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INTRODUCTION
Gastric cancer is the fifth most common malignancy and 

the third leading cause of cancer-related death worldwide 
(1, 2). Most patients present with locally advanced or meta-
static disease, and median survival is 12 to 15 months (3–6).

Recently, several international phase III trials have vali-
dated the combination of anti–PD-1 agents with standard 
first-line 5-fluoropyrimidine and platinum chemotherapy in 
gastroesophageal cancers (7–11). Notably, the global phase 
III CheckMate-649 trial showed the efficacy of nivolumab 
in combination with chemotherapy as first-line treatment 
for advanced gastric cancer (AGC), leading to its accelerated 
approval by the FDA in April 2021 (9). Subsequently, interim 
analysis of the ongoing KEYNOTE-811 trial demonstrated 

the efficacy of first-line pembrolizumab in combination with 
trastuzumab and chemotherapy in locally advanced or meta-
static HER2-positive AGC, leading to FDA approval in May 
2021 (12). A recurring observation among phase III gastric 
and esophageal trials combining chemotherapy and immu-
notherapy has been differential activity based on PD-L1 
expression (13). For example, in the CheckMate-649 trial, the 
HR for overall survival was 0.92 [95% confidence interval (CI), 
0.70–1.23] and 0.94 (95% CI, 0.78–1.13) for PD-L1 combined 
positive score (CPS) <1 and <5, respectively, highlighting the 
lack of benefit in PD-L1lo AGCs (9). The differential outcomes 
between patients with PD-L1hi and PD-L1lo tumors suggest 
the need for deeper understanding of the cellular and molec-
ular mechanisms of response in gastroesophageal cancers.

ABSTRACT Chemotherapy is ubiquitous in first-line treatment of advanced gastric cancer, 
yet responses are heterogeneous, and little is known about mediators of chemo-

therapy response. To move forward, an understanding of the effects of standard chemotherapy on 
the tumor–immune microenvironment (TME) is needed. Coupling whole-exome sequencing, bulk RNA 
and single-cell transcriptomics from paired pretreatment and on-treatment samples in treatment-
naïve patients with HER2-positive and HER2-negative gastric cancer, we define features associated 
with response to platinum-based chemotherapy. Response was associated with on-treatment TME 
remodeling including natural killer (NK) cell recruitment, decreased tumor-associated macrophages, 
M1-macrophage repolarization, and increased effector T-cell infiltration. Among chemotherapy 
nonresponders, we observed low/absent PD-L1 expression or modulation, on-treatment increases 
in WNT signaling, B-cell infiltration, and LAG3-expressing T cells coupled to an exodus of dendritic 
cells. We did not observe significant genomic changes in early on-treatment sampling. We provide  
a map of on-treatment TME modulation with standard chemotherapy and nominate candidate 
future approaches.

SIGNIFICANCE: Using paired pretreatment and on-treatment samples during standard first-line 
chemotherapy, we identify chemotherapy-induced NK-cell infiltration, macrophage repolarization, and 
increased antigen presentation among responders. Increased LAG3 expression and decreased den-
dritic cell abundance were seen in nonresponders, emphasizing remodeling of the TME during chemo-
therapy response and resistance.
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Table 1. Clinicopathologic features of study patients

Clinical characteristics Values
Age, median (range) 55.5 (33–75) years
Sex, n (%)
 Male 8 (66.7%)
 Female 4 (33.3%)
HER2, n (%)
 Positive 5 (41.7%)
 Negative 7 (58.3%)
Primary tumor location, n (%)
 Cardia 1 (8.3%)
 Body 8 (66.7%)
 Antrum 3 (25.0%)
PD-L1 CPS, n (%)
 ≥1 7 (58.3%)
 0 5 (41.7%)
First-line treatment, n (%)
 XELOX 7 (58.3%)
 XP + Trastuzumab 5 (41.7%)
Pathology, n (%)
 Moderately differentiated 5 (41.7%)
 Poorly differentiated 5 (41.7%)
 Signet ring cell 2 (16.6%)

Cytotoxic chemotherapy plays a central role in AGC, 
including tumor debulking, leading to symptom palliation. 
The prevailing hypothesis for improvement in outcomes with 
the addition of immunotherapy to chemotherapy regimens 
is that cytotoxic chemotherapies may remodel the tumor–
immune microenvironment (TME) and facilitate immune-
mediated tumor killing, which can be potentiated with PD-1 
blockade and reinvigoration of antitumor T-cell responses 
(14, 15). Platinum agents including oxaliplatin may upregu-
late PD-L1 expression on dendritic cells (DC) and enhance 
immune cell infiltration in murine colorectal models (16, 17). 
Preclinically, the antimetabolite 5-fluorouracil (5-FU) may 
facilitate antigen presentation by DCs while also exerting 
selective killing of myeloid-derived suppressor cells (MDSC; 
refs. 18, 19). Although 5-FU and oxaliplatin have preclinical 
evidence of the potential to induce favorable immunogenic 
conditions in the tumor microenvironment, we do not have 
direct evidence that this occurs in patients. A detailed under-
standing of the pretreatment and on-treatment TME during 
standard 5-FU/platinum alone in AGC remains a significant 
knowledge gap and barrier to better understanding our clinical 
data with PD-1 combinations.

To address these unmet needs, we sought to comprehen-
sively characterize pre- and on-treatment biopsy tissues from 
patients with AGC undergoing first-line standard chemo-
therapy without PD-1 blockade. We performed whole-exome 
sequencing (WES), whole-transcriptome sequencing (WTS), 
single-cell RNA sequencing (scRNA-seq), and multiplexed 
immunofluorescence (mIF) to characterize the tumoral and 
immune compartments before and during 5-FU and platinum 
chemotherapy. We provide some of the first high-resolution 
data in AGC that demonstrate TME changes between patients 
who went on to be treatment responders or nonresponders 
to standard first-line chemotherapy. Our work may inform 
approaches to target the TME to expand the portion of 
patients benefiting from chemotherapy and the combination 
of chemotherapy and immunotherapy.

RESULTS
Patient Characteristics and Study Samples

The primary cohort consisted of 12 chemotherapy-naïve 
Korean patients with metastatic AGC, diagnosed between 
November 2018 and May 2019 at Samsung Medical Center 
(Seoul, Korea; Table 1). The median age was 56 (range, 33–75) 
years old. Five patients (41.7%) had HER2-positive AGC, and 
seven patients (58.3%) had PD-L1–positive tumors. There 
were no Epstein–Barr virus–positive or microsatellite insta-
bility–high patients. Five patients exhibited partial response 

(responder) to two cycles of first-line chemotherapy, whereas 
stable disease and progressive disease were observed in three 
and four patients, respectively (nonresponder; Fig. 1A and B). 
Patient EP12 was known to have progressed but was lost to 
follow-up and not considered evaluable. All patients under-
went a pretreatment biopsy that was processed for WES and 
WTS, and five patients underwent on-treatment biopsies 
processed for WES and WTS. In addition, pretreatment and 
on-treatment scRNA-seq from fresh biopsies was performed 
on 11 and 7 patients, respectively (Fig. 1A). All tissue samples 
were taken from the primary tumor, and an attempt was 
made to biopsy the same area in all paired samples.

Exonic Mutational Landscape of Study Samples
According to The Cancer Genome Atlas (TCGA) classifica-

tions, three patients had genomically stable (GS) tumors, 
whereas the remaining nine patients were chromosomally 
instable (20). We analyzed WES data of pretreatment and 
on-treatment samples (mean sequencing coverage of ∼200× 
for tumor and matched blood samples) and found high-
confidence somatic mutations, including 1,454 base substi-
tutions and 49 indels in pretreatment samples and 534 base 

