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The sensitivity of the human visual system is thought to
be shaped by environmental statistics. A major
endeavor in vision science, therefore, is to uncover the
image statistics that predict perceptual and cognitive
function. When searching for targets in natural images,
for example, it has recently been proposed that target
detection is inversely related to the spatial similarity of
the target to its local background. We tested this
hypothesis by measuring observers’ sensitivity to targets
that were blended with natural image backgrounds.
Targets were designed to have a spatial structure that
was either similar or dissimilar to the background.
Contrary to masking from similarity, we found that
observers were most sensitive to targets that were most
similar to their backgrounds. We hypothesized that a
coincidence of phase alignment between target and
background results in a local contrast signal that
facilitates detection when target-background similarity
is high. We confirmed this prediction in a second
experiment. Indeed, we show that, by solely
manipulating the phase of a target relative to its
background, the target can be rendered easily visible or
undetectable. Our study thus reveals that, in addition to
its structural similarity, the phase of the target relative
to the background must be considered when predicting
detection sensitivity in natural images.

Introduction

The human visual system is tasked with parsing the
complexity of natural environments into a coherent
representation of behaviorally relevant information.
These operations have been shaped by various selective
pressures over evolutionary and developmental time
scales. Therefore, the perceptual computations that
guide cognition and behavior ultimately serve to
extract functional information from rich and complex
naturalistic environments (Carandini et al., 2005; Field,
1987; Olshausen & Field, 2005; Parraga, Troscianko,
& Tolhurst, 2000; Simoncelli & Olshausen, 2001). For
example, a common task is to find a predefined target
object in a complex or cluttered visual environment.
Most of our knowledge of the visual system, however,
has been derived from experiments using relatively
sparse stimulus displays that are not representative
of our typical visual diets. The aim of the present
study was to investigate how natural image structure
influences target detection. We tested how detection is
influenced by the spatial structure, phase, and contrast
of natural image backgrounds to determine the features
that best predict detection sensitivity.
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Luminance contrast plays a critical role in most
visual tasks. The human visual system is tuned to
detect contrast across a range of spatial and temporal
frequencies. Neurons in primary visual cortex (V1)
are classically understood as processing local regions
of oriented contrast that can define the borders of
objects (Hubel & Wiesel, 1959). Such properties of
individual neurons govern phenomenal perception and
are thought to be shaped by the statistics of natural
environments (Barlow, 1961, 1972). The encoding of
contrast within the visual system is most commonly
studied with oriented grating stimuli, such as Gabor
wavelets. Grating stimuli are conveniently characterized
by a simple set of parameters: orientation, contrast,
position, and spatial frequency. From a computational
perspective, “Gabor wavelet analyses” allow the
decomposition of any image into mathematically
tractable component features. Such analyses are
relatively simple and common in many computer vision
applications. Early theory suggested that analogous
decomposition processes occur in the visual system
(Campbell & Robson, 1968). However, more recent
studies suggest that individual visual neurons encode
complex higher-order statistical information that is
not necessarily predicted by Gabor parameters (e.g.,
Cadena et al., 2019).

One common approach to investigate contrast
sensitivity in natural conditions is to have observers
detect contrast-defined targets embedded in digital
photographs or movies. Relative to sensitivity as
typically quantified with a uniform background,
spatiotemporal contrast sensitivity is diminished
when viewing dynamic movies, particularly for
lower frequencies (Bex, Solomon, & Dakin, 2009).
Furthermore, during free viewing of natural movies,
the large-scale retinal changes caused by saccadic
eye movements also diminish sensitivity likely due to
forward and backward masking (Dorr & Bex, 2013;
Wallis, Dorr, & Bex, 2015). In general, such studies have
revealed that the sensitivity of the visual system does
indeed depend on naturalistic context (Bex & Makous,
2002; Geisler, 2008).

Researchers have further sought to understand the
statistical regularities of natural scenes that affect the
detectability of targets. For example, various image
structures, such as the density of edges within close
proximity to the target, negatively affect detection
sensitivity (Bex et al., 2009; see also Wallis et al., 2015).
Indeed, the discriminability of visual objects can be
predicted from the spatial proximity of surrounding
visual clutter (Balas, Nakano, & Rosenholtz, 2009;
Greenwood, Bex, & Dakin, 2010, Greenwood,
Bex, & Dakin, 2012; Harrison & Bex, 2014, 2015,
2017; Rosenholtz, Huang, & Ehinger, 2012; Wallis
et al., 2019). More recently, it has been found that
sensitivity scales inversely with the structural similarity
between target and background (Sebastian, Abrams,

& Geisler, 2017, Sebastian, Seemiller, & Geisler,
2020). Structural similarity describes how similar
two stimuli are in terms of the spatial distribution
of phase-invariant contrast. Sebastian et al. found
that observers’ detection sensitivity decreases with
increasing similarity. These studies thus predict that
targets are most difficult to detect when they are
similar to their backgrounds (Sebastian et al., 2017),
particularly when those backgrounds are dense with
edges (Bex et al., 2009). Other studies that have
attempted to quantify the relationship between image
statistics and sensitivity use post hoc computational
means to estimate the influence of natural image
structure on target detection or apparent contrast
(e.g., Haun & Peli, 2013; Wallis et al., 2015; Wallis
& Bex, 2012). Very few studies, to the best of our
knowledge, explicitly manipulated the consistency
of a target’s appearance with the appearance of a
natural image background in an experimental design
(e.g., Neri, 2014, 2017; Teufel, Dakin, & Fletcher,
2018).

