
INTRODUCTION

Lipids are fundamental structures in cells and tissues that 
are involved in regulating intracellular energy metabolism and 
immune function (Walther and Farese, 2012). However, mas-
sive lipids can induce metabolic disorders and inflammatory 
responses (Ertunc and Hotamisligil, 2016). Alcohol is a unique 
toxin that may perturb hepatic lipid metabolism, further induc-
ing alcoholic liver disease (ALD) (You and Arteel, 2019). Al-
coholic fatty liver disease (AFLD) is the earliest stage of ALD, 
and persistent excessive alcohol consumption could lead to 
the development of ALD from steatosis to alcoholic hepatitis, 
fibrosis and even cirrhosis (Addolorato et al., 2016). Currently, 
alcohol withdrawal is one of the most effective methods for the 
treatment of ALD, while the clinical efficacy is not ideal due to 
the limitation of patient compliance (Liu, 2014). Therefore, it 

is urgent to find safe and effective treatment strategies and 
candidates for AFLD.

During the development of AFLD, sterol regulatory-ele-
ment-binding protein 1 (SREBP1) and peroxisome proliferator 
activated receptor α/γ (PPARα/γ) are important transcriptional 
regulatory factors that are involved in lipid production and fatty 
acid oxidation, respectively (Menon et al., 2001; Han et al., 
2019). Our previous study indicated that alcohol could down-
regulate SREBP1 and PPARα expression while upregulating 
PPARγ expression (Yao et al., 2017a). Moreover, lipin1 is a 
protein generated by the LPIN1 gene and can interact with 
other nuclear receptors to regulate lipid metabolism, such as 
SREBP1 and PPARα/γ (Koh et al., 2008; Barroso et al., 2011; 
Song et al., 2018). Lipin2 also functions as a transcriptional 
coactivator for PPARγ, similar to lipin1 (Donkor et al., 2009). 
These studies confirmed the critical role of SREBP1, PPARα/γ 
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The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white 
birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells 
were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets con-
taining 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/
kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. 
BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor 
family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that 
BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate 
lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT sig-
nificantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and 
PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-
NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated 
P2X7r signaling pathway.
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and lipin1/2 in the regulation of lipogenesis.
Alcohol intake-induced excess lipid accumulation is ac-

companied by an inflammatory response. The P2X7 receptor 
(P2X7r) is an ATP-gated channel and can activate the NOD-
like receptor family pyrin domain-containing protein 3 (NLRP3) 
inflammasome (Adinolfi et al., 2018). Activation of the NLRP3 
inflammasome complex can induce the maturation and release 
of pro-IL-1β, pro-IL-18, and pro-caspase-1, further promoting 
the inflammatory response (Shao et al., 2015; Del Campo et 
al., 2018). Previously, we reported that the inhibition of the 
P2X7r-NLRP3 inflammasome could ameliorate extracellular 
matrix (ECM) deposition and liver fibrosis (Hou et al., 2020). 
In addition, NLRP3 is involved in metabolic diseases, such as 

type 2 diabetes and obesity-induced inflammation (Haneklaus 
and O’Neill, 2015). Therefore, thorough inquiry into the rela-
tionship between inflammation and metabolism might be a 
new entry point for the treatment of metabolic diseases.

Betulin (BT, lup-20(29)-ene-3β, 28-diol) is a naturally oc-
curring pentacyclic triterpene and mainly isolated from the 
bark of white birch (Betula pubescens) (Fig. 1) (Grymel et al., 
2019). Numerous studies have demonstrated that BT has vari-
ous pharmacological effects, including anti-HIV, anti-malarial, 
anti-cancer activities (Alakurtti et al., 2006). Previously, we in-
dicated that BT could ameliorate acute alcohol induced liver 
injury via activating SIRT1-AMPK signaling pathways (Bai et 
al., 2016; Yao et al., 2017b). Acute alcohol injury is mainly 
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Fig. 1. BT regulates lipid deposition in EtOH-stimulated AML-12 cells. (A) Chemical structure of BT. (B) Cell viability of EtOH on AML-12 
cells. (C) Cell viability of BT on AML-12 cells. (D) Representative Western blotting analysis for expressions of SREBP1, lipin1 and lipin2. (E) 
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characterized by oxidative stress and inflammation without 
significant lipid accumulation. However, many alcoholic liver 
disease patients have a long history of chronic drinking and an 
addiction to alcoholism. In this study, the adopted model was 
highly close to the human’s drinking pattern and could mimic 
the acute episode of alcoholic hepatitis after a single drunk-
enness of chronic alcohol dependent patients. Therefore, this 
model is beneficial for investigating the effect and potential 
mechanism of BT against alcohol induced lipid accumulation 
and metaflammation. Targeting lipin1/2-meidated P2X7r, the 
development of BT would provide scientific values against adi-
pose metabolic disease and inflammation.