Figure 1.  Study overview and genomic landscape of enrolled patients. A, Experimental design. We obtained fresh tumor tissues from patients with AGC 
before and after two cycles of first-line chemotherapy. Response to the chemotherapy was performed using RECIST1.1 criterion (B). Patient EP12 was known 
to have progressed but was lost to follow-up and was not considered evaluable. The mutational landscape was analyzed in patients with HER2-positive AGC 
(C) and HER2-negative AGC (D). The negative sign in C and D indicates unavailable PD-L1 expression status, and hollow rectangle represents negative for 
PD-L1 expression. We summarized somatic mutations in selected canonical oncogenes and tumor-suppressor genes in AGC. Whole exome–derived tumor 
mutational burden and mutational signatures of somatic mutations in HER2-positive AGC (E) and HER2-negative AGC (F). The signature of exonic somatic 
SBSs was delineated by COSMIC signatures, which were represented by the following terms: age (SBS1 and SBS5), APOBEC (apolipoprotein B mRNA editing 
enzyme; SBS2 and SBS13), UV (ultraviolet; SBS7a, SBS7b, SBS7c, and SBS7d), TMZ (temozolomide, SBS11), smoking (SBS4), immunoglobulin gene hypermu-
tation (SBS9), HRD (homologous recombination deficiency; SBS3), MMRD (mismatch repair deficiency; SBS6, SBS15, SBS20, and SBS26), NERD (nucleotide 
excision repair deficiency; SBS8), DPD (DNA proofreading deficiency; SBS10a and SBS10b), BERD (base excision repair deficiency; SBS18), chemotherapy 
(SBS25), and platinum treatment (SBS31, SBS35). The size of the circles reflecting the mutational signatures corresponds to the proportion of the signature 
in the sample. BoR, best of response; CIN, chromosomal instability; GC, gastric cancer; PD, progressive disease; SD, stable disease; PR, partial response.
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substitutions and 18 indels in on-treatment samples. Con-
sistent with prior reports, we observed mutations in genes 
enriched in the TCGA gastric cancer cohort including chro-
matin histone modifiers and transcription factors (Fig.  1C 
and D). Mutations in TP53, PIK3CA, APC, ELF3, MACF1, 
ARID2, and MSH3 were shared between pretreatment and 
on-treatment samples, suggesting clonal mutations occurred 
in most recent common ancestors of the two samples and 
preservation of tumor clones with these mutations during 
treatment. To characterize the mutational processes that 
generate point mutations in AGC, we analyzed mutational 
signatures for the 18 WES from AGC tissue (12 pretreat-
ment and 6 on-treatment samples) on the COSMIC catalog 
(ref. 21; Fig. 1E and F). Most single-nucleotide substitutions 
(SBS) were C:G>T:A transition. The mutational spectrums 
suggest that previously defined mutational signatures of 
endogenous processes, associated with 5-methylcytosine 
deamination and correlated with age, were responsible for 
the somatic single-nucleotide variants (SNV) of AGC. Overall, 
there were limited early genomic changes observed with 
two cycles of platinum-based chemotherapy, suggesting that 
early mutational changes were not the predominant media-
tor of TME changes discussed below.

Chemotherapy Reshapes the Gastric Cancer TME 
toward Immune-Responsive Features

After observing limited early changes in the tumor muta-
tional landscape or mutational signature composition on 
treatment, we focused our attention on the immune com-
ponents of the TME. We integrated RNA-seq data from 12 
pretreatment and 6 on-treatment samples to characterize 
the immune microenvironment of AGC. We then sought 
to apply recent pan-cancer TME signatures to examine 
the ability of chemotherapy to affect signatures associ-
ated with immunotherapy response (22). By integrating the 
transcriptomic data, we classified each tumor sample into 
four previously defined distinct microenvironment sub-
types (immune-depleted, fibrotic, immune-enriched, and 
immune-enriched/fibrotic) using the molecular functional 
portrait (Fig. 2A). In the primary cohort, we did not observe 
clear baseline differences in TME composition between 
responder and nonresponder patients (Fig.  2A). To screen 
specific gene set enrichment in on-treatment over pretreat-
ment samples, we performed gene set variation analysis 
(GSVA; ref.  23; Fig.  2B). Genes in several canonical path-
ways showed distinctive pattern of enrichments between 
pre- and on-treatment samples. Notably, genes related to 
M2-oriented macrophages (anti-inflammatory, immuno-
suppressive) were significantly repressed across the cohort 

in posttreatment samples (P  =  0.009), indicating increased 
M1/M2 repolarization during conventional chemotherapy 
(24). Significant activation of the PD-1 pathway was seen in 
on-treatment samples (P  =  0.033), suggesting capecitabine 
plus oxaliplatin (XELOX) or capecitabine plus cisplatin/
trastuzumab (XPT) chemotherapy is reshaping the TME 
of AGC, especially in responders. Notably, on-treatment 
increases in the PD-1 pathway and inflammasome were 
more common among responders. Conversely, on-treatment 
WNT-pathway increases were enriched among nonrespond-
ers and may function to limit T-cell infiltration (25).

Chemotherapy Modulates T-cell Populations 
within the TME

To describe the changes in the TME of AGC by fluoro-
pyrimidine plus platinum agents, we examined single-cell 
gene expression profiles of pretreatment (n  =  11) and on-
treatment (n  =  7) biopsies. After filtering low-quality cells 
and applying batch correction (using Harmony), we collected 
a total of 18,911 cells (10,651 cells from pretreatment sam-
ples and 8,260 cells from on-treatment samples; ref. 26). We 
next performed unsupervised clustering and identified seven 
major cell types using tissue type–specific canonical marker 
genes previously defined in the literature (27): epithelial 
cells (n = 3,056), stromal cells (n = 3,750), T cells (n = 7,145), 
natural killer (NK) cells (n = 624), myeloid cells (n = 1,902), B 
cells (n = 1,877), and platelets and undefined cells (n  = 557; 
Fig. 2C; Supplementary Fig. S1A and S1B). The T-cell propor-
tion showed a tendency to increase in on-treatment samples, 
especially in HER2-negative AGC (Fig. 2D, top). Responders 
had a higher proportion of effector CD8 cells in on-treatment 
samples (median, 46.1%; range, 45.3%–48.0%) compared with 
pretreatment samples (median, 39.5%; range, 35.0%–54.7%; 
Fig. 2D, right middle). A decrease in T regulatory cells (Treg) 
on treatment was observed only in responders. On the other 
hand, in nonresponders, the proportion of exhausted T cells 
increased in on-treatment samples (median, 14.0%; range, 
8.7%–33.8%) compared with pretreatment samples (median, 
10.5%; range, 5.0%–42.1%; Fig. 2D, right middle). Compared 
with responders, nonresponders had a higher proportion of 
tumor-associated macrophages (TAM) in pretreatment sam-
ples (median, 79.1%; range, 37.0%–97.7%), and the proportion 
was increased in on-treatment samples (median, 86.7%; range, 
75.0%–92.3%; Fig. 2D).

Chemotherapy Activates Innate Immune Pathways 
in Tumor Cells

To gain insight into mechanisms underlying the increased 
abundance of T cells in the TME while on chemotherapy, we 

Figure 2.  5-FU and platinum remodel the TME in AGC. A, Immune score of pretreatment and on-treatment samples from patients with HER2-positive and 
HER2-negative AGC (left), and responders and nonresponders (right). Heat map of GSVA scores of representative pathways across pretreatment (n = 12) 
and on-treatment (n = 6) samples (B). We performed the Wilcoxon signed-rank test to assess the differences in G-scores between pretreatment and post-
treatment samples, between HER2-positive and HER2-negative pretreatment samples, and between HER2-positive and HER2-negative posttreatment sam-
ples. The P values are illustrated on right side of the heat map using bar plots. EMT, epithelial–mesenchymal transition. C, Uniform manifold approximation 
and projection (UMAP) embedding of 18,911 cells (10,651 cells from pretreatment samples and 8,260 cells from posttreatment samples). Multiple clusters 
represent various cell types in the TME of AGC. D, Relative proportion of cell subtypes of pretreatment and on-treatment samples from patients with HER2-
positive and HER2-negative AGC (left), and responders and nonresponders (right). Global cell types, T-cell, and myeloid subpopulations are illustrated in top, 
middle, and bottom plots, respectively. E, The RNA expression of genes involved in innate immune response and immunogenic cell death: ANXA1, HMGB1, 
CGAS, and STING. We estimated the expression using scRNA-seq of pretreatment and posttreatment samples from patients with HER2-positive and HER2-
negative AGC. The box plots describe the median and interquartile range of the expression. The P values were estimated by the Wilcoxon signed-rank test.
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investigated immune signaling pathways within the epithelial 
cell population (2,011 cells from pretreatment samples and 
1,045 cells from on-treatment samples; Fig. 2E). Notably, the 
expression of representative genes in the damage-associated 
molecular patterns family, including Annexin A1 (ANXA1) 
and high mobility group box 1 (HMGB1; ref.  28), increased 
after chemotherapy in HER2-positive (P = 0.001) and HER2-
negative (P  <  0.001) patients with AGC. In addition, genes 
involved in innate immune signaling, such as cyclic GMP-
AMP synthase (cGAS) and STING (transmembrane protein 
173, also known as TMEM173; ref.  29), showed increased 
expression in HER2-positive on-treatment samples, consist-
ent with prior data that HER2 inhibition induces STING 
pathway activation (30). Collectively, these data suggest con-
ventional cytotoxic chemotherapy may promote antitumor 
inflammation within the TME of AGC by reorganizing the 
T-cell compartment and inducing innate signaling pathways 
in tumor cells in a subset of patients.