The present study

The aim of the present study was to test observers’
sensitivity to targets presented on natural image
backgrounds. Importantly, we designed the test stimuli
a priori such that targets approximated the appearance
of, and were aligned with, the local structure of a
natural image background or differed from the local
structure. We therefore distinguish target-background
alignment from target-background similarity in terms
of the stimulus generation procedure (alignment)
versus an image statistic (similarity). As shown
in Figure 1, we automated the placement of targets
within natural backgrounds according to oriented
contrast energy at different image regions. We created
two conditions, one in which targets were aligned
with their backgrounds and one in which targets were
misaligned with their backgrounds. In contrast to this
stimulus generation procedure, target-background
similarity is a measure of the correlation between
a target and a background without a target. While
target-background similarity ranges from 0 to 1 for
all stimuli, our stimulus generation method results
in higher similarity scores for aligned targets than
misaligned targets (on average). Based on previous
studies showing a negative impact of increasing
target-background similarity on detection (Bex et
al., 2009; Sebastian et al., 2017), we expected to find
worse detection sensitivity when targets were aligned
with the background—and were therefore highly
similar—than when they were misaligned relative
to the background—and were therefore relatively
dissimilar. To anticipate our results, however, we found
the opposite, instead revealing that the influence of
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Figure 1. Stimulus generation method for testing sensitivity to contrast in natural images. (A) An example source image taken from a
collection of over 26,000 labeled images in the THINGS database (Hebart et al., 2019). (B) We used a complement of derivative of
Gaussian wavelets to filter each source image and compute the dominant orientation (top panel) and contrast energy (bottom panel)
at each pixel location. Orientation is indicated by the inset color wheel, which spans the full range (0–2 pi) to indicate the
preservation of the phase of the dominant filter. (C) As shown by the white dashed circles, we selected target image regions according
to the peaks of the oriented contrast maps. The number of targets varied from trial to trial from 1 to 16 in equally spaced log steps.
(D) Targets were oriented filters generated from the oriented contrast maps. These target features are thus aligned to the natural
structure within the source image. Targets were then added to a natural image background, and observers were required to detect in
which of two images the targets had been added. (E, F) Targets were either aligned (E) or misaligned (F) with the background
structure. Note that the same targets have been added to both examples but are more apparent in the aligned condition than the
misaligned condition. As a guide, target filters are located at the intersection of pink and blue lines at the edges of panels D–F.

target-background similarity on detection sensitivity
depended almost entirely on the relative phase of the
target.

Experiment 1

Methods

Participants
We used a single-subjects design in which we

measured observers’ perceptual performance with high
precision and treated each observer as a replication
(Smith & Little, 2018). All observers were authors
of the article and had normal vision (RR, RKW,
and WJH). RKW and RR were naive to the specific
experimental manipulations at the time of testing. The
experiment was designed and carried out during a
COVID-19 lockdown in Brisbane, Australia, in March
2021. Testing occurred, therefore, in each observer’s
private residence.

Design
We measured observers’ sensitivity to contrast

changes in natural images in a 2 (target-background
alignment: aligned or misaligned) × 5 (number of
targets: 1, 2, 4, 8, or 16) × 5 (target amplitude: 0, 0.05,
0.1, 0.2, or 0.4 of maximum) design. Each observer
completed 40 trials per condition for a total of 2,000
trials in a fully within-participants design.

Stimuli
Stimuli were programmed with the Psychophysics

Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli,
1997) in MATLAB (v2018b; MathWorks, Natick,
MA, USA) and displayed either on a 15-in. MacBook
Pro Retina or a 16-in. MacBook Pro Retina (Apple,
Cupertino, CA, USA). Natural images of objects
were taken from the THINGS database (Hebart et
al., 2019), available via the Open Science Framework
(https://osf.io/jum2f/). Images were converted to
grayscale using the rgb2grey() function in MATLAB,
and we assumed digital photos were encoded with a
gamma of 2, and displays had a decoding gamma of 2.

We describe the stimulus generation process in detail
below but provide a brief overview here. On each trial,
two different natural images were displayed, both of
which were normalized in their contrast. Images had
a diameter of 2° and were presented to the left and
right of a red fixation spot. We chose this relatively
small stimulus size for two reasons. First, we wanted to
display images side by side but close enough to central
vision so as to mitigate effects of crowding, Second,
because we were not able to monitor observers’ fixation
compliance, the smaller stimulus size reduced the
tendency for observers to make reflexive eye movements
to high-contrast image regions in their periphery. The
target stimulus was the one in which wavelet filters had
been blended with the natural image; the distractor
was a natural image with no target filters. The filters
were designed to be similar to or dissimilar from the
underlying natural image structure. We generated target
stimuli by blending a source image of a natural object
with derivative of Gaussian wavelets (henceforth:
filters). The blending process followed four steps:

https://osf.io/jum2f/
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(1) find the dominant orientation at each pixel in a
source image, (2) find the relative contrast of each pixel
in the image, (3) draw some number of filters at the
highest contrast image regions, and (4) combine the
filters with a source image. We expand on these steps
below.