MATERIALS AND METHODS

Chemical reagents
Betulin (BT) (BET201102212) was purchased from Sky-

herb Technologies (Hangzhou, China). Primary antibodies 
of SREBP1 (ab3259), lipin1 (ab181389), lipin2 (ab176347), 
P2X7r (ab48871), NLRP3 (ab4207), FANS (ab22759), PPARγ 
(ab19481) and GAPDH (ab8245) were purchased from Ab-
cam (Cambridge, MA, USA). Primary antibodies of PPARα 
(sc-9000), PGC-1α (sc-518025), IL-6 (sc-28343), IL-18 (sc-
133127), IL-1α (sc-393998) and caspase-1 (sc-514) were 
obtained from Santa Cruz Biotechnology Inc (Santa Cruz, 
CA, USA). Primary antibody of IL-1β (AF-401-NA) was pur-
chased from R&D. Horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit (ab97051) and rabbit anti-mouse (ab6728) 
were purchased from Abcam. Horseradish peroxidase (HRP)-
conjugated rabbit anti-goat (HAF017) was purchased from 
R&D. The BCA Protein Assay Kit was obtained from Beyotime 
(Jiangsu, China). The Mouse IL-1β Uncoated ELISA Kit was 
purchased from Invitrogen (Carlsbad, CA, USA) and mouse 
IL-6 ELISA Kit was obtained from NeoBioscience (EMC004; 
Shenzhen, China). DMSO was purchased from Sigma Chemi-
cal Co (St. Louis, MO, USA). Fetal bovine serum (FBS) and 
Dulbecco’s modified Eagle medium (DMEM) basic (1X) were 
purchased from Gibco (MA, USA). All other chemical reagents 
were analytical grade.

Cell culture and treatment
AML-12 cells and macrophage-like murine cell line Raw 

264.7 were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM), contained with 10% fetal bovine serum (FBS), 100 
U/mL penicillin and 100 mg/mL streptomycin at 37°C under 
5% CO2. AML-12 cells and Raw 264.7 cells were cultured 
in 6-well plates at a density of 1×106 per well, and grown to 
full adherence for 24 h. The cells were treated with EtOH (50 
mM), LPS (1 µg/mL) or different concentrations of BT for 24 h. 
Then, these cells were detected by Western blot, immunofluo-
rescence staining or cell staining experiments, etc.

MTT 
AML-12 cells were cultured in 96-well plates at a density of 

1×104 per well. Until fully adherent, the cells were treated with 
BT (0-100 µM) or EtOH (0-400 mM) for 24 h. Subsequently, 
each pore was added with 3-(4, 5 dimethylthiazol-2-yl)-2,5-
diphenylterazoliun bromide (MTT) for 3 h, then added DMSO 
to dissolve blue crystals. The absorbance was measured at 
492 nm.

Oil red O staining
AML-12 cells were washed with 1×PBS, fixed with 4% 

paraformaldehyde solution and permeabilized with 0.1% Tri-
tonX-100 at room temperature. After immersed in 60% isopro-
panol, the cells were added Oil Red O working fluid, and coun-
terstained with hematoxylin and sealed with glycerin gelatin. 
All the stained cells were examined with a light microscope 
(Olympus, Tokyo, Japan).

Cell immunofluorescence staining
ALM-12 cells were stimulated by EtOH (50 mM) and Raw 

264.7 cells were stimulated by LPS (1 µg/mL) or EtOH (50 
mM), then cultured with or without BT. The cells were washed 
with 1×PBS, fixed with 10% paraformaldehyde solution and 
permeabilized with 0.1% TritonX-100 on ice, then blocked with 
5% goat serum. The cells were incubated with primary an-
tibodies overnight at 4°C, and incubated with corresponding 
secondary antibodies at room temperature. The nucleus was 
stained with DAPI and photographed with Olympus IX70 fluo-
rescence microscope (Olympus).