Chemotherapy Reprograms TAMs
We next hypothesized that antigen-presenting cells may 

play an important role in reorganizing the TME and recruit-
ing T cells in the setting of chemotherapy. We therefore 
clustered 1,902 myeloid cells (1,104 cells from pretreatment 
samples and 798 cells from posttreatment samples) into 5 
major subtypes and focused on TAMs (n  =  1,425; Fig.  3A; 
Supplementary Fig.  S2A). We identified 1,003 differentially 
expressed genes between pretreatment and on-treatment 
samples. Among those, proinflammatory genes, such as 
S100A8, S100A9, IRF1, and ITGAX (31–33), and MHC class I  
antigen-presentation genes, such as HLA-B and HLA-C,  
were significantly upregulated in on-treatment samples, 

whereas anti-inflammatory molecules such as SPP1, LGALS1, 
APOE, and APOC1 (34–36) were downregulated while on 
chemotherapy (Fig.  3B). Next, to identify enriched path-
ways in scRNA-seq data, we calculated the module scores of 
canonical pathways. Concordant with the finding in GSVA 
analysis of WTS data (Fig. 2B), the expression of genes related 
to M2 (anti-inflammatory) macrophages decreased in on-
treatment samples, especially in HER2-negative AGC samples 
(P < 0.001). On the other hand, genes associated with myeloid 
differentiation, antigen processing and presentation, and 
peptide loading on MHC1 molecule showed higher expres-
sion in on-treatment compared with pretreatment samples, 
consistent with chemotherapy-induced macrophage modula-
tion (Fig. 3C).

To better understand the reorganization of macrophage 
phenotypes in the setting of chemotherapy, we recon-
structed the differentiation trajectory of TAMs using the 
Slingshot toolkit (ref. 37; Fig. 3D). We set a cluster express-
ing monocyte-like macrophage markers (CD14, FCN1) as 
a start point and inferred the end point from pseudotime 
ordering. Interestingly, we observed two distinct trajectories, 
one of which stretched to genes specific to M2 macrophages, 
whereas the other stretched to M1 macrophage–related 
genes (Supplementary Fig.  S2B). In pretreatment samples, 
the proportion of M2 macrophage (91.9%) was much higher 
than M1 macrophage (8.1%). However, subpopulations of 
TAMs in on-treatment samples skewed to M1 macrophage 
with a proportion of 35.8%. Taken together, these data 
indicate that conventional chemotherapy leads to increased 
M1/M2 polarization. To corroborate these observations, we 
examined paired biopsy samples from a responding patient 
(EP-02). Consistent with scRNA-seq data, we observed  
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a significant increase in CD8+ lymphocyte infiltration 
(26,259,051 cells) from baseline (1,825,166 cells) and a  
considerable increase in CD68+ macrophages from 3,646,753 
cells to 46,421,747 cells during chemotherapy (Fig.  3E). 
However, CD68 cells cannot fully distinguish macrophage 
subtypes. Interestingly, this patient was PD-L1–negative 
(CPS  =  0) at baseline but PD-L1–positive (CPS  =  20) after 
two cycles of XELOX chemotherapy.

Independent External Validation of Early TME 
Remodeling by First-Line Chemotherapy

To validate findings in our primary cohort, we investi-
gated the pretreatment and on-treatment tumor samples of 
a subset of 17 consecutively enrolled patients with AGC from 
an ongoing clinical trial (NCT04249739). This is a phase II 
trial of first-line chemotherapy [XELOX or capecitabine 
plus cisplatin (XP) + trastuzumab] plus pembrolizumab 
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with preplanned baseline and follow-up biopsy after one 
cycle of chemotherapy prior to the addition of pembroli-
zumab. In this study, a total of 17 consecutive patients were 
included for this analysis, including 3 patients with HER2-
positive AGC (Supplementary Table S1). On-treatment sam-
ples were collected after one cycle of 5-FU and platinum 
chemotherapy (oral capecitabine and oxaliplatin for HER2-
negative AGC; trastuzumab plus oral capecitabine and cis-
platin for HER2-positive AGC). We obtained pretreatment 
primary tumor and matched on-treatment tumor samples 
from the primary gastric tumor and performed WTS. Cell 
type deconvolution using the CibersortX algorithm revealed 
an increase in effector cell populations in the on-treat-
ment TME (refs. 38, 39; Supplementary Fig.  S3). Further-
more, the GSVA algorithm showed significantly repressed 
M2-oriented macrophages and activated PD-1 signaling in 
on-treatment samples, validating our previous scRNA-seq 
results (Fig.  4A). Interestingly, we observed additional on-
treatment enrichment of pathways involved in T-cell recep-
tor signaling, costimulation, and effector cells consistent 
with our primary cohort.

We again classified each tumor sample into four pre-
viously defined distinct TME subtypes using the molecu-
lar functional portrait (ref.  22; Fig.  4B). In a majority of 
patients, we observed a dynamic change after one cycle of 
chemotherapy. Specifically, 7 (50.0%) out of 14 samples with 
immune-depleted or fibrotic pretreatment TME became 
immune-favorable during treatment (Fig.  4C). Interestingly, 
the pretreatment and on-treatment TME was more inflamed 
in HER2-positive than HER2-negative AGC, an observation 
that could partly underlie the high biological activity of 
PD-1 in combination with trastuzumab and hint at the 
immunomodulatory role for trastuzumab (ref. 40; Fig. 4D). 
After one cycle of the study treatment, expression signatures 
involved in effector cells (including T cells and Th1 cells), 
checkpoint inhibition, and MHC-II expression were signif-
icantly higher in both HER2-positive and HER2-negative 
AGC (Fig. 4E). Collectively, these results indicate early TME 
remodeling during anticancer treatment, corroborating and 
augmenting our previous results.

Early Increase in LAG3 Expression on T Cells 
Correlates with Lack of Benefit from First-Line 
Chemotherapy

Given the clear immune remodeling effects of chemo-
therapy, we next hypothesized that inability to effectively 
modulate the T-cell composition, specifically exhausted T-cell 
populations, may play a role in chemotherapy nonresponse. 
We subclustered a total of 7,145 T cells (3,693 cells from pre-
treatment samples and 3,452 cells from on-treatment sam-
ples) into six subtypes: Treg (n = 684), naïve CD4 (n = 863), 
proliferating T cells (n = 51), memory CD8 (n = 1,475), effec-
tor CD8 (n = 3,031), and exhausted CD8 (n = 1,041; Fig. 5A; 

Supplementary Fig.  S4A). Exhausted CD8 cells were fur-
ther subclassified to four stages according to established 
developmental groupings (Supplementary Fig. S4B; ref. 41). 
To understand shared features among nonresponders, we 
focused on EP-05, EP-07, and EP-08, who had de novo resist-
ance to standard XELOX chemotherapy (Fig.  1A and B). 
We found that two patients had MET amplification in their 
primary gastric tumor, and all three patients were PD-L1 
negative (CPS = 0) at baseline and failed to upregulate PD-L1 
expression on chemotherapy. Interestingly, TIGIT expression 
was enriched in T cells of patients with MET amplification 
(Fig. 5B). Overall, MET-amplified patients had a higher pro-
portion of terminally differentiated T cells compared with 
patients with wild-type MET (Fig. 5B).

To understand the spatial distribution of exhausted T cells, 
we focused on paired samples from a patient (EP-07) with 
MET-amplified AGC that had progressed rapidly during two 
cycles of XELOX chemotherapy (Fig. 5C). mIF with CODEX 
showed abundant CD11c+ DCs (n  =  857, 12.2%) and CD8+ 
lymphocytes (n  =  1545, 22.1%) around tumor at baseline; 
however, after two cycles of chemotherapy, the TME was 
infiltrated mostly with macrophages and tumor cells, CD20+ 
B cells (n = 779, 8.6%), and near absence of DCs (n = 36; 0.4%; 
Fig.  5D). Another patient with progressive disease (EP-08) 
had a higher proportion of LAG3+ (n = 35, 0.3%) and CD20+ 
(n  =  292, 2.5%) cells in on-treatment than in pretreatment 
tumor (LAG3+ cells, n = 3, 0.04%; CD20+ cells, n = 80, 1.09%; 
Fig.  5E). We observed a similar phenomenon in two other 
patients with primary progression (EP-05 and EP-07) as 
assessed by LAG3 protein expression in mIF as well as LAG3 
mRNA expression in scRNA-seq (Fig. 5F).

