1999 and
2007. The majority (97%) were white.
Primary and secondary outcome measures:
Primary predictor was methylation, assessed using
PCR-pyrosequencing after bisulphite treatment.
Primary outcome was lung function as assessed by
spirometry, performed according to American Thoracic
Society/European Respiratory Society guidelines at the
same visit as the blood draws.
Results: In multivariable models adjusted for age,
height, body mass index (BMI), pack-years of
smoking, current smoking and race, Alu
hypomethylation was associated with lower forced
expiratory volume in 1 s (FEV1) (β=28 ml per 1%
change in Alu methylation, p=0.017) and showed a
trend towards association with a lower forced vital
capacity (FVC) (β=27 ml, p=0.06) and lower FEV1/FVC
(β=0.3%, p=0.058). In multivariable models adjusted
for age, height, BMI, pack-years of smoking, current
smoking, per cent lymphocytes, race and baseline lung
function, LINE-1 hypomethylation was associated with
more rapid decline of FEV1 (β=6.9 ml/year per 1%
change in LINE-1 methylation, p=0.005) and of FVC
(β=9.6 ml/year, p=0.002).
Conclusions: In multiple regression analysis, Alu
hypomethylation was associated with lower lung
function, and LINE-1 hypomethylation was associated
with more rapid lung function decline in a cohort of
older and primarily white men from North America.
Future studies should aim to replicate these findings
and determine if Alu or LINE-1 hypomethylation may
be due to specific and modifiable environmental
exposures.

INTRODUCTION
Lung function has both environmental and
genetic determinants.1–5 Epigenetic variation,

which may influence gene expression patterns
without changing DNA sequence, may
mediate the effects of environmental expo-
sures on disease outcomes. DNA methylation,
one type of epigenetic change, is the revers-
ible addition of a methyl group to cytosine
nucleotides. Methylation changes may or may
not persist over time in the human genome,
as epigenetic marks are highly plastic.
A large portion of methylation sites within

the genome are found in repeat sequences
and transposable elements, such as Alu and
long-interspersed nuclear element (LINE-1)
which are among the most common and best
characterised repetitive elements.6–8 Alu is the
most abundant of the short-interspersed
nuclear elements (SINE) with over one million
copies per genome.9 Alu elements compose
approximately 11% of the mass of human
genome and contain 30% of its methylation
sites.7 10 LINE-1 elements are present at over
half a million copies.9 11 Methylation of repeti-
tive elements such as Alu and LINE-1 has been
shown to correlate with total genomic methyla-
tion content.11 12 Hypomethylation in transpos-
able elements is associated with higher
genomic instability and alterations or deregula-
tion of gene expression.13 14

Prior studies have found associations
between methylation of Alu or LINE-1
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elements and various diseases including multiple cancers,7

cardiovascular disease,15–17 and neurological disease,18 as
well as with markers of inflammation19 and the inflamma-
tory response.20 Studies on gene-specific methylation and
non-neoplastic lung disease have found associations
between GATA4, CDKN2A (p16) and lung function and an
interaction with wood smoke exposure,21 as well as multiple
genes in association with chronic obstructive pulmonary
disease (COPD) presence and severity.22 To our knowledge
no prior study has investigated associations between methy-
lation of transposable elements and non-neoplastic lung
disease. Moreover, case–control studies which are common
in genomic studies are more problematic for epigenetic
marks since sampling cases after disease onset makes it
impossible to determine whether epigenetic changes pre-
ceded or resulted from the disease. Hence, cohort studies
or nested case−control studies within cohorts are particu-
larly valuable. Our aim was to examine whether methylation
of the repetitive elements Alu and LINE-1 was associated
with measures of lung function, COPD status and longitu-
dinal change in lung function in a cohort of men, the
Normative Aging Study. Preliminary results from these ana-
lyses were previously reported in abstract form.23