Small-interference-RNA (siRNA) transfection
AML-12 cells were transfected with 50 nM control siRNA, 

lipin1-siRNA or lipin2-siRNA (RiboBio, Guangzhou, China) 
using the Lipofectamine RNAiMAX reagent (Thermo Fisher 
Scientific Inc., Waltham, MA, USA). The cells were then har-
vested 48 h post-transfection for followed-up experiments. 

Animal experiments
Male C57BL/6 mice (body weight 20-22 g) were purchased 

from Changchun Yisi Laboratory Animal Technology Co., Ltd 
(Changchun, Jilin, China). Animals were acclimatized under 
20 ± 2°C, relative humidity of 55 ± 5% and a 12 h light-dark 
cycle conditions, and allowed free access to standard diet and 
water ad libitum. The experiment procedures followed guide-
lines for the care and use of laboratory animals and were ap-
proved by Yanbian University (Yanji, China) (Permission num-
ber, 20171217).

Mice were randomly divided into five groups: Normal group, 
EtOH group, EtOH+BT-20 group, EtOH+BT-50 group and 
pair-fed group. Except normal and pair fed groups, the other 
groups were given a Lieber-DeCarli alcoholic liquid diet con-
taining 5% EtOH (L-D, TP4030D, Trophic Animal Feed High-
tech Co., Ltd, Nantong, China). In the first week, the concen-
tration of EtOH in L-D diet was gradually added from 1% to 
5%. On the last day, all mice except for normal and pair-fed 
groups were given a single gavage 5% EtOH (5 g/kg). Mice 
in normal group were fed with normal diet, and pair-fed group 
were fed with L-D control diet (TP4030C). BT groups were dai-
ly gavaged with BT (20 or 50 mg/kg) for 4 weeks. After the last 
alcohol administration 9 h, all mice were sacrificed under an-
esthesia. Blood samples and liver tissues were collected and 
stored at -80°C. The detailed process is described in Fig. 2.

Determination of serum biochemical parameters 
Serum aspartate aminotransferase (AST), alanine amino-

transferase (ALT) and triglycerides (TG) were determined ac-
cording to the manufacturer’s manufacturing instructions by 
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

Enzyme-linked immunosorbent assays for IL-1β and IL-6
Mouse IL-1β and IL-6 protein level was measured by Mouse 
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IL-1β Uncoated ELISA Kit (Invitrogen) and mouse IL-6 ELISA 
Kit (EMC004, NeoBioscience) according to the manufacturers’ 
instructions.

Histopathological examination
Liver tissues were fixed with 10% formalin solution, dehy-

drated with EtOH and embedded in paraffin, then cut into 5 
µm sections. For haematoxylin and eosin (H&E) staining, liver 
sections dewaxing hydration, and then stained with haema-
toxylin and eosin. For Oil Red O staining, liver cryosections 
were stained with Oil Red O working fluid and haematoxylin. 
For immunohistochemistry staining, liver tissue sections anti-
gen restoration, treated with 10% H2O2 and blocking with 5% 
goat serum. The sections were incubated with primary and 
secondary antibodies, and then visualized with DAB (Maixin 
Biol, Fu Zhou, China). Finally, the cell nucleus was stained 
with hematoxylin and sealed with neutral gum. For immuno-
fluorescence staining, liver cryosections were fixed with meth-
anol and acetone, blocked with 5% goat serum, followed with 
primary antibodies, specific fluorescent antibody and DAPI. All 
the liver sections were performed by microscopy (TI-E, Nikon, 
Tokyo, Japan).

Western blotting 
Protein samples were lysed by RIPA buffer. Equal quan-

tities of protein samples were separated by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 
then transferred to polyvinylidene fluoride (PVDF) membranes 
(GE healthcare, Freibury, Germany). The membranes were 
blocked with 5% skim milk, incubated with the primary anti-

bodies at 4°C overnight, followed with appropriate HRP-con-
jugated secondary antibodies, and visualized with ECL Detec-
tion Reagent (Bio-Rad, Hercules, CA, USA). The intensities of 
bands were quantified by Quantity One (Bio-Rad).