Although limited by small patient numbers, nonrespond-
ers to XELOX chemotherapy, all of whom were PD-L1 nega-
tive (Fig.  1D), failed to favorably remodel their TME and 
exhibited minimal change in T-cell infiltration but rather 
an increase in LAG3 expression and B-cell infiltration. Con-
versely, a trend toward these unfavorable TME features was 
not observed among responders to XELOX or XP/trastu-
zumab. Taken together, our overall data suggest a putative 
working model to correlate chemotherapy response with 
TME remodeling, which may provide a rationale for combi-
nation of chemotherapy and anti–PD-1 therapy (Fig. 6).

DISCUSSION
The complex interactions between tumor and immune/

stromal cells play out in the TME and dictate clinical out-
comes, including among patients with AGC (42–44). To opti-
mally understand how to therapeutically target the gastric 
cancer TME, we need to first understand the effects of our 
current standard chemotherapy backbones which nearly all 
patients receive and which play a central role in treatment. In 
this work, conducted prior to FDA approval of combination 

Figure 4.  Independent validation of TME remodeling during 5-FU/platinum chemotherapy. A, Heat map of GSVA scores of representative pathways 
across pretreatment and on-treatment samples. B, Heat map demonstrating changes in relative TME composition, including changes in TME subtype 
signatures. The negative sign indicates unavailable PD-L1 expression status. C, Sankey plot demonstrating a dynamic change of TME subtype between 
pretreatment and posttreatment samples. D and E, Activity of selected molecular functional portraits (D) in pretreatment TME of HER2-positive (n = 3) 
and HER2-negative (n = 14) tumors, and (E) in on-treatment compared with pretreatment samples. Th1, T helper 1 cell; Th2, T helper 2 cell; TCR, T-cell 
receptor; EMT, epithelial–mesenchymal transition; PR, partial response; SD, stable disease; PD, progressive disease.
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chemotherapy/immunotherapy, we coupled WTS and scRNA- 
seq from paired pretreatment and on-treatment samples in a 
cohort of Asian patients with AGC receiving standard 5-FU/
platinum therapies with or without trastuzumab depending 
on standard HER2 testing.

Though we acknowledge the limitations of the small sample 
size, several clinically relevant themes emerge from our data, 
which represent the initial and largest AGC on-treatment  
data to date. First, although tumor genomics reciprocally 
shape the TME during gastric cancer tumorigenesis, we did 
not observe clear baseline genomic features associated with 
benefit from cytotoxic chemotherapy, consistent with prior 
work in a larger heterogeneous gastroesophageal dataset 
(44). Nor did we observe significant changes in mutational 
processes early on treatment, arguing against newly acquired 
tumor cell genomic changes as a major driver of early chemo-
therapy resistance, consistent with recent reports (45). We 
fully acknowledge that intrapatient heterogeneity and clonal 
evolution occur in all patient cohorts and tumors, particu-
larly under the pressures of therapies, though less is known 
about the role in chemotherapy compared with immuno-
therapies (46). Gastric cancer is a particularly heterogeneous 
disease with high degrees of intrapatient and intratumoral 
heterogeneity, and larger datasets will be needed to deeply 
examine the impact of heterogeneity on patient outcomes. 
We intentionally sampled patients early on treatment to 
understand early changes and expect that with longer chemo-
therapy exposure we would observe more changes in clonal 
architecture. Second, the predictive ability of baseline TME 
features in AGC may be limited, and we observed limited 
baseline differences among responders and nonresponders 
in our cohort. However, we show the potential of integrat-
ing early on-treatment TME changes and observe conserved 
favorable on-treatment features including upregulation of 
PD-1 pathway components, antigen presentation machinery, 
NK-cell infiltration, and a shift from M2 to M1 polarized 
macrophages. In fact, our recent work in microsatellite insta-
bility–high AGC pairing pretreatment and on-treatment 
sampling corroborates these favorable early on-treatment 
compositional changes in the immune compartment (27). 
Interestingly, both baseline and on-treatment increases in 
favorable features were more pronounced in HER2+ patients, 
suggesting both intrinsic biological differences and the 
immunomodulatory effects of trastuzumab (30, 47). Finally, 
those patients who failed to favorably remodel their TME 
early on therapy did not ultimately respond to first-line 
chemotherapy. Among these nonresponders, there were 
notable trends including the lack of increase of effector 
T-cell abundance coupled to increases in LAG3+ exhausted  

T cells, an exodus of DCs, and an increased B-cell popula-
tion. The significance of B cells in gastric cancer remains 
understudied, though our data, albeit limited, are aligned 
with the negative impact of B-cell infiltration that has been 
observed in some studies (48, 49). Interestingly, nearly all 
nonresponding patients were PD-L1 negative and failed to 
upregulate PD-L1 expression on treatment. The relation-
ship between PD-L1 expression and cytotoxic chemotherapy 
response has not been examined in detail, but response is 
numerically lower (41% vs. 46%) in PD-L1–negative patients 
in the large (n = 1,581) phase III CheckMate-649 trial (9).

The on-treatment expansion of LAG3+ T-cell popula-
tions was observed only in nonresponders. Notably, among 
patients with non–small cell lung cancer, LAG3 elevation in 
immunotherapy-naïve samples predicts for lack of benefit 
from immune checkpoint inhibitors, but impact on chemo-
therapy response is not clear (50). Although further work is 
needed, the anti-LAG3 antibody relatlimab in combination 
with PD-1 and chemotherapy is under investigation in AGC 
(NCT03044613, NCT04062656, and NCT02935634). Recent 
work in melanoma from the phase III RELATIVITY-047 
trial (nivolumab with or without relatlimab) demonstrated 
improved progression-free survival (10 vs. 4 months) in the 
relatlimab arm independent of PD-L1 expression, providing 
some orthogonal support for this combination (51).

Prior single-cell analyses have been limited to either small 
heterogeneous cohorts or patients later in their disease course 
where the impacts of multiple prior therapies confound 
understanding (52–54). Importantly, none of this prior work 
has examined on-treatment changes which provide a unique 
window into the earlier effect of a therapy. In future work, we 
plan to couple tissue analyses to peripheral blood (circulat-
ing tumor DNA and plasma proteomics) to both annotate 
peripheral findings to tissue TME changes and explore more 
clinically accessible approaches that may serve as surrogates 
for serial biopsies performed in this analysis. Recent work 
in melanoma suggests the possibility of plasma proteomic 
analyses to reflect tissue-level TME features (55). Our obser-
vations lack functional validation and do not explain why, 
despite similar baseline TME and genomic composition, 
some patients fail to favorably remodel their TME, which 
remains a critical knowledge gap to optimally select patients 
for TME-directed therapeutic combinations. Functionalizing 
the TME is complicated, and limited model systems coupled 
to a general lack of standardized strategies and assessment 
metrics remain barriers to functional validation.

Considering our data, we are pointed toward a poten-
tial model to suggest where combination chemotherapy 
and PD-1–blocking agents may be most successful. When 

Figure 5.  Profiling the TME of nonresponders identifies an increase in LAG3+ T cells. A, UMAP embedding T-cell subpopulations. Multiple clusters 
represent various subtypes of T cells in the TME of AGC. Bar plots demonstrating relative proportions of T-cell subtypes in pretreatment and posttreat-
ment AGC samples (plot A inset). B, The bottom plot illustrates relative proportion of exhausted CD8 subpopulations in pretreatment and on-treatment 
samples from patients with MET-amplified AGC (left) and patients with AGC with wild-type MET (right). Top plot shows feature plots visualizing the 
presence of tumoral MET amplification (left) and the expression of TIGIT (right) in T-cell populations. C, A representative case of a patient with MET-
amplified AGC (EP-07). The tumor did not radiographically respond to two cycles of XELOX in combination with pembrolizumab. Pie charts show propor-
tion of exhausted CD8 T-cell subtypes in pretreatment and on-treatment samples. D and E, mIF images characterizing the TME of AGC before and during 
first-line chemotherapy in two representative nonresponders: EP-07 (D) and EP-08 (E). F, The expression profile of LAG3 in T-cell populations increases 
in nonresponders. LAG3 gene expression of T cells from scRNA-seq (top). Proportion of T cells expressing LAG3 in mIF (pie charts). LAG3 protein expres-
sion in mIF (bottom). The tumor volume of the on-treatment sample from EP-05 (annotated by asterisk) was relatively low to estimate LAG3 expression 
in mIF. WT, wild type; M, male; PD, progressive disease; PR, partial response.
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treatment-naïve gastric cancers are exposed to cytotoxic ther-
apy, induction of innate immune components including 
macrophages and NK cells drives antigen presentation, on-
treatment PD-L1 upregulation, and T-cell infiltration (Fig. 6). 
Among these patients, the additive/synergistic effects of PD-1 
with chemotherapy likely further enhance response, per-
haps underlying the improved clinical outcomes in PD-L1+ 
patients. Among patients not responding to standard chemo-
therapy, and perhaps more commonly in PD-L1–negative 
tumors, chemotherapy fails to appropriately remodel the 
TME and immunosuppressive features (exhausted T cells, 
Treg persistence, B-cell increase, and persistent TAM popu-
lations) dominate. In this context, addition of anti–PD-1 
agents is unlikely to provide meaningful benefit, and it is this 
population who are need of rational combinations beyond 
the addition of PD-1 alone. Detailed mechanistic studies 