METHODS
Population
Study participants were from the Veterans Administration
Normative Aging Study, an ongoing longitudinal study of
aging established in 1963.24 This is a cohort of 2280
healthy male volunteers from the greater Boston,
Massachusetts, area who were 21–80 years of age at entry
and who enrolled after an initial health screening deter-
mined that they were free of known chronic medical con-
ditions. Participants were re-evaluated every 3–5 years
using detailed on-site physical examinations and ques-
tionnaires. The study was approved by the Institutional
Review Boards of all participating institutions. All partici-
pants gave written informed consent.
Prior to 1999, 706 individuals had died and others were

either lost to follow-up, being followed by questionnaire
only, or had no blood samples left for analyses (n=792).
All 782 individuals had blood samples that were available
for methylation analysis resulting in 704 with unique IDs
and methylation data as previously described.25 26 For
this study, individuals evaluated at least once between
March 1999 and June 2007 with methylation data and
concomitant spirometry were included. During the study
period, this included 663 total individuals, 194 of whom
reported for blood draw two times, for a total of 857
samples collected. For the analysis of lung function
decline, a second spirometric measurement was available
on 301 individuals who had had an initial blood draw for
methylation measurement.

Measures
Spirometry was performed as previously described27 and
was repeated up to a maximum of eight spirograms, so

that at least three acceptable spirograms were obtained,
at least 2 of which were reproducible with forced expira-
tory volume in 1 s (FEV1) and forced vital capacity (FVC)
measurements within 5% of each spirogram; the best of
these 2 values was selected from a given encounter.
Acceptability of spirograms was judged according to
American Thoracic Society standards.28 29All spirometric
values are pre-bronchodilator. Per cent predicted values
for FEV1 and FVC were calculated using equations by
Crapo et al30 COPD was defined as GOLD stage II or
higher (FEV1/FVC<70% and FEV1<80% predicted).31

Techniques for assessing DNA methylation were previ-
ously described in detail.32 33 Briefly, we performed DNA
methylation assessment of Alu and LINE-1 repetitive ele-
ments on bisulphite-treated blood leucocyte DNA using
highly quantitative PCR–pyrosequencing technology. The
degree of methylation was expressed as the percentage of
methylated cytosines over the sum of methylated and
unmethylated cytosines. Each marker was tested in tripli-
cate, and their average was used in the statistical analysis.

Statistical analysis
Analyses for cross-sectional associations were performed
using repeated measures with adjustment for the correl-
ation between measurements in a given individual using
mixed effects models (PROC MIXED) for continuous
outcomes (FEV1, FVC, FEV1/FVC) and generalised esti-
mating equations (PROC GENMOD) for binary out-
comes (COPD). Covariates in multivariable models were
chosen for their clinical relevance and strong bivariate
associations (p≤0.05) with lung function or change in
effect estimate criterion of >10% after addition to the
model and included age, height, race, pack-years of cig-
arette smoking, smoking status (dichotomised as current
vs ex-smokers and never smokers) and body mass index
(BMI). We also considered variables previously asso-
ciated with methylation of repetitive elements,34 such as
folate intake, alcohol intake, total white blood cell count
and both per cent neutrophils and per cent lympho-
cytes. With the exception of per cent lymphocytes,
which was included in models with LINE-1 only, these
covariates were not included in final models because
they were not associated with Alu or LINE-1 methylation
and did not meet the change in estimate criteria.
Because figure 2 depicts bivariate relationships, per cent
predicted values were used for both FEV1 and FVC to
show an adjusted value; actual values for FEV1 and FVC
were utilised in multivariable models. To examine asso-
ciations between methylation of Alu and LINE-1 and
change in lung function over time, a rate was calculated
using the change in lung function between the two time
points divided by the amount of time elapsed between
the two measurements in years. This value was utilised as
an outcome and analysed using multivariate linear
regression models. A total of 301 individuals had a
second lung function data point subsequent to the
initial methylation value. SAS V.9.1 (SAS Institute, Cary,
North Carolina, USA) was used for all analyses.
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RESULTS
Baseline characteristics of the 663 individuals included
in this study as well as of the subset of 301 individuals
with two lung function measures are shown in table 1.
All were male and the majority (640, 97%) of white
race. Forty-three (7%) were current smokers and 197
(30%) were never smokers. There was wide variation in
lung function values. Of the 107 individuals with COPD,
77 (72%) were GOLD stage II, 26 were stage III and 4
were stage IV; overall 20 (20%) of the individuals with
COPD were current smokers.
The distribution of percentage methylation of both