RT-PCR
Total RNA was extracted from liver tissue using RNA Ex-

traction Kit according to manufacturer’s protocols and its con-
centrations were measured by Nanodrop ND-1000 (Thermo 
Fisher Scientific, Wilmington, DE, USA). Samples of RNA 
were reverse-transcribed into cDNA. RT-PCR was performed 
using pre-set appropriate primers for the gen as described in 
Table 1. The PCR products were run on 2% agarose gel and 
stained with ethyl bromide. GAPDH was used as the internal 
to normalize transcript level of special genes.

Statistical analyses
All the data were expressed as mean ± SD and calculated 

via one-way analysis of variance and Tukey’s multiple com-
parison tests. Calculations were performed using GraphPad 
Prism (GraphPad Software, San Diego, CA, USA) and a value 
of p<0.05 was considered as statistically significant. 

RESULTS

BT regulates lipid deposition in EtOH-stimulated AML-12 
cells

We examined the effects of EtOH or BT on the viability of 
AML-12 cells by MTT. AML-12 cells were treated with EtOH (0-
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400 mM) and BT (0-100 µM) for 24 h. The results showed that 
EtOH (0-25 mM) and BT (0-25 µM) had no effect on AML-12 
cell viability (Fig. 1B, 1C). Oil Red O staining results showed 
that the red-stained lipid droplets stimulated with EtOH (50 
mM) were obviously alleviated by BT treatment (Fig. 1D). In 
EtOH-stimulated AML-12 cells, the expression of SREBP1 
and lipin1 was significantly increased, and the expression of 
lipin2 was decreased compared with that in the normal group. 
BT treatment effectively downregulated the expression of 
SREBP1 and lipin1 and upregulated the expression of lipin2 
compared with EtOH treatment (Fig. 1E). The same results 
were obtained by immunofluorescence (Fig. 1F, 1G). Thus, 
BT could ameliorate lipid accumulation by mediating SREBP1 
and lipin1/2 in EtOH-stimulated AML-12 cells. 

BT ameliorates the inflammatory response by blocking 
P2X7r-NLRP3 activation in AML-12 or RAW 264.7 cells 
stimulated with EtOH or LPS

In EtOH-stimulated AML-12 cells, P2X7r and NLRP3 ex-
pression was significantly increased compared with that in the 
normal group, while BT treatment could significantly decrease 
P2X7r and NLRP3 expression (Fig. 3A). Immunofluorescence 
staining results also confirmed the above results (Fig. 3B, 
3C). These results demonstrated that BT could block P2X7r-
NLRP3 activation against EtOH stimulation in AML-12 cells. 
Moreover, the NLRP3 inflammasome is widely expressed 
in macrophages exposed to inflammatory stimuli, and we 
used RAW 264.7 cells to explore how BT regulates P2X7r/
NLRP3 in macrophages. In LPS- or EtOH-stimulated RAW 
264.7 cells, P2X7r and NLRP3 expression was significantly 
increased compared with that in the normal group, while BT 
treatment significantly decreased P2X7r and NLRP3 expres-
sion (Fig. 3D). Similarly, immunofluorescence staining also 
showed that BT treatment could significantly downregulate the 
expression of P2X7r and NLRP3 caused by LPS or EtOH (Fig. 
3E, 3F). These results suggested that BT could improve the 

EtOH-induced hepatocyte inflammatory response by inhibiting 
P2X7r-NLRP3 reduce the activation of P2X7r-NLRP3 in LPS- 
or EtOH-induced macrophages.