are needed to validate this putative model and help explain 
why the TME in some patients does not change to favora-
ble immune features during chemotherapy. Whether or not 
ongoing approaches directed at IL2, Toll-like receptors 7 and 
8, CCL2/CCR2, and WNT and MDSC modulation (DKN-01)  
will help to recapitulate a more favorable TME seen in our 
data remains to be seen. Interestingly, in a small phase II  
trial, the addition of DKN-01 to 5-FU/oxaliplatin and PD-1 
blockade appeared to enhance activity in both PD-L1– 
negative and particularly DKK1-high gastroesophageal ade-
nocarcinomas perhaps reflecting modulation of unfavorable 
TME features (56). Ongoing studies earlier in the disease 
paradigm (nonmetastatic patients) when tumor–immune 
interactions are earlier in evolution will also be important 
orthogonal data. We currently have an ongoing trial designed 
to examine TME changes when the anti–PD-1 antibody 

Figure 6.  Putative model underlying chemotherapy response in AGC. Patients with favorable TME remodeling may be primed for synergistic interac-
tions between immune checkpoint inhibitor and chemotherapy. Response to first-line treatment was associated with chemotherapy-induced cell death of 
tumor cells and on-treatment remodeling of TME, including M1-macrophage repolarization and increased effector T-cell infiltration. In contrast, inability 
to repolarize M2 macrophages and upregulate PD-L1 expression, coupled with infiltration of LAG3-expressing T cells, may modulate resistance to 
chemotherapy. ICD, immunologic cell death.
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pembrolizumab is added to standard first-line treatment 
with 5-FU and oxaliplatin. Patients receive serial sampling at 
baseline, on chemotherapy but pre-pembrolizumab, and then 
on the chemotherapy/immunotherapy combination (NCT# 
04249739). These data are expected to further map the TME 
changes over the course of therapy. In fact, in the small subset 
of patients (n = 17) from this trial herein, there was similar 
on-treatment remodeling as seen in our primary cohort.

Overall, we provide an initial and validation dataset in 
treatment-naïve AGC that helps to generate a detailed TME 
map to contextualize novel combination approaches being 
tested clinically. We demonstrate that on-treatment sampling 
is possible and provides valuable insights into the effects of 
our standard therapies in AGC.

METHODS
Study Design and Participants

Eligible patients were required to meet the following criteria: (i) 
at least 19 years old, (ii) histologically confirmed diagnosis of unre-
sectable, metastatic gastric cancer, (iii) adequate organ function per 
protocol, and (iv) Eastern Cooperative Oncology Group performance 
status of 0 or 1. All patients were naïve to prior chemotherapy. The 
trial protocol was approved by the Institutional Review Board (IRB) 
of Samsung Medical Center (Seoul, Korea; IRB No. 2019-11-089) 
and was conducted in accordance with the Declaration of Helsinki 
and the Guidelines for Good Clinical Practice. All patients provided 
written informed consent before enrollment.

At the discretion of the treating investigator, patients initially 
received 130 mg/m2 of intravenous oxaliplatin infused over 120 
minutes (or 80 mg/m2 of intravenous cisplatin infused over 60–120 
minutes) on day 1 and 1,000 mg/m2 of oral capecitabine twice a day 
for 2 weeks followed by 1 week off. A treatment cycle consisted of 3 
weeks. In addition, patients with HER-positive AGC (defined as IHC 
3+ or 2+ with HER2:CEP17 FISH ratio  ≥2.0) received intravenous 
trastuzumab [loading dose of 8 mg/kg (infused over 90 minutes) 
followed by maintenance dose of 6 mg/kg (infused over 30 minutes 
if the initial 90-minute infusion was well tolerated)] within 7 days of 
the first day of each 3-week cycle.

Sample Preparation
We obtained pretreatment primary tumor and matched periph-

eral blood samples at any time from 1 to 28 days before initiating 
treatment, and on-treatment tumor samples from primary gas-
tric tumor after two treatment cycles. If tumor cellularity was 
estimated to be greater than 40% after a thorough pathologic 
review, tumor DNA and RNA were extracted from freshly obtained 
tumor tissues using a QIAamp Mini Kit (QIAGEN), according to 
the manufacturer’s instructions. For DNA preparation, we used 
RNase A (cat. #19101; QIAGEN). We measured concentrations and 
260/280-nm and 260/230-nm absorption ratios with an ND1000 
spectrophotometer (Nanodrop Technologies, Thermo Fisher Scien-
tific) and further quantified DNA/RNA using a Qubit fluorometer 
(Life Technologies).

WES and WTS
Sequencing was performed using genomic DNA (gDNA) from the 

tumor tissues and matched blood samples using a QIAamp DNA 
Blood Kit (QIAGEN). For generation of standard exome capture 
libraries, we used the Agilent SureSelect Target Enrichment protocol 
for an Illumina paired-end sequencing library together with 1  μg 
of inputted gDNA. In all cases, the SureSelect Human All Exon V6 
probe set was used. We assessed the quantity and quality of DNA 

by PicoGreen and agarose gel electrophoresis. We diluted 1  μg of 
gDNA in EB buffer and sheared it to a target peak size of 150 to 200 
bp using the Covaris LE220 focused ultrasonicator (Covaris Inc.) 
according to the manufacturer’s recommendations. The fragmented 
DNA was repaired, and “A” was ligated to the 3′-end. Then, we ligated 
the fragments with Agilent adapters and amplified them using PCR. 
The prepared libraries were quantified using the TapeStation DNA 
ScreenTape D1000 (Agilent).

For exome capture, 250 ng of DNA library was mixed with 
hybridization buffer, blocking mixes, RNase block, and 5 μg of 
SureSelect all exon capture library, according to the standard 
Agilent SureSelect Target Enrichment protocol. Hybridization to 
the capture baits was conducted at 65°C using a heated thermal 
cycler lid option at 105°C for 24 hours on the PCR machine. The 
captured DNA was washed and amplified. The final purified prod-
uct was quantified by qPCR according to the qPCR Quantification 
Protocol Guide (KAPA Library Quantification Kits for Illumina 
Sequencing platforms) and qualified using the TapeStation DNA 
ScreenTape D1000 (Agilent). Samples were multiplexed, and flow-
cell clusters were created using the TruSeq Rapid Cluster Kit 
and the TruSeq Rapid SBS Kit (Illumina). Indexed libraries were 
submitted to an Illumina HiSeq2500 (Illumina), and paired-end 
(2 × 100 bp) sequencing was performed.

scRNA-seq
For single-cell preparation, tumor tissue was dissociated with 

the gentleMACS Dissociator and Tumor Infiltrating Lymphocyte 
Kit (Miltenyi Biotec) according to the manufacturer’s protocol. The 
cells were then cryopreserved in liquid nitrogen until use. All sam-
ples showed a viability of around 90% on average after thawing. 
scRNA-seq libraries were generated using the Chromium Single 
Cell 3 Library & Gel Bead Kit v3 (10  ×  Genomics) following the 
manufacturer’s instructions. Briefly, the Chromium instrument was 
used to separate single cells into gel bead emulsions that facilitated 
the addition of cell-specific barcodes to all cDNAs generated during 
oligo-dT–primed reverse transcription. As a result, a cell barcod-
ing sequence and Unique Molecular Identifier were added to each 
cDNA molecule. Libraries were constructed and sequenced at a 
depth of approximately 50,000 reads per cell using the HiSeq2500 
platform (Illumina).