Alu and LINE-1 elements among the population and
stratified by smoking status is shown in figure 1.
Bivariate relationships between Alu and LINE-1 methy-

lation with outcomes and covariates considered for inclu-
sion in the multivariable model are shown in table 2. Alu
methylation was associated or showed a trend towards
association positively with FEV1, BMI and FEV1/FVC and
negatively with age and COPD status. LINE-1 methylation
was positively associated with current smoking and nega-
tively with per cent lymphocytes. Neither Alu nor LINE-1
methylation was associated with FVC, pack-years of
smoking or ever smoking status. Folate intake, alcohol
intake, total white blood cell count and per cent neutro-
phils were not significantly associated with Alu or LINE-1
methylation in bivariate analyses. There was no

significant relationship between methylation of Alu and
LINE-1 to each other (p=0.23).
In multivariate models that included age, height, race,

pack-years of smoking, smoking status and BMI, Alu
methylation was positively associated with FEV1, and
showed a trend towards association with FVC and FEV1/
FVC. Because of recent data suggesting that current
smoking status may have differential effects on methyla-
tion,35 36 and because this may relate to disease outcome
or risk, we investigated whether our results would change
if current smokers were excluded from the analyses.
Higher Alu methylation was still associated with lower
odds of COPD (OR 0.80 (0.64 to 0.99) p=0.046). In ana-
lyses of lung function measures, results were in the same
direction but were no longer significant except for FEV1/
FVC (FEV1 p=0.17, FVC p=0.7, FEV1/FVC p=0.029).
There were no significant associations between LINE-1
methylation and any of the cross-sectional outcomes
(table 3). Figure 2 depicts the bivariate associations of
Alu methylation with FEV1% predicted, FVC% predicted
and FEV1/FVC.
We also analysed whether methylation of Alu and

LINE-1 were associated with rate of change in lung func-
tion in a subset of participants who had two consecutive
lung function measures (N=301). The mean number of
years elapsed between measurements was 4.03 (SD 1.23).
Models were adjusted for baseline FEV1, FVC or FEV1/

Table 1 Baseline characteristics of 663 individuals from the Normative Aging Study and subset of 301 individuals who had

more than one lung function measurement for analysis of lung function decline

Full data set 301 Subset

Mean (SD) or N (%) Range Mean (SD) or N (%) Range

Age 72.7 (6.7) (55.3–100.9) 71.5 (6.4) (55.3–91.0)

BMI 28.5 (4.2) (19.4–52.3) 28.7 (4.1) (20.3–52.3)

Pack-years* 30.6 (24.8) (0.1–145.5) 28.6 (23.1) (0.10–120.8)

Current smokers 43 (7) 23 (8)

Ever smokers 466 (70) 216 (70)

Folate intake† (mcg/day) 570 (333) (0.23–2235.17) 617 (383) (0.23–2001.75)

Alcohol intake (gm/day) 12.0 (17.8) (0–217.8) 10.7 (13.8) (0–73.5)

WBC (×103/mm3) 6.7 (1.8) (2.7–23.8) 6.6 (2.3) (3.2–36.6)

Per cent lymphocytes 25.6 (8.0) (5–88) 25.0 (8.3) (7–85)

Per cent neutrophils 62.1 (8.7) (5–85) 62.8 (8.8) (5–83)

Cardiovascular disease‡ 115 (17) 49 (16)

Hypertension 280 (42) 143 (47)

Diabetes 75 (11) 33 (11)

FEV1 2.70 (0.64) (0.85–4.69) 2.76 (0.62) (1.29–4.69)

FEV1% predicted 81 (17) (28–125) 81.8 (15.5) (39.7–122.6)

FVC 3.56 (0.72) (1.63–6.32) 3.64 (0.71) (1.63–6.32)

FVC% predicted 82 (14) (43–124) 82.6 (13.1) (43.8–123.8)