First, we used a steerable filter approach to determine
the dominant orientation at every pixel in a given
source image (Freeman & Adelson, 1991). Filters were
directional first derivatives of Gaussians oriented at
0° and 90°:

G0◦ = −2
x
σ

e− x2+y2

σ2 (1)

G90◦ = −2
y
σ

e− x2+y2

σ2 (2)

where σ is the standard deviation of the Gaussian, x
and y are the coordinates of each image pixel with point
(0,0) at the center, and Gθ is the resulting filter. The
Gaussian standard deviation was 0.08°. Within a trial,
each filter was convolved with a source image:

R0◦ = G0◦ ∗ I (3)

R90◦ = G90◦ ∗ I (4)

where I is the source image with a mean of 0 and in the
range [−1 1], and R is a filter response at each pixel
location. We combined the filter responses to find the
dominant orientation, θ̂ , at each location:

θ̂ = atan2

( 90◦∑
θ=0◦

Rθ sin (θ ) ,
90◦∑

θ=0◦
Rθ cos (θ )

)
(5)

Second, we created a contrast map, C, of the filtered
image by combining the filter outputs as follows:

C =
√√√√ 90◦∑

θ=0◦
R2

θ (6)

Third, we found the dominant orientation at the
location of the contrast maxima:

C0 = argmax C (7)

θ̂cmax = θ̂C0 (8)

C0 indexes the x-y coordinates of the contrast maxima,
and θ̂cmax is the orientation at this location. We then
steered a filter at this location as follows:

S = cos
(
θ̂cmax

)
G0◦
C0

+ sin
(
θ̂cmax

)
G90◦
C0

(9)

Here, S is the resulting filter stimulus in the range −1
to 1. Note the additional subscript of the filters that
indicates that the filters were centered on the location
of the contrast maxima, C0. This is trivially achieved by
centering the x-y coordinates in Equations 1 and 2 on
the coordinates of C0.

Finally, we created the target stimulus, τ , by
combining the filter stimulus, S, with a normalized
source image:

τ = 0.5 + 2αS + Inorm
2

(10)

where α is the filter amplitude expressed as a proportion
of maximum possible contrast, and

Inorm = 2ρ
I

sd (I )
(11)

Here, ρ is the image root mean square (RMS) contrast,
and sd(I) is the standard deviation of the source image.
RMS contrast was set to 0.2 based on the findings
of Sebastian et al. (2017). The addition of 0.5 and
denominator in Equation 10 normalizes the range of
the source image to [0 1] for display. Prior to this step,
the target image was windowed in a circular aperture
with a diameter matching the width of the source image
(i.e., 2°) and a raised cosine edge, transitioning to zero
contrast in 6 pixels. To constrain the filters generated
by Equation 9 to appear within the windowed portion
of the stimulus, the same aperture was applied to the
contrast map, C, prior to generating the stimulus. Any
values lower or higher than 0 or 1, respectively, in Inorm
were clipped.

For trials in which multiple filters were combined
with a source image, we used an iterative procedure
to draw n local maxima from the contrast image.
Following the argmax operation in Equation 7, we
updated the contrast map to minimize the contrast at
the maxima:

Cn =
{

Cn−1 [1 − f (C0, �σ )] n > 1
C n = 1 (12)

where Cn is the contrast map for the nth filter, and
f(C0,�σ ) is a two-dimensional Gaussian with a peak
of 1 centered on the location of the maxima C0 and a
standard deviation of �σ . σ is the standard deviation
of the basis filters, while � is a scaling factor that
determines the spatial extent of change in the contrast
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map. The effect of this adjustment is the creation of
a new local maximum at a different location than
in the previous iteration. The greater the value of
�, the greater the spatial spread of filters. The first
filter location is always the image region with the
highest contrast. After accounting for the effect of �,
subsequent filters are placed in regions of diminishing
contrast. In trials in which multiple filters were present,
backgrounds were randomly selected as described
above.

Image selection
The 26,107 images in the THINGS database are

grouped into 1,854 concepts (e.g., “dog,” “cup,”
“brush”), such that there are at least 12 unique,
high-quality images for each concept (Hebart et al.,
2019). In each testing session (500 trials), we selected
1,000 source images from unique concepts such that
no two images were drawn from the same concept.
The target background was thus always drawn from a
different concept than the distractor image. However, it
was necessary that some concepts were repeated across
testing sessions, and it was also possible that some
individual images were also repeated across sessions
(but never within sessions).

On each trial, we selected two images from the set
of 500: one image for the target background, and a
second image was the distractor. On half the trials, the
target filters were generated from the target background
and therefore aligned with the background, while
on the other half of trials, they were generated from
the distractor image—but blended with the target
background—and therefore misaligned relative to the
target background. Target filters were generated from
the distractor background on misaligned trials, as
opposed to an unused image, so that the filters and
their source image were presented on every trial, but
we doubt this decision was important to our results.
We chose to present two different background images
on each trial rather than, for example, presenting two
of the same background images, because we did not
want observers to attempt to simply spot the difference
between two similar images. Instead, observers had to
perform a more natural task of searching unfamiliar
and unique backgrounds for targets.

Procedure
A typical trial sequence is shown in Figure 2. Each

trial began with a small red fixation spot in the center
of the display, followed by outlines of the upcoming
stimulus locations. Natural image backgrounds were
followed by a blank of 500 ms, after which time the
observer reported which of the two patches contained
the target filter(s) using the keyboard. Following the
observer’s response, the image patch with target filters

Figure 2. Schematic of typical trial sequence. The target and
background could appear on the left or right of the screen with
equal probability. Following an observer’s response, the
background containing the target filters was framed by a green
or red circle depending on whether the response was correct or
incorrect, respectively.

was redisplayed for an additional 500 ms, outlined
in green or red depending on whether the observer’s
response was correct or incorrect, respectively. Feedback
was provided to facilitate observers reaching a stable
level of performance. No breaks were programmed but
could be taken by withholding a response. Each session
included 10 repeats of each trial type, all presented in
random order, giving 500 trials per session and taking
approximately 15 minutes when no breaks were taken.