Variant Calling and Filtering of WES
WES reads were aligned to the reference human genome GRCh37 

using BWA-MEM (57) followed by preprocessing steps, including 
duplicate marking, indel realignment, and base recalibration using 
the Genome Analysis Toolkit (GATK; version 4.1.1.0; ref. 58), generat-
ing analysis-ready BAM files. To establish the highly sensitive set of 
somatic SNVs and short indels, we initially took the unions of variant 
calls from MuTect2 (59) and Strelka2 (60). Default parameters were 
applied, and both variant callers were run with dbSNP (version 138; 
ref. 61), 1000G (phase I; ref. 62), and HapMap (phase III; ref. 63) data 
for known polymorphic sites. We filtered out variants with mini-
mum depth  <  5 or minimum alternative alleles  <  2, and annotated 
them using the Ensembl Variant Effect Predictor (release version 
87; ref. 64) with the GRCh37 database. Allele-specific copy-number 
variation was estimated from WES using the FACETS (version 0.6.0; 
ref.  65) in default quantification mode with the given tumor and 
paired normal BAM files.

Mutational Signature Analyses
We estimated contributions of mutational signatures to an 

observed mutational spectrum in each sample (i.e., the presumed 
amount of exposure to corresponding mutational processes) using 
the deconstructSigs package (version 1.6.0) in R (66). Exome regions 
were defined by the Agilent SureSelect V5 target region. Only somatic 
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mutations in exome regions were considered, and trinucleotide 
counts were normalized by the number of times each trinucleotide 
context was observed in the exome region.

Processing WTS
We annotated WTS with ENSEMBL (version 98) and aligned 

them to the human reference genome (GRCh38) using STAR 
(version 2.6.1; ref.  67). We quantified RNA expression in units of 
transcript per million (TPM) using RSEM (version 1.3.1; ref.  68), 
applying the parameters recommended by the GTEx project 
(https://github.com/broadinstitute/gtex-pipeline/blob/master/
TOPMed_RNAseq_pipeline.md). TPM values less than 1 were consid-
ered unreliable and substituted with zero. The GSVA algorithm was 
used to explore the whole-transcriptome dataset (23).

scRNA-seq Data Processing
We aligned scRNA-seq reads to the GRCh38 human genome 

reference and quantified them using a Cellranger (version 3.1.0). 
The data from all samples were combined in R v.3.6.0 using the 
Seurat package v.3.1.4 (69). We filtered out doublets using Scrublet 
(70). In addition, cells with low-quality libraries (<300 genes) and 
high mitochondrial read proportion (>20%) were filtered out. Data 
from each sample were normalized, scaled, and subjected to princi-
pal component analysis, followed by a batch correction using the 
Harmony (26). We used UMAP algorithm to reduce the dimension 
for visual representation, and identified cell clusters using a shared 
nearest neighbor modularity optimization–based clustering algo-
rithm. We identified various cell type clusters using “FindAllMarkers” 
for each cluster and annotated them based on the expression of 
representative markers.

IHC Analysis for PD-L1
Representative tumors from each participant were obtained from 

formalin-fixed, paraffin-embedded (FFPE) archival biopsy samples. 
The tissue was arranged in a new recipient paraffin block (tissue array 
block) using a trephine apparatus (SuperBioChips Laboratories). 
Immunohistochemical staining was performed using an automatic 
immunostainer (Dako) according to the manufacturer’s instruc-
tions. We used the Dako PD-L1 IHC 22C3 pharmDx Kit (Agilent 
Technologies) with the EnVision FLEX visualization system and 
counterstained with hematoxylin according to the manufacturer’s 
instructions. PD-L1 protein expression was determined using CPS, 
which is the number of PD-L1–stained cells (tumor cells, lympho-
cytes, and macrophages) divided by the total number of viable tumor 
cells and multiplied by 100. The specimen was considered to express 
PD-L1 if CPS was ≥1.

FFPE-CODEX Multiplexed Tissue Imaging with 19 Markers
FFPE tissue blocks were retrieved from the tissue archive at the 

Department of Pathology & Translational Genomics of Samsung 
Medical Center and Yonsei University Medical Center. Representa-
tive paraffin blocks were sectioned for staining. Square glass cover-
slips (Electron Microscopy Sciences) were pretreated with Vectabond 
(Vector Labs) according to the manufacturer’s instructions as previ-
ously described. Coverslips were washed in 100% acetone for 30 
seconds and air-dried, baked at 70°C for 1 hour, and stored at 
room temperature. The 4-μm-thick tissue sections were mounted 
on Vectabond-treated coverslips and stored in a coverslip stor-
age box (Qintay) at 4°C in a vacuum desiccator (Thermo Fisher) 
containing drierite desiccant (Thermo Fisher) until analysis. Stain-
ing procedures were performed according to the manufacturer’s 
instructions using staining solution 1 (S1), 2 (S2), 3 (S3), and 4 
(S4). Conjugations of oligonucleotides were performed at a 2:1 
weight/weight ratio of oligonucleotide to antibody, with at least 

100 mg of antibody per reaction. All centrifugation steps were 
at 12,000  ×  g for 8 minutes, unless otherwise specified. Purified, 
carrier-free antibodies (for details on clones, reporter, and barcodes, 
see Supplementary Table  S2) were concentrated on 50 kDa filters, 
and sulfhydryl groups were activated. After washing the antibody 
at a final concentration of 400 mmol/L, oligonucleotide was added 
to the antibody and incubated for 2 hours at room temperature. 
The conjugated antibody was washed and eluted with PBS-based 
antibody stabilizer (Thermo Fisher) and stored at 4°C until use. 
For staining with 19 antibodies, coverslips were deparaffinized after 
baking at 70°C for at least 1 hour, followed by immersion in fresh 
xylene for 30 minutes. Sections were rehydrated, and heat-induced 
epitope retrieval was performed. Tissues were encircled, and non-
specific binding was blocked for 1 hour at room temperature using 
100 mL of blocking buffer. For each coverslip, DNA-conjugated 
antibodies were added to 50 mL of blocking buffer on a 50-kDa 
filter unit, concentrated by spinning at 12,000 × g for 8 minutes, and 
resuspended in blocking buffer to a final volume of 100 mL. Bound 
antibodies were then visualized using the horseradish peroxidase/
liquid DAB+ substrate chromogen system (Agilent) according to 
the manufacturer’s instructions. Sections were counterstained with 
hematoxylin, followed by dehydration, mounting, and imaging in 
brightfield mode on a BZ-X710–inverted fluorescence microscope 
(Keyence). Automated image acquisition and fluidics exchange were 
performed using an Akoya CODEX instrument and CODEX driver 
software (Akoya Biosciences). Figures were created using templates 
from Biorender (https://biorender.com), and statistical analyses 
were performed using GraphPad Prism5.0 (GraphPad Software).

As we failed to conjugate HER2 [PATHWAY anti-HER2/neu 
(4B5)], MET [CONFIRM anti-Total MET (SP44) rabbit monoclonal 
primary antibodies (Ventana Medical Systems)], and PD-L1 (PD-L1 
IHC 22C3 pharmDx, Dako) antibodies with oligonucleotides with-
out any reason, we performed IHC for HER2 and MET in cases with 
overexpression, and PD-L1 in all cases with the same tissue sections 
after CODEX-multiplexed tissue imaging as described previously 
(71, 72).

Data Availability
All raw sequencing data from the primary cohort were deposited in 

the European Nucleotide Archive (accession number PRJEB45598). 
RNA-seq data from the validation cohort are available upon request.

Authors’ Disclosures
A. Mehta reports personal fees from Third Rock Ventures, Asher 

Biotherapeutics, BioNTech, venBio Partners, Abata Therapeutics, 
and Checkmate Pharmaceuticals, and grants from Bristol Myers 
Squibb outside the submitted work. W.-Y. Park reports personal 
fees and other support from Geninus Inc. during the conduct of 
the study. S.J. Klempner reports personal fees from Merck, Bristol 
Myers Squibb, Astellas, Daiichi Sankyo, Pieris, Sanofi-Aventis, and 
Natera Oncology, and other support from Turning Point Therapeu-
tics outside the submitted work. J. Lee reports grants from Stand 
Up To Cancer Gastric Cancer Interception Award, the Korea Health 
Technology R&D Project, and SKKU Excellence in Research Award 
Research Fund during the conduct of the study. No disclosures were 
reported by the other authors.