FEV1/FVC 75 (8) (36–94) 75.6 (7.0) (51.6–94.4)

COPD 107 (16) 45 (15)

Alu 26.4 (1.1) (22.8–32.4) 26.4 (1.10) (22.8–32.3)

LINE-1 76.8 (1.8) (70.1–84.6) 77.0 (1.8) (70.1–81.6)

*Pack-years in current or ex-smokers only.
†Calculated based on supplement intake and fortified foods from food frequency questionnaire.
‡Angina, stroke, myocardial infarction, ischaemic heart disease.
BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;
LINE-1, long-interspersed nuclear elements; WBC, white blood cell count.
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FVC (respectively for the given outcome) as well as age,
pack-years of smoking, BMI, height, race, per cent lym-
phocytes and smoking status. Relative hypomethylation in
LINE-1 but not Alu was associated with faster rate of
decline in FEV1 and FVC (p<0.005). Neither measure
was associated with rate of change of FEV1/FVC
(table 4). Including both Alu and LINE-1 methylation in
the models did not change the results (data not shown).
Because of prior associations between methylation of
repetitive elements and cardiovascular disease,15–17 we
repeated both cross-sectional and longitudinal analyses
including variables for cardiovascular disease (myocardial
infarction, stroke, angina, hypertension, ischaemic heart
disease) and diabetes and found no difference in the
results (data not shown). Analyses were also repeated in
whites only to determine whether results might be due to
population stratification and results did not change
(data not shown). Analyses excluding current smokers
remained significant (data not shown). Because of the
known association between aging and methylation, we
also repeated the models using age2, as an additional

covariate to saturate the model for an age effect and
found no difference in our results (data not shown).

DISCUSSION
We examined associations between methylation levels of
the repetitive elements Alu and LINE-1 in a cohort of
older men in relation to lung function and COPD status.
In cross-sectional analyses, we found that Alu hypo-
methylation was associated with lower FEV1 with a trend
towards association with lower FVC and FEV1/FVC.
LINE-1 hypomethylation was associated with more rapid
lung function decline (FEV1 and FVC).
Prior studies have found associations between methyla-

tion of repetitive transposable elements such as Alu and
LINE-1 and several diseases including multiple cancers,7

cardiovascular disease15–17 and neurological disease,18 as
well as with markers of inflammation.19 To our knowl-
edge this is the first study to examine associations
between methylation of Alu and LINE-1 transposable
elements and measures of lung function.

Figure 1 Distribution (median, IQR) of percentage (A) Alu and (B) long-interspersed nuclear elements (LINE-1) methylation in

the overall cohort and stratified by smoking status.

Table 2 Bivariate associations between Alu, LINE-1 methylation and other covariates

Alu LINE-1

β p Value β p Value

Age −0.3 0.07 −0.2 0.1

BMI 0.106 0.059 0.054 0.17

Current smoking 0.35 0.14 0.697 0.0002

Per cent lymphocytes 0.08 0.73 −0.31 0.04

FEV1 0.024 0.06 −0.006 0.53

FVC 0.023 0.22 −0.004 0.73

FEV1/FVC 0.31 0.046 −0.05 0.67

COPD OR 0.87 (0.73 to 1.03) 0.1 1.02 (0.92 to 1.13) 0.76

BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;
LINE-1, long-interspersed nuclear elements.
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Previous work has shown that in normal subjects, Alu
hypomethylation is associated with increased age,8 37

greater alcohol use and gender (lower in males).34 In
this same cohort (Normative Aging Study), hypomethy-
lation has been associated with higher incidence of
cancer in general and lung cancer specifically (LINE-1
methylation), as well as higher mortality from cancer
(Alu and LINE-1 methylation).38 A variety of environ-
mental exposures such as lead,39 traffic particles,33

organic pollutants,40 metals, air pollutants and endo-
crine disrupting agents,41 may all affect global methyla-
tion levels, specifically some that may relate to lung
function such as various air pollutants.
Hypomethylation of transposable elements may or may

not be causally linked to lower lung function and faster
rates of lung function decline. Lower methylation of Alu
and LINE-1 may increase their activity as retrotransposable
sequences, leading to greater genomic instability and
more mutations.13 Furthermore, oxidative damage caused
by environmental exposures may cause hypomethylation.42