Sensitivity analyses
We quantified observers’ sensitivity to the target

filters in natural images in a generalized linear model
(GLM) framework (see Figures 3 and 4). We describe
the most pertinent aspects of the framework below, but
for the impatient reader, we note that these equations
accumulate to the fitglme() function in MATLAB or,
equivalently, the lmer() function in R with the lme4
package (Bates, Mächler, Bolker, & Walker, 2015).

In a standard single-interval detection paradigm in
which a target is either present or absent, sensitivity, d′,
is calculated as

d ′ = φH − φF (13)

where φ is the normal integral function, H is the
proportion of hits, and F is the proportion of false
alarms, under the assumption of equal variance. An
observer’s criterion (or bias), c, is calculated as

c = 1
2
(φH + φF ) (14)

In a GLM, d′ and c (bias) are computed as predictor
weights β1 and β0, respectively, that are passed through
a probit link function, which is the normal integral
function:

η[i] = β0 + β1S01[i] (15)

p (presenti) = φηi (16)
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Figure 3. Proportion correct target identifications based on the three experimental factors: (A) target amplitude, (B) number of filters,
and (C) target-background alignment. Colors represent different observers, as indicated by the legend in panel (A). The dotted line in
each panel shows chance performance. There were 400 trials per data point in panels (A) and (B) and 1,000 trials per data point in
panel (C). Error bars show one binomial standard deviation.

Figure 4. Modeled target detection sensitivity. (A) Sensitivity varies systematically with target amplitude but not the number of filters
(B). (C) Sensitivity depends on the target-background alignment, such that it is greater when filters are aligned with the background
than when they are misaligned. Error bars in all panels show one standard error across marginalized conditions but are smaller than
the point size in (A).

where η is the sum of weighted linear predictors and
S01 is the absence or presence of the signal (i.e., 0
or 1, respectively) on the ith trial. By fitting such
a probit model, estimates of the predictor weights
β1 and β0 are identical to d′ and c, respectively, as
calculated in Equation 13 and Equation 14. Whereas
these equations fully specify sensitivity and bias in
a single interval present/absent judgment task, some
small modifications are needed to quantify sensitivity
in a two-alternative forced-choice task (2AFC) as in
our experiment. First, S01 denotes whether the target
filter(s) appeared in the left or right spatial interval,
defined as −.5 or .5, respectively. Similarly, observers’
reports (i.e., “target appeared in the left or right
interval”) were defined as 0 and 1, respectively. Finally,
in a 2AFC, observers have two opportunities to detect
the target—once per spatial interval—and so raw d′ will
be greater than in a single-interval detection design.

Therefore, sensitivity (but not bias) must be scaled by
1√
2
(Macmillan & Creelman, 2004):

d ′
2AFC = 1√

2
β1 = 1√

2
(φH − φF ) (17)

Importantly, we can extend Equation 15 to quantify
sensitivity to any number of other predictors, xω:

η[i] = β0 + β1S01[i] + . . . + βωxω[i] (18)

Consider, for example, the influence of filter
amplitude (α) on an observer’s sensitivity:

η[i] = β0 + β1α[i]S01[i] (19)
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Note that filter amplitude is entered into the model
as an interaction with target location because the
model’s predicted outcome is a spatial report; target
amplitude alone can only predict a change in bias. In
preliminary model fits, we found that such bias was
not significantly different from zero and thus included
only interactive terms to facilitate interpretability of
the standard bias term, β0. We selected other model
predictors according to the model that produced the
lowest Akaike information criterion (AIC; see below).

Finally, we implemented this model as a multilevel
GLM (GLMM) to partially pool coefficient estimates
across observers (Gelman & Hill, 2007). By using a
GLMM, we model each observer’s predictor weights as
having come from a population distribution with mean
μ and variance σ 2:

η[i] = β0, j + β1, jα j[i]S01, j[i] + . . . (20)

where

βω, j = μω + εω, j | σ 2
ω (21)

Here, εω,j is the offset for each predictor ω and observer
j, relative to the parameter’s mean μ, contingent on
the parameters’ estimated population variance σ 2.
The partial pooling of observers’ data in a GLMM
results in more extreme values being pulled toward the
population mean estimate. Note that in our experiment,
however, such pooling is relatively minor due to the
large number of trials, and therefore high precision, of
each observer’s estimated performance, as well as the
relatively small number of observers. Because images
were drawn randomly from trial to trial from a pool of
tens of thousands of images, we did not expect many, if
any, repeats of each image. We therefore did not model
the background images as a random effect, but we note

that such a design could be chosen in future to estimate
the variance associated with each tested background.

We entered into the model the factors target
amplitude, number of filters, and target-background
alignment, which, as noted above, were each entered
as an interaction with the spatial interval of the target.
In hindsight, our inclusion of the condition in which
target amplitude was 0 was unnecessary. For all such
trials, therefore, we set all predictors to have a value of
0 so they were omitted from model calculations. The
model fit was improved by including nonlinear terms
by raising amplitude and number of Gabors to the
exponents 0.5 and 2, respectively. We further tested all
combinations of interactions, but none improved the
model fit as assessed by the AIC.