Authors’ Contributions
R. Kim: Conceptualization, data curation, formal analysis, inves-

tigation, methodology, writing–original draft, writing–review and 
editing. M. An: Conceptualization, formal analysis, investigation, 
methodology, writing–original draft, writing–review and editing. 
H.  Lee: Conceptualization, validation, investigation, methodology, 
writing–original draft, writing–review and editing. A. Mehta: Formal 
analysis, methodology, writing–original draft, writing–review and 



Chemotherapy Effects on the Gastric Cancer TME RESEARCH ARTICLE

 APRIL  2022 CANCER DISCOVERY | 999 

editing. Y.J. Heo: Resources, data curation, formal analysis, method-
ology, writing–review and editing. K.-M. Kim: Formal analysis, inves-
tigation, methodology, writing–review and editing. S.-Y.  Lee: Data 
curation, formal analysis, writing–review and editing. J. Moon: Data 
curation, formal analysis, methodology. S.T. Kim: Resources, formal 
analysis, investigation, writing–review and editing. B.-H.  Min: For-
mal analysis, investigation, methodology, writing–review and editing. 
T.J. Kim: Resources, formal analysis, methodology, writing–review 
and editing. S.Y. Rha: Resources, formal analysis, investigation, writ-
ing–review and editing. W.K. Kang: Resources, formal analysis, inves-
tigation, writing–review and editing. W.-Y. Park: Conceptualization, 
formal analysis, methodology, writing–original draft, writing–review  
and editing. S.J. Klempner: Conceptualization, formal analysis, inves-
tigation, writing–original draft, writing–review and editing. J. Lee: 
Conceptualization, resources, formal analysis, supervision, investiga-
tion, methodology, writing–original draft, writing–review and editing.

Acknowledgments
This study was supported by AGA Research Foundation’s AGA-

Gastric Cancer Foundation Ben Feinstein Memorial Research Scholar 
Award in Gastric Cancer (AGA2020-13-02, to S.J. Klempner), and the 
Stand Up to Cancer (SU2C) Gastric Cancer Interception Research 
Team Grant (grant number SU2C-AACR-DT-30-20) award (to H. Lee, 
S.J. Klempner, and J. Lee). This research grant is administered by the 
American Association for Cancer Research, the Scientific Partner of 
SU2C. This research was also supported by the SKKU Excellence in 
Research Award Research Fund, Sungkyunkwan University, 2020 (to 
J. Lee), and a grant from the Korea Health Technology R&D Project 
through the Korea Health Industry Development Institute (KHIDI), 
and funded by the Ministry of Health & Welfare, Republic of Korea 
(grant number HR20C0025, to S.T. Kim and K.-M. Kim).

The costs of publication of this article were defrayed in part by 
the payment of page charges. This article must therefore be hereby 
marked advertisement in accordance with 18 U.S.C. Section 1734 
solely to indicate this fact.

Note 
Supplementary data for this article are available at Cancer Discovery 
Online (http://cancerdiscovery.aacrjournals.org/).

Received July 5, 2021; revised October 17, 2021; accepted December 
16, 2021; published first December 21, 2021.

REFERENCES
 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 

cancer statistics 2018: GLOBOCAN estimates of incidence and mor-
tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 
2018;68:394–424.

 2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, 
et al. Cancer incidence and mortality worldwide: Sources, methods and 
major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–86.

 3. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, 
et al. Trastuzumab in combination with chemotherapy versus chemo-
therapy alone for treatment of HER2-positive advanced gastric or 
gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, 
randomised controlled trial. Lancet 2010;376:687–97.

 4. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, 
et al. Capecitabine and oxaliplatin for advanced esophagogastric can-
cer. N Engl J Med 2008;358:36–46.

 5. Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, 
et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of 
advanced gastric cancer (SPIRITS trial): A phase III trial. Lancet 
Oncol 2008;9:215–21.

 6. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada  Y, 
et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in 

patients with previously treated advanced gastric or gastro-oesoph-
ageal junction adenocarcinoma (RAINBOW): A double-blind, ran-
domised phase 3 trial. Lancet Oncol 2014;15:1224–35.

 7. Boku N, Ryu MH, Kato K, Chung HC, Minashi K, Lee KW, et al. Safety 
and efficacy of nivolumab in combination with S-1/capecitabine 
plus oxaliplatin in patients with previously untreated, unresectable, 
advanced, or recurrent gastric/gastroesophageal junction cancer: 
Interim results of a randomized, phase II trial (ATTRACTION-4). 
Ann Oncol 2019;30:250–8.

 8. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety 
and efficacy of pembrolizumab monotherapy in patients with previ-
ously treated advanced gastric and gastroesophageal junction cancer: 
Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol 2018;4:e180013.

 9. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, 
et al. First-line nivolumab plus chemotherapy versus chemotherapy 
alone for advanced gastric, gastro-oesophageal junction, and oesoph-
ageal adenocarcinoma (CheckMate 649): A randomised, open-label, 
phase 3 trial. Lancet 2021;398:27–40.

 10. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab 
in patients with advanced gastric or gastro-oesophageal junction can-
cer refractory to, or intolerant of, at least two previous chemotherapy 
regimens (ONO-4538–12, ATTRACTION-2): A randomised, double-
blind, placebo-controlled, phase 3 trial. Lancet 2017;390:2461–71.

 11. Kato K, Shah MA, Enzinger P, Bennouna J, Shen L, Adenis A, et al. 
KEYNOTE-590: Phase III study of first-line chemotherapy with or 
without pembrolizumab for advanced esophageal cancer. Future 
Oncol 2019;15:1057–66.

 12. Chung HC, Bang Y-J, Fuchs CS, Qin S, Satoh T, Shitara K, et al. KEY-
NOTE-811 pembrolizumab plus trastuzumab and chemotherapy for 
HER2+ metastatic gastric or gastroesophageal junction cancer (mG/
GEJc): A double-blind, randomized, placebo-controlled phase III 
study. J Clin Oncol 2020;38:TPS463.

 13. Mansoor W, Kulkarni AS, Kato K, Sun J-M, Shah MA, Enzinger PC, 
et al. Health-related quality of life (HRQoL) of pembrolizumab plus 
chemotherapy versus chemotherapy as first-line therapy in patients 
with advanced esophageal cancer: The phase III KEYNOTE-590 
study. J Clin Oncol 2021;39:168.

 14. Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM. 
Enhancing antitumor response by combining immune check-
point inhibitors with chemotherapy in solid tumors. Ann Oncol 
2019;30:219–35.

 15. Park DS, Robertson-Tessi M, Luddy KA, Maini PK, Bonsall MB, 
Gatenby RA, et al. The goldilocks window of personalized chemo-
therapy: Getting the immune response just right. Cancer Res 2019; 
79:5302–15.

 16. Tel J, Hato SV, Torensma R, Buschow SI, Figdor CG, Lesterhuis WJ, 
et  al. The chemotherapeutic drug oxaliplatin differentially affects 
blood DC function dependent on environmental cues. Cancer Immu-
nol Immunother 2012;61:1101–11.

 17. Wang W, Wu L, Zhang J, Wu H, Han E, Guo Q. Chemoimmunother-
apy by combining oxaliplatin with immune checkpoint blockades 
reduced tumor burden in colorectal cancer animal model. Biochem 
Biophys Res Commun 2017;487:1–7.

 18. Galetto A, Buttiglieri S, Forno S, Moro F, Mussa A, Matera L. Drug- 
and cell-mediated antitumor cytotoxicities modulate cross-presenta-
tion of tumor antigens by myeloid dendritic cells. Anticancer Drugs 
2003;14:833–43.

 19. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, 
et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived 
suppressor cells resulting in enhanced T cell-dependent antitumor 
immunity. Cancer Res 2010;70:3052–61.

 20. Cancer Genome Atlas Research Network. Comprehensive molecular 
characterization of gastric adenocarcinoma. Nature 2014;513:202–9.

 21. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, 
Wu Y, et al. The repertoire of mutational signatures in human cancer. 
Nature 2020;578:94–101.

 22. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. 
Conserved pan-cancer microenvironment subtypes predict response 
to immunotherapy. Cancer Cell 2021;39:845–65.



Kim et al.RESEARCH ARTICLE

1000 | CANCER DISCOVERY APRIL  2022 AACRJournals.org

 23. Hanzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analy-
sis for microarray and RNA-seq data. BMC Bioinf 2013;14:7.

 24. Coates PJ, Rundle JK, Lorimore SA, Wright EG. Indirect macrophage 
responses to ionizing radiation: Implications for genotype-dependent 
bystander signaling. Cancer Res 2008;68:450–6.

 25. Parsons MJ, Tammela T, Dow LE. WNT as a driver and dependency in 
cancer. Cancer Discov 2021;11:2413–29.

 26. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. 
Fast, sensitive and accurate integration of single-cell data with Har-
mony. Nat Methods 2019;16:1289–96.

 27. Kwon M, An M, Klempner SJ, Lee H, Kim KM, Sa JK, et al. Deter-
minants of response and intrinsic resistance to PD-1 blockade in 
microsatellite instability-high gastric cancer. Cancer Discov 2021;11: 
2168–85.