This may lead to alteration of gene expression through
a variety of mechanisms including disrupting transcrip-
tion factor binding sites or reading frames, altering regula-
tory sequences, altering methylation patterns of gene

promoters or introducing new transcription factor-binding
sites.43–45 Alu elements specifically are preferentially found
in gene-rich regions.46 Black carbon and increased PM2.5

exposure,33 as well as PM10 exposure,41 have been found
to be inversely associated with LINE-1 methylation and
both Alu and LINE-1 methylation, respectively, which may
impact on lung function or lung function decline.47

LINE-1 hypomethylation may also increase transcription
of genes that have LINE-1 in regulatory regions. It is pos-
sible that other specific environmental or dietary expo-
sures previously not known to be associated with lung
function may be mediated through epigenetic changes
such as Alu or LINE-1 hypomethylation. Alternatively, this
may be a marker of a specific exposure but not causally
linked to lower lung function. Lastly, because Alu methyla-
tion decreases with increasing age, as does lung function,
our findings may represent some other measure of ‘aging’
or exposures resulting in similar processes beyond just
chronological age.8 We repeated all of our analyses using
age2, as an additional covariate to saturate for an age effect
and found no differences in our results. As our under-
standing of epigenetic processes and the exposures that
affect these processes increases, the implications of our
findings will become clearer.

Figure 2 Alu methylation and lung function bivariate associations between Alu methylation and forced expiratory volume in 1 s

(FEV1)% predicted, forced vital capacity (FVC)% predicted and FEV1/FVC. *For FEV1/FVC y axis is per cent, not per cent

predicted.

Table 3 Multivariate models for lung function and both Alu and LINE-1 methylation*

Alu LINE-1

β p Value Β p Value

FEV1 0.028 0.017 −0.015 0.08

FVC 0.027 0.06 −0.017 0.11

FEV1/FVC 0.3 0.057 −0.092 0.44

COPD 0.85 (0.71 to 1.03) 0.09 1.01 (0.89 to 1.15) 0.83

*Adjusted for age, height, race, BMI, pack-years of smoking, smoking status. Models with LINE-1 also include per cent lymphocytes.
BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;
LINE-1, long-interspersed nuclear elements.

Lange NE, Sordillo J, Tarantini L, et al. BMJ Open 2012;2:e001231. doi:10.1136/bmjopen-2012-001231 5

Global methylation and lung function



These data must be interpreted in the context of the
study design. Our study was limited to older men the
majority of whom were white, and our findings may or
may not be generalisable to other populations. It is diffi-
cult to know how to interpret methylation of retrotran-
sposons, as opposed to gene-specific methylation, in
relation to specific outcomes such as lung function and
lung function decline. Future studies in this and other
cohorts should include gene-specific methylation ana-
lyses similar to Qiu et al,22 to elucidate mechanisms by
which methylation changes may relate to these out-
comes. We did not control for a variety of environmental
exposures that may be associated with both lung func-
tion and methylation. However, alteration in methylation
patterns may be the pathway through which these
changes are mediated and thus including these expo-
sures in multivariate models would be overadjusting.
Methylation levels vary in different tissue types and it is
possible that assessments of methylation in white blood
cells may not reflect alterations seen in lung tissue.
However, systemic processes involving white blood cells,
such as inflammation, may play a role in the pathophysi-
ology of lung function decline,48 and may nonetheless
be markers of specific exposures (such as cigarette
smoking) that exert a systemic effect.
In summary, we found that relative hypomethylation

of Alu was associated with lower lung function measures,
and that LINE-1 hypomethylation was associated with
more rapid lung function decline. Future studies on
both gene-specific methylation as well as exposures
related to methylation of retrotransposons will improve
our understanding of the relationship between epigen-
etic changes and lung function, potentially informing
new diagnostic and therapeutic approaches to lung func-
tion decline and diseases such as COPD.
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