Post hoc analysis of interaction between the number of
filters and filter amplitude

We modeled the joint influence of number of
filters and filter amplitude on proportion correct as a
two-dimensional surface (see Figure 5B). The surface is
defined as

z = 0.5 + 1
2

(
f
(
αμ, ασ

) � f
(
nμ, nσ

))
(22)

where z is the surface of estimated proportion correct;
f(αμ, ασ ) is a cumulative probability function relating
target amplitude to accuracy according to a threshold
and variance, αμ and ασ , respectively; and f(nμ, nσ ) is
a cumulative probability function relating the number
of filters to accuracy according to a threshold and
variance, nμ and nσ , respectively. Here, � refers to
the elementwise product of cumulative distributions.
This function can be thought of as a two-dimensional

Figure 5. Interaction between the number of filters and filter amplitude. (A) Proportion correct for each number of filters at each
amplitude level, averaged across the three observers. (B) Points show the same data as in (A) but arranged as a surface, while the
background is interpolated from these points. Error bars in (A) show one standard error across observers, which is smaller than the
point size in many cases.
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Figure 6. Analysis of the influence of target-background similarity on perceptual performance. (A) Histograms show structural
similarity between targets and background separately for the aligned and misaligned conditions. The vertical dashed line is the
median similarity of all trials. (B) Proportion correct for misaligned trials that were lower in similarity than aligned trials and, vice
versa, as determined by median split. Accuracy for the misaligned trials is shown to the left of the median, and accuracy for the
aligned trials is shown to the right of the median. (C) Proportion correct for aligned trials that were lower in similarity than misaligned
trials and, vice versa, as determined by median split. Accuracy for the aligned trials is shown to the left of the median, and accuracy
for the misaligned trials is shown to the right of the median. Note that proportion correct is higher in the aligned condition regardless
of similarity. Error bars in (B) and (C) show one binomial standard deviation.

psychometric function, with separable means and
standard deviations. The input parameters into the
cumulative functions were free parameters, fit by
minimizing the summed squared error between the
average proportion correct and z using MATLAB’s
fminsearch(). While there are no doubt other ways of
quantifying the interaction between filter amplitude,
number of filters, and proportion correct, this model
suffices for our purposes.

Structural similarity
We quantified the similarity between targets and their

backgrounds using the same approach as Sebastian et
al. (2017; see their Equation S9):

r[i] = AS[i] · AI [i]∣∣∣∣AS[i] || ||AI [i]
∣∣∣∣ (23)

where r[i] is the similarity between the steered filter
targets (i.e., S in Equation 9) and the background image
I on trial i. AS[i] is the Fourier amplitude spectrum
of the filters, and AI[i] is the Fourier amplitude of
the natural image background, both of which are
vectors and were computed by taking the absolute
of the complex values of the Fourier transforms. r[i]
is thus a phase-invariant metric. Prior to computing
AI[i], we windowed the natural image background
to include only the same regions as the locations of
target filters. This was achieved by first computing a
contrast map in which two-dimensional Gaussians
were positioned at each target location. Gaussians had

the same standard deviation as the target filters and
had their peaks normalized to 1. We then computed
the elementwise product of the source image and this
contrast map, which produced the background image
entered into Equation 23. Note that our method to
generate stimuli and target-background similarity both
depend on oriented contrast within the frequency band
of the target. Variations in structural similarity for the
aligned and misaligned targets are shown in Figure 6.

Results

We tested observers’ ability to detect target filters
that were blended with natural image backgrounds.
Targets were designed such that they were either aligned
or misaligned with the structure of the background. We
tested detection of 1, 2, 4, 8, and 16 target filters and
across a range of target amplitudes. We first describe
our results in terms of raw accuracy and then report the
results of our modeling analysis in which we quantified
observers’ sensitivity in terms of d′.

The influence of target amplitude, number of
filters, and target-background alignment

The proportion of correct responses as a function
of each factor is shown in Figure 3. The amplitude
of the target most clearly affects accuracy, such
that accuracy increases approximately linearly with
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(log) target amplitude (Figure 3A). Although the
relationship between proportion correct and the
number of filters is less consistent (Figure 3B), there is
a general increase in accuracy with increasing number
of target filters. As described below, however, the
relationship between number of filters and sensitivity
was not significant. We also found a highly consistent
effect of target-background alignment across observers
(Figure 3C). Contrary to our expectations based on
recent reports of similarity masking (Sebastian et al.,
2017), however, we found better performance when
target filters were aligned with their backgrounds than
when they were misaligned with their backgrounds.
This difference in performance is significant at the
group level (t(2) = 5.862, p = 0.028, d = 3.38), but
we more formally quantify the relationship between
these factors in a GLMM below. Importantly, given
the high measurement precision of these data (1,000
observations per data point shown in Figure 3C), we
can treat each observer as an independent replication of
the effect, regardless of any specific inferential statistic
(Smith & Little, 2018).

We estimated detection sensitivity as a function of
the experimental factors with a GLMM. Modeled
sensitivity is shown in Figure 4 in the same format
as Figure 3. Target amplitude and target-background
alignment were both significant contributors to the
model. Importantly, as shown in Figure 4C, sensitivity
was greater when target filters were aligned with the
background than when they were misaligned. The
number of filters did not predict sensitivity, which
is consistent with the relatively noisy relationship
between accuracy and the number of filters, as shown
in Figure 3B.

We manipulated the number of filters because we
expected to find an improvement in performance with
increasing filter number. The lack of a main effect
of filter number in the results above, therefore, was
unexpected. Although not critical to our primary
interest in the influence of target-background
alignment, we tested whether the number of filters
interacted with target amplitude using a more direct test
than the full GLMM above. Data points in Figure 5A
show mean proportion correct responses, marginalized
to show the influence of the number of filters for each
target amplitude. At the two highest target amplitudes
tested (top two lines), there is indeed an effect of the
number of filters: As the number of filters increases, so
too does observers’ accuracy. The same data points are
shown in Figure 5B arranged as a surface that maps
proportion correct as conditional on the combination
of conditions. We interpolated these points as a
two-dimensional surface function that quantifies the
interaction between number of filters and amplitude
(see Methods). The warm colors clustering in the top
right corner reveal that increasing the number of filters
in the targets has the strongest effect at higher target
amplitudes.