Lipin1/2 are indispensable for BT regulating lipid 
accumulation and metaflammation 

To further confirm that BT alleviates lipid accumulation and 
metaflammation by lipin1/2-meidated P2X7r, AML-12 cells 
were transfected with siRNA against lipin1 or lipin2 and then 
treated with EtOH or BT, respectively. Expression of lipin1 or 
lipin2 was significantly decreased by treating with an siRNA 
lipin1 or siRNA lipin2. Lipin1 deficiency resulted in a down-
regulation on SREBP1 and P2X7r expressions, while the 
EtOH-stimulated up-regulation of SREBP1 and P2X7r were 
strengthened by lipin2 deficiency. These results illustrated 
that EtOH could regulate SREBP1 and P2X7r expressions 
by targeting lipin1/2. In AML-12 cells with silencing lipin1, 
BT significantly decreased the expressions of SREBP1 and 
P2X7r compared with siRNA against lipin1 and EtOH group; 
lipin1-deficience promoted the regulation of BT on SREBP1 
expression (Fig. 4A). In AML-12 cells with silencing lipin2, 
BT significantly decreased the expressions of SREBP1 and 
P2X7r compared with siRNA against lipin2 and EtOH group; 
lipin2-deficience blocked the regulation of BT on SREBP1 and 
P2X7r expressions (Fig. 4B). These results suggested that BT 
could target lipin1/2 to block the P2X7r-NLRP3, which might 
be potential therapeutic strategy for BT against lipid accumu-
lation and metaflammation caused by EtOH.

BT alleviates hepatic steatosis and injury in chronic EtOH 
administration mice

Compared with the normal and pair-fed groups, serum ALT, 
AST and TG levels were significantly increased in the EtOH 
group, indicating that chronic EtOH administration could in-
duce liver injury and lipid accumulation. BT treatment obvi-
ously downregulated these serum parameters compared with 
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Table 1. The primer sequences for RT-PCR

          Gene Primer sequence Product size

IL-18 5’-GATCAAAGTGCCAGTGAACC-3’ 866
5’-AACTCCATCTTGTTGTGTCC-3’

GAPDH 5’-CTTGTGCAGTGCCAGCC-3’ 1254
5’-GCCCAATACGGCCAAATCC-3’

SREBP1 5’-CTTAGCCTCTACACCAACTG-3’ 4299
5’-AGGAATACCCTCCTCATAGC-3’

IL-1β 5’-GTACATCAGCACCTCACAAG-3’ 1328
5’-CACAGGCTCTCTTTGAACAG-3’

IL-1α 5’-CTTGAGTCGGCAAAGAAATC-3’ 1974
5’-GAGATGGTCAATGGCAGAAC-3’

P2X7r 5’-AGCGGAAAGAGCCTGTCATC-3’ 3680
5’-GCAGGATGTTTCTCGTGGTG-3’

NLRP3 5’-GGTGTTGGAATTAGACAACTGC-3’ 4470
5’-TCAAAGACGACGGTCAGCTC-3’

Caspase1 5’-ACATCCTTCATCCTCAGAAAC-3’ 1533
5’-GATAATGAGGGCAAGACGTG-3’

TNF-α 5’-TCACACTCAGATCATCTTCTC-3’ 1619
5’-AGACTCCTCCCAGGTATATG-3’

IL-6 5’-TCCTCTCTGCAAGAGACTTC-3’ 1087
5’-CCAGTTTGGTAGCATCCATC-3’
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EtOH treatment (Fig. 2A-2C). Liver tissue in EtOH group ap-
peared whitish in color and swollen compared with normal 
group, while these changes were reversed by BT treatment, 
and pair-fed group was no significant difference compared 
with normal group. In the EtOH group, H&E and Oil Red O 
staining showed massive red-stained lipid droplets, inflamma-
tory cell infiltration and nuclear condensation compared with 
the normal group, while BT treatment significantly ameliorated 
these histological changes (Fig. 2D, 2F). These results sug-
gested that BT treatment could obviously relieve hepatic ste-
atosis and injury caused by chronic EtOH administration.

BT regulates SREBP1 and PPARα/γ expression in chronic 
EtOH-treated mice

SREBP1 is an important transcriptional regulator in fatty 
acid synthesis and results in the upregulation of triglyceride 
synthesis and further to fatty liver. In the EtOH group, the 
protein and mRNA expression levels of SREBP1 were signifi-
cantly increased compared with those in the normal group and 
were decreased by BT treatment. In addition, chronic EtOH 
administration elevated the protein expression of FASN and 
PPARγ and decreased the protein expression of PPARα com-
pared with the normal group. While BT treatment significantly 
upregulated the expression of PPARα and downregulated 
the expression of FASN and PPARγ compared with EtOH 
treatment (Fig. 5A). Immunohistochemical staining further 
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confirmed that BT could obviously decrease the positive (in 
brown) expression of SREBP1 caused by chronic EtOH ad-
ministration (Fig. 5B). In the pair-fed group, the expression 
levels of SREBP1, FASN, PPARα and PPARγ were not signifi-
cantly different compared with those in the normal group (Fig. 
5A). These results demonstrated that BT could inhibit hepatic 
lipogenesis in chronic EtOH-treated mice.