 28. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic 
cell death in cancer and infectious disease. Nat Rev Immunol 2017;17: 
97–111.

 29. Wang Z, Chen J, Hu J, Zhang H, Xu F, He W, et al. cGAS/STING axis 
mediates a topoisomerase II inhibitor-induced tumor immunogenic-
ity. J Clin Invest 2019;129:4850–62.

 30. Wu S, Zhang Q, Zhang F, Meng F, Liu S, Zhou R, et al. HER2 recruits 
AKT1 to disrupt STING signalling and suppress antiviral defence and 
antitumour immunity. Nat Cell Biol 2019;21:1027–40.

 31. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. 
Evaluating the polarization of tumor-associated macrophages into M1 
and M2 phenotypes in human cancer tissue: Technicalities and chal-
lenges in routine clinical practice. Front Oncol 2019;9:1512.

 32. Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regu-
lome is required for protection against infections and is associated 
with chronic inflammation. J Exp Med 2016;213:585–603.

 33. Vogl T, Eisenblatter M, Voller T, Zenker S, Hermann S, van Lent P, 
et al. Alarmin S100A8/S100A9 as a biomarker for molecular imaging 
of local inflammatory activity. Nat Commun 2014;5:4593.

 34. Chen Q, Han B, Meng X, Duan C, Yang C, Wu Z, et al. Immunogenomic 
analysis reveals LGALS1 contributes to the immune heterogeneity and 
immunosuppression in glioma. Int J Cancer 2019;145:517–30.

 35. Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B,  
et al. Lineage-dependent gene expression programs influence the 
immune landscape of colorectal cancer. Nat Genet 2020;52:594–603.

 36. Wilson JL, Mayr HK, Weichhart T. Metabolic programming of mac-
rophages: Implications in the pathogenesis of granulomatous dis-
ease. Front Immunol 2019;10:2265.

 37. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: 
Cell lineage and pseudotime inference for single-cell transcriptomics. 
BMC Genomics 2018;19:477.

 38. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, 
et al. Determining cell type abundance and expression from bulk tis-
sues with digital cytometry. Nat Biotechnol 2019;37:773–82.

 39. Steen CB, Liu CL, Alizadeh AA, Newman AM. Profiling cell type abun-
dance and expression in bulk tissues with CIBERSORTx. Methods 
Mol Biol 2020;2117:135–57.

 40. Janjigian YY, Maron SB, Chatila WK, Millang B, Chavan SS,  
Alterman  C, et al. First-line pembrolizumab and trastuzumab in 
HER2-positive oesophageal, gastric, or gastro-oesophageal junction 
cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol 2020;21: 
821–31.

 41. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, 
et al. Developmental relationships of four exhausted CD8(+) T cell 
subsets reveals underlying transcriptional and epigenetic landscape 
control mechanisms. Immunity 2020;52:825–41.

 42. Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor 
microenvironment. Cancer Discov 2021;11:933–59.

 43. Derks S, de Klerk LK, Xu X, Fleitas T, Liu KX, Liu Y, et al. Charac-
terizing diversity in the tumor-immune microenvironment of dis-
tinct subclasses of gastroesophageal adenocarcinomas. Ann Oncol 
2020;31:1011–20.

 44. Janjigian YY, Sanchez-Vega F, Jonsson P, Chatila WK, Hechtman JF, 
Ku GY, et al. Genetic predictors of response to systemic therapy in 
esophagogastric cancer. Cancer Discov 2018;8:49–58.

 45. van de Haar J, Hoes LR, Roepman P, Lolkema MP, Verheul HMW, 
Gelderblom H, et al. Limited evolution of the actionable metastatic 
cancer genome under therapeutic pressure. Nat Med 2021;27:1553–63.

 46. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity 
in cancer progression and response to immunotherapy. Nat Med 
2021;27:212–24.

 47. Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, et al. Dual 
blockade of CD47 and HER2 eliminates radioresistant breast cancer 
cells. Nat Commun 2020;11:4591.

 48. Fristedt R, Borg D, Hedner C, Berntsson J, Nodin B, Eberhard J, et al. 
Prognostic impact of tumour-associated B cells and plasma cells 
in oesophageal and gastric adenocarcinoma. J Gastrointest Oncol 
2016;7:848–59.

 49. Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D, 
et al. Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is 
associated with survival in gastric cancer patients. Oncoimmunology 
2016;5:e1054598.

 50. Datar I, Sanmamed MF, Wang J, Henick BS, Choi J, Badri T, et al. 
Expression analysis and significance of PD-1, LAG-3, and TIM-3 in 
human non-small cell lung cancer using spatially resolved and mul-
tiparametric single-cell analysis. Clin Cancer Res 2019;25:4663–73.

 51. Lipson EJ, Tawbi HA-H, Schadendorf D, Ascierto PA, Matamala L, 
Gutiérrez EC, et al. Relatlimab (RELA) plus nivolumab (NIVO) versus 
NIVO in first-line advanced melanoma: Primary phase III results from 
RELATIVITY-047 (CA224–047). J Clin Oncol 2021;39:9503.

 52. Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, et al. Single-
cell genomic characterization reveals the cellular reprogramming of the 
gastric tumor microenvironment. Clin Cancer Res 2020;26:2640–53.

 53. Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, et al. Single- 
cell dissection of intratumoral heterogeneity and lineage diversity in 
metastatic gastric adenocarcinoma. Nat Med 2021;27:141–51.

 54. Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, et al. Dissecting transcrip-
tional heterogeneity in primary gastric adenocarcinoma by single cell 
RNA sequencing. Gut 2021;70:464–75.

 55. Chen R, Smith EC, Chan SWS, Hueniken K, Brown MC, Majeed H, 
et al. Comparison of care patterns for hospitalized immune-related 
adverse events (irAEs) between melanoma patients on combination 
immune checkpoint inhibitor (ICI) therapy versus ICI monotherapy. 
J Clin Oncol 2019;37:85.

 56. Klempner SJ, Chao J, Chiu V, Mahalingam D, Uronis H, Kagey M, 
et al. DKN-01 in combination with tislelizumab and chemotherapy 
as a first-line therapy in unselected patients with advanced gastroe-
sophageal adenocarcinoma (GEA): DisTinGuish trial. Ann Oncol 
2021;32:S1040–75.

 57. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009;25:1754–60.

 58. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, 
Kernytsky  A, et al. The Genome Analysis Toolkit: A MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Res 2010;20:1297–303.

 59. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, 
Sougnez C, et al. Sensitive detection of somatic point mutations in 
impure and heterogeneous cancer samples. Nat Biotechnol 2013;31: 
213–9.

 60. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, 
et al. Strelka2: Fast and accurate calling of germline and somatic vari-
ants. Nat Methods 2018;15:591–4.

 61. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, 
et al. dbSNP: The NCBI database of genetic variation. Nucleic Acids 
Res 2001;29:308–11.

 62. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, 
Garrison EP, Kang HM, et al. A global reference for human genetic 
variation. Nature 2015;526:68–74.

 63. International HapMap Consortium, Altshuler DM, Gibbs RA,  
Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and 
rare genetic variation in diverse human populations. Nature 2010; 
467:52–8.

 64. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. 
The ensembl variant effect predictor. Genome Biol 2016;17:122.



Chemotherapy Effects on the Gastric Cancer TME RESEARCH ARTICLE

 APRIL  2022 CANCER DISCOVERY | 1001 

 65. Shen R, Seshan VE. FACETS: Allele-specific copy number and clonal 
heterogeneity analysis tool for high-throughput DNA sequencing. 
Nucleic Acids Res 2016;44:e131.

 66. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. 
DeconstructSigs: Delineating mutational processes in single tumors 
distinguishes DNA repair deficiencies and patterns of carcinoma 
evolution. Genome Biol 2016;17:31.

 67. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 
Ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

 68. Li B, Dewey CN. RSEM: Accurate transcript quantification from 
RNA-Seq data with or without a reference genome. BMC Bioinf 
2011;12:323.

 69. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 
3rd, et al. Comprehensive integration of single-cell data. Cell 2019; 
177:1888–902.

 70. Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identifi-
cation of cell doublets in single-cell transcriptomic data. Cell Syst 
2019;8:281–91.

 71. Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, et al. 
Coordinated cellular neighborhoods orchestrate antitumoral immu-
nity at the colorectal cancer invasive front. Cell 2020;182:1341–59.

 72. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, 
Vazquez G, et al. Deep profiling of mouse splenic architecture with 
CODEX multiplexed imaging. Cell 2018;174:968–81.