The influence of target-background similarity

The perceptual performance described above
reveals that observers were better able to detect
targets on natural image backgrounds when the
targets were aligned with the underlying spatial
structure of the background than when the targets
were misaligned with the background. These results
are contrary to our expectations based on the
data of Sebastian et al. (2017), who found that
sensitivity is negatively correlated with the structural
similarity between target and background, a metric
that scales from 0 (no similarity) to 1 (perfect
similarity). We therefore next tested whether observers’
performance was instead positively correlated
with target-background similarity using the same
analysis of similarity as in this previous study
(Equation 23).

Shown in Figure 6A are the histograms of similarity
for all trials across observers, which, by design,
can be separated according to the filter alignment
relative to the background. The dashed vertical line
shows the median similarity of all trials, regardless
of target-background alignment. By isolating trials
from each condition according to whether they fall
above or below this arbitrary cutoff, we can test
whether accuracy depends more on similarity or
target-background alignment. Figure 6B shows the
proportion of correct target detections for aligned
and misaligned targets that were most and least
similar to the background, respectively. As per the
main analyses above, accuracy was greater for aligned
than misaligned trials. The more diagnostic analysis
is shown in Figure 6C, in which the proportion of
correct target detections is shown for aligned trials that
were less similar than the included misaligned trials
(i.e., we limit the analyses to the tails of the similarity
distributions). We again find that accuracy was higher
for the aligned condition than the misaligned condition,
despite the aligned targets having lower similarity with
the background than the misaligned trials. Therefore,
target-background alignment predicts performance
much more strongly than target-background
similarity.

In a final analysis of perceptual performance, we
attempted to replicate the findings of Sebastian et
al. (2017) using the condition in our experiment that
is most analogous to the one in theirs, namely, the
misaligned condition. In both this previous study
and the misaligned condition of the present study,
the blending of target filters and their backgrounds
did not depend on any structural alignment. Instead,
any incidental alignment can be quantified in
terms of structural similarity. We therefore tested
whether we found an inverse relationship between
target-background similarity and detection accuracy
for the misaligned condition. Figure 7 shows proportion
correct for trials in similarity bins (bin width = 0.1)
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Figure 7. Proportion correct as a function of target-background similarity for misaligned trials only. (A–C) Data are shown for each
observer and color coded as in Figure 3. Solid lines are fits from a logistic GLMM, showing a negative relationship between similarity
and detection accuracy, as reported by Sebastian et al. (2017).

for each observer. We modeled these data with logistic
regression, with random intercept and slopes grouped
by observer (i.e., a logistic GLMM). Fits are shown
as solid lines in Figure 7. There is a clear negative
relationship between structural similarity and accuracy,
with a mean slope of −0.96 (population standard
deviation = 0.75). Similarity was not a significant
predictor in the model (p = 0.13), but the trends are
nonetheless consistent across observers and also with
the data of Sebastian et al.

Discussion

We found that observers are better at detecting
contrast-defined targets when they are aligned with a
natural image background compared with when they
are misaligned with the natural image background.
The superior performance on aligned than misaligned
trials did not depend on the structural similarity of
targets relative to backgrounds, in contrast to the
results of Sebastian et al. (2017). Because the target
filters tended to be aligned with object edges (i.e.,
the points of highest contrast in natural images;
see Figure 1 and Methods), these data also appear to
contradict the findings of Bex et al. (2009; see also
Wallis & Bex, 2012). Bex et al. found that sensitivity was
lower in image regions of relatively high edge density,
whereas we found higher sensitivity when targets were
aligned with edges than when they were randomly
positioned.

A potentially simple explanation for the discrepancy
between our data and earlier work concerns the
phase alignment of target filters and backgrounds:
The phase of a target filter relative to the phase of
the local natural image background determines local
contrast. This fact is demonstrated in Figure 8A.

When target filters are designed to be aligned with
their background structure (left panels), local contrast
depends strongly on phase. When the targets and
background are phase-matched, target-background
amplitude is additive, resulting in greater local contrast
(top left panel). By inverting the phase of those same
filters, target-background amplitude is subtractive,
reducing local contrast (bottom left panel). Indeed, Bex
and Makous (2002) speculated that this dependence
of local contrast on phase alignment explains a loss
of sensitivity to phase-scrambled natural images. We
tested this hypothesis directly in Experiment 2. Note,
however, that, while phase-mismatched target filters
reduce local contrast, they may not be less visible. See,
for example, the demonstrations in Figure 8B. While
the phase-mismatched filter has a lower local contrast
than the phase-matched filter, the phase-mismatched
filter is conspicuous. Indeed, within each half of these
images, the absolute change of luminance is the same,
regardless of filter phase. It therefore remains an
open question as to how this manipulation will affect
observers’ sensitivity.

Experiment 2

The results presented above reveal that the alignment
of target filters with the spatial structure of the
background determines detection sensitivity at least
somewhat independently of target-background
similarity. In Experiment 2, we tested our hypothesis
that aligned targets are easier to detect because their
amplitude is additive with the background amplitude,
increasing local contrast. We therefore compared
detection sensitivity to target filters that were either
aligned or misaligned and either phase-matched or
phase-mismatched with the original source image.
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Figure 8. A demonstration of the influence of filter phase on local contrast and examples of conditions tested in Experiment 2.
(A) Added to all panels are the same two target filters that were designed to be phase-matched with the local spatial structure in the
top left panel. Filters in the bottom row have an inverse phase and are therefore mismatched relative to the source image. Filters are
most apparent in the top left panel: One filter is aligned with the top horizontal edge of the cracker, and the other is aligned to the left
side of the vertical shadow of the thumb. Note that the structural similarity metric is phase invariant, and therefore the filters have
the same similarity score within each column. Target filters are located at the intersection of pink and blue lines at the edges of each
panel. In Experiment 2, we averaged observers’ performance over the misaligned conditions (right column), because phase alignment
is relative only to the source image. (B) Simplified demonstrations of phase-matched and phase-mismatched filters aligned to an
edge. Note that, while the phase-mismatched filter reduces contrast, it appears similarly visible to the phase-matched edge.