BT regulates lipin1 and lipin2 expressions in chronic EtOH 
administration mice

Chronic EtOH administration obviously increased the ex-
pression of lipin1, as well as decreased the expression of lip-
in2 compared with normal group. BT treatment could reverse 
the expressions of lipin1 and lipin2 (Fig. 5A). Immunohisto-
chemistry and immunofluorescence staining results also con-
firmed that BT inhibited lipin1 expression and increased lipin2 
expression caused by chronic EtOH administration (Fig. 5C). 
As a transcription cofactor of multiple metabolic pathways, the 
expression of PPAR gamma coactivator-1α (PGC-1α) was 
decreased caused by alcohol exposure, while BT treatment 
increased its expression (Fig. 5A). These results showed that 
the regulation of lipin1/2 might be necessary for BT to alleviate 
lipid deposition and hepatic steatosis in chronic EtOH admin-
istration mice.

BT inhibits the secretion of inflammatory cytokines by 
blocking P2X7r and NLRP3 expression in chronic EtOH-
treated mice

In the EtOH group, the protein expression levels of P2X7r 
and NLRP3 were significantly increased compared with those 
in the normal group, while BT treatment reversed the P2X7r 
and NLRP3 levels that were increased by EtOH challenge 
(Fig. 6A). RT–PCR, immunohistochemistry and immunofluo-
rescence staining also confirmed the same results (Fig. 6B-
6D). To further assess the anti-inflammatory effects of BT, we 
used Western blot, real-time PCR and ELISA kits to examine 
the mRNA and protein expression levels of inflammatory cy-
tokines, respectively. As expected, we observed high protein 
levels of IL-1β and IL-6 in EtOH-induced mouse livers com-
pared with normal mice, while BT treatment reduced IL-1β 
and IL-6 levels (Fig. 7A, 7B). Similarly, the protein and mRNA 
expression levels of IL-6, IL-18, IL-1α, IL-1β, caspase-1 and 
TNF-α were markedly increased after chronic EtOH admin-
istration and were reduced by BT treatment (Fig. 7C, 7D). 
These results suggested that BT could inhibit the secretion 
of inflammatory factors by blocking P2X7r and NLRP3, there-
by alleviating the inflammatory response caused by chronic 
EtOH administration.

DISCUSSION

The current study demonstrated that BT could obviously 
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ameliorate liver lipid deposition and metaflammation by re-
ducing serum ALT, AST and TG levels, regulating SREBP1, 
PPARα/γ, lipin1/2 and PGC-1α expressions and inhibiting 
inflammation factors production. Moreover, BT could inhibit 
P2X7r-NLRP3 signaling pathways to against lipid metaflam-
mation, which were verified in chronic EtOH administration 
mice and EtOH/LPS-stimulated AML-12 cells and Raw 264.7 
cells. Lipin1 deficiency suppressed SREBP1 and P2X7r ex-
pressions, while lipin2 deficiency showed the opposite results. 
Interestingly, the lipin1/2 deficiency significantly affected the 
regulation of BT on SREBP1 and P2X7r to further attenuate 
lipid accumulation and inflammation caused by EtOH. There-
fore, BT targeted lipin1/2-meidated P2X7r to ameliorate ste-
atosis and inflammation in chronic alcoholic liver disease, 
which suggested that BT would be a promising therapeutic 
candidate for chronic alcoholic liver disease.

In previous studies, we found that BT could alleviate acute 
alcohol-induced liver injury (Wan et al., 2013; Bai et al., 2016). 
Short-term acute drinking cannot completely mimic human 
alcoholic liver disease, whereas long-term chronic alcohol 
accumulation can induce metabolic diseases, such as alco-
holic fatty liver development to hepatitis, cirrhosis, and even 
liver cancer (Liu, 2014; Wu et al., 2016). To simulate chronic 
alcohol-induced lipid accumulation and metaflammation, the 
experimental animals were fed an L-D liquid diet containing 
5% EtOH for 4 weeks, and followed by a single EtOH gavage 
on the last day (Bertola et al., 2013). In vitro, AML-12 cells 
were directly incubated with medium containing 50 mM EtOH.

Growing evidence has demonstrated that lipogenesis 
plays a key role in the development of alcoholic liver disease. 
SREBP1 is a key transcription factor controlling adipogenesis. 
Mature SREBP1 enters the nucleus and activates the tran-
scription of genes involved in cholesterol and fatty acid syn-
thesis (Shimano, 2000). Our previous study and other schol-
ars’ achievements have shown the evidence that SREBP1 

is the key point for excessive lipid accumulation in the liver 
(Ruiz et al., 2014; Yao et al., 2017a; Song et al., 2018). Thus, 
the current study found that BT significantly inhibited the ex-
pression of SREBP1 to regulate lipid accumulation caused by 
EtOH. Lipin1 is a member of the lipin family, which can interact 
with the transcriptional coactivator PGC-1α to increase hepat-
ic fatty acid oxidation (Bi et al., 2015). In addition, PPARα/γ 
are also involved in fatty acid metabolism and transport (Galli 
et al., 2001; Nanji et al., 2004; Han et al., 2021). In our previ-
ous studies, alcohol exposure upregulated SREBP1, FASN, 
PPARγ and lipin1 expression and inhibited PPARα activity, fur-
ther limiting fatty acid degradation and increasing fat accumu-
lation (Yao et al., 2017b; Zhang et al., 2020). As expected, our 
data showed that BT could reverse the changes in of SREBP1, 
FASN, PPARα/γ, lipin1/2 and PGC-1α caused by chronic alco-
hol administration, further relieving relieve lipid deposition and 
the development of chronic alcoholic liver disease.

Except for lipid metabolism, the continuous inflammatory 
response could lead to inflammatory infiltration, hepatocyte 
necrosis and liver fibrosis, which cannot be reversed (Cui et 
al., 2021). P2X7r is an ATP-activated ionotropic purinergic re-
ceptor, whereas extracellular ATP is sensed by immune cells 
as a danger signal (Huang et al., 2014). P2X7r could medi-
ate the maturation and secretion of interleukin-1β (IL-1β) and 
activate the NLRP3 inflammasome (Ferrari et al., 2006). Im-
mature pro-IL-1β requires cleavage into mature IL-1β under 
the cleavage of caspase-1, and the activation of caspase-1 
depends on NLRP3 inflammasome complex formation (Ogura 
et al., 2006). In the current study, BT inhibited the activation 
of P2X7r and the NLRP3 inflammasome, further inhibiting the 
cleavage of caspase-1. Lacking the cleavage of caspase-1, 
immature pro-IL-1β could also not be cleaved into mature 
IL-1β, thereby exerting its anti-inflammatory activity. More-
over, studies have shown that lipin2 can reduce the K+ efflux 
promoted by ATP and IL-1β production and regulate P2X7r 
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pore formation. Furthermore, the production of IL-1β was sig-
nificantly increased in lipin2 knockout human macrophages, 
while the primary BM-derived macrophages showed that 
IL-1β production was abrogated when key elements of the 
NLRP3 inflammasome were knocked out. These results re-
vealed the importance of lipin2 in the regulation of P2X7r and 
NLRP3 inflammasome activation (Lordén et al., 2017). The 
current study found that lipin1 deficiency inhibited SREBP1 
and P2X7r expressions, whereas lipin2 deficiency improved 
their expressions on the contrary. And BT treatment could fur-
ther suppress the expressions of SREBP1 and P2X7r. Thus, 
BT may relieve the lipid accumulation and metaflammation 
caused by EtOH through targeting lipin1/2 to block the P2X7r-
NLRP3 signaling pathway.

In summary, the study revealed the hepatoprotective effect 
of BT against chronic alcohol-induced lipid accumulation and 
metaflammation through targeting lipin1/2-meidated P2X7r 
signaling pathway, which supplied fundamental experimental 
support and potential clinical value. However, it’s still needed 
to subsequent deeper study to explore the metabolism, bio-
availability and drug delivery system of BT before applications. 
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