Methods

All methods were identical to those of the preceding
experiment, with the following changes. This experiment
was carried out in our testing lab on a Display++
monitor (Cambridge Research Systems, Medway, UK)
with 14-bit luminance precision (i.e., our local lockdown
had lifted). The experimental design was a 2 (alignment:
aligned vs. misaligned) × 2 (phase: phase-matched vs.
phase-mismatched) factorial design (see Figure 8, for
example, stimuli). All target filters had an amplitude of
0.15, which, based on the data shown in Figure 4, we
expected to yield a mean d′ of approximately 1. In all
trials, there were four filters. Importantly, on half the
trials, target filters were blended with the background as
per Experiment 1, whereas in the other half of the trials,
the phase of the filters was reversed before blending.
Note that, in the misaligned condition, the phase of
the filters relative to the background is somewhat

arbitrary, so in the analysis, we average across these
trials. Each observer completed a total of 800 trials,
giving 200 trials per unique condition demonstrated
in Figure 8. Testing took approximately 30 minutes per
observer.

Results

In Experiment 2, we included conditions that
provided an opportunity to replicate our findings
from Experiment 1. As demonstrated in the top left
panel of Figure 8, we included a condition in which
target filters were both aligned and phase-matched
to the natural background structure, as per the
aligned condition of Experiment 1. We first compare
observers’ accuracy in this condition with the accuracy
in the misaligned condition. The results are shown
as connected points in Figure 9A and reveal better
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Figure 9. Proportion of correct target detections in Experiment 2. (A) Results are shown according to the two main experimental
factors: target-background alignment (x-axis) and target-background phase alignment (grouped data points). Note that
target-background similarity is matched across aligned conditions (see left column of Figure 8). Colors indicate different observers as
per Figure 3. (B–D) Proportion correct as a function of target-background similarity for misaligned trials only. Solid lines are fits from a
logistic GLMM, showing a positive relationship between similarity and detection accuracy, in contrast to the fits of Experiment 1 data
and results reported by Sebastian et al. (2017).

performance in the (phase-matched) aligned condition
than the misaligned condition for all observers.
We therefore replicate the results from Experiment
1 under strict laboratory conditions. Also shown
in Figure 9A are the results from the phase-mismatched
condition, in which target filters were aligned with
their backgrounds but had their phase inverted.
Importantly, phase-matched and phase-mismatched
targets were well equated on similarity (phase-matched
and phase-mismatched average similarities were .7
and 0.71, respectively). In the phase-mismatched
condition, however, all observers were close to chance
level, revealing they were unable to detect these targets
(mean accuracy = 49%; RR = 45%, RKW = 50%,
WJH = 51%).

We again tested whether there was an inverse
relationship between accuracy and similarity in the
condition most closely matching the condition tested
by Sebastian et al. (2017), that is, the misaligned
condition (see Figure 7). We again used a logistic
GLMM, and similarity was binned in 0.1 steps.
In contrast to the fitted model in Experiment
1, however, we found a nonsignificant positive
relationship between similarity and proportion correct
(slope = 0.33, population standard deviation = 0.28,
p = 0.596). Fits to observers’ data are shown in
Figures 9B–D.

Discussion

The aim of Experiment 2 was to test the prediction
that targets aligned with their natural image
backgrounds are easier to identify than targets that are
misaligned with their backgrounds (i.e., the results of
Experiment 1) due to a difference in local contrast. The
differences in local contrast across these conditions
results from contrast additivity in the aligned condition

when filters are phase-matched with their background.
We tested this prediction in Experiment 2 by inverting
the phase of target filters on half of the trials in
which the filters were aligned with the background
structure. Inverting the phase of target filters aligned
with their background has a subtractive effect on
local contrast and, as we expected, rendered observers
incapable of detecting the targets (Figure 9). The
results of Experiment 2 thus support the notion that
target-background similarity is not a useful metric
of the detectability of targets per se, whereas the
interaction between relative phase and structural
alignment is critical.

Generative model of task
performance

We next aimed to develop a model that captures the
key results reported for Experiment 1 and Experiment
2. We hoped to account for the finding that aligned
targets are more accurately detected than misaligned
targets and that this effect of alignment depends on the
relative phase of target and background. These effects
suggest that observers are tuning to local changes
in the images caused by the additivity of filter and
background luminance. The model is therefore based on
simple luminance and contrast detection mechanisms
like those involved in the generation of our stimuli
(Figure 1). On each trial, the model detects difference in
various image statistics across the target and distractor
images and then generates a response based on these
differences. Simulated responses were determined by
fitting the model output to observers’ responses in
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Figure 10. Model performance for Experiment 1. Compare with Figure 3. The model captures the key results from Experiment 1. Error
bars show one binomial standard deviation.

Experiment 1. We then tested whether the fitted model
reproduced the key Experiment 2 results.

On each trial, the model was given the target image
and the distractor image. The maximum contrast of
each image was found by taking the maximum value
of contrast maps as computed in Equations 1–6. The
maximum luminance extreme of each image was the
maximum absolute deviation of each image from
mid-gray, capturing both local minima and maxima in
images across trials. For each trial and each metric, we
computed a ratio between left and right images:

LR[i] = ln
(
Lmaxright
Lmaxle f t

)
(24)

CR[i] = ln
(
Cmaxright
Cmaxle f t

)
(25)

LR and CR refer to ratios of the most extreme
luminance and contrast values, respectively, where
negative values indicate greater extremes in the left
image, and positive values indicate greater extremes in
the right image. We weighted these metrics by fitting
them to observers’ responses (i.e., left or right spatial
interval) using logistic regression. We then analyzed the
model predictions as per the behavioral analyses. We
built different models that included (1) just the absolute
luminance peak of stimuli, (2) just the contrast energy
maxima of stimuli, or (3) both.

The best model was one that detects the absolute
luminance peak and the maximum contrast energy
within the target and distractor images. As shown
in Figure 10, this model reproduces the qualitative
patterns of performance observed in Experiment
1 (compare the model data in Figure 10 with the
empirical data in Figure 3). Importantly, each image

statistic significantly contributes to the model (ps
< 0.001), and including both parameters provided
a better fit than including either parameter alone
based on formal model comparison (chi-square test
compared with the next best model: χ2(�df = 4) =
114.3, p < 0.001). Note that the generative model
responses are fit to the observer data based solely
on the image-computable features, not on the labels
of the experimental conditions (e.g., the data are
not fit to aligned vs. misaligned conditions)—yet the
model reproduces the same patterns of data across
conditions as observers. Adding the model’s predicted
response to the signal detection model also improved
estimates of observers’ d′ (χ2(�df = 6) = 163.1, p
< 0.001). These model results are consistent with
the notion that adding filters to the image causes
local peaks in absolute luminance and contrast that
can differentiate the target image from the distractor
image (Bex & Makous, 2002). As described next,
however, this model cannot account for the findings in
Experiment 2.

We fit the model to observers’ responses from
Experiment 1, as shown above, and tested whether
the fitted model could predict observers’ responses to
Experiment 2. The critical test is whether the model
falls to chance when filters were spatially aligned but
phase-inverted relative to their backgrounds (i.e., the
phase-mismatched condition). As shown in Figure 11,
however, model performance was well below chance in
this condition. This below-chance performance occurs
because phase inversion reduces the luminance and
contrast peaks of the target image to below those of
the distractor image, resulting in the model reporting
the distractor as the target more often than not. The
model again reproduces the effect of alignment but
overestimates the size of the effect. The overestimation
may have resulted from the changes we made between
experiments, including using different displays and filter
amplitudes. These differences are less relevant than the
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Figure 11. Model performance for Experiment 2. Compare
with Figure 9A. The model performs below chance in the phase
mismatched condition, whereas observers were at chance
(Figure 9A).

model’s gross misestimation of the phase-mismatched
condition as described below.

The relatively poor fit to the phase-mismatched
condition of Experiment 2 is informative. Observers’
data cannot be explained fully by assuming that
they adopted a simple rule in which they detected
luminance and contrast peaks. For phase-matched
trials, therefore, the superior sensitivity to aligned filters
over misaligned filters cannot be solely accounted for
by tuning to local peaks. We attempted to improve the
fit using other image metrics, such as contrast energy
combined across spatial scales and the energy of a
“back-pocket” filter–rectify–filter model (Harrison &
Bex, 2016; Landy, 2013), but none improved the fits of
the model. Rather than taking the maximum contrast
or luminance extreme, we also tried using k-maxima
(up to k = 1,000), which also did not improve the fits.
Observers’ performance, therefore, escapes a relatively
straightforward low-level explanation.

General discussion

The aim of the present study was to test observers’
ability to detect contrast-defined targets that have
been blended with natural image backgrounds. We
designed the target filters so that their orientations
were either aligned or misaligned with the local

background structure. Based on the recent report
that detection sensitivity is inversely related to
target-background similarity (Sebastian et al., 2017),
we expected to find worse performance in the aligned
condition relative to the misaligned condition based
on the notion that aligned targets would have higher
target-background similarity than misaligned targets.
Across two experiments, however, we found superior
detection of targets that were designed to be aligned
and phased-matched to the structure of the background
compared with targets that were designed to be
misaligned with their backgrounds and thus lower in
similarity. As noted below, our goal was not to replicate
the study by Sebastian et al. (2017) but instead to
test the role of target-background similarity in target
detection using a novel approach.

Our experiments show that observers’ sensitivity
does not linearly scale with similarity in all cases.
In Experiment 1, we found a positive relationship
between similarity and sensitivity: Observers were
most sensitive to targets in which target filters were
aligned with, and most similar to, background
structure (Figure 3C and Figure 4C). We replicated
this finding in Experiment 2 (Figure 9A). When we
limited our analyses to only trials in which target
filters were misaligned with the background structure,
we found mixed results across the two experiments:
a negative relationship between detection accuracy
and target-background similarity in Experiment 1
(Figure 7) but a positive relationship in Experiment 2
(Figure 9C,D). The cause of this difference in results
across experiments is not clear, but we note that we did
not design either experiment to specifically measure
the relationship between similarity and sensitivity in
this way, and neither model was significant. Regardless,
there was no clear evidence of an inverse relationship as
we expected.

The limitation of a specific structural similarity
metric as a predictor of sensitivity in our study is most
apparent in our Experiment 2 results. By matching
or inverting the phase of filters aligned with the
background structure, we produced target-background
images that were equivalent in similarity but were
different in their detectability (Figure 8 and Figure 9A).
When phase was inverted relative to the background,
observers’ performance was at chance level. The
phase-mismatched condition therefore removed
the information observers depended on to perform
the task (i.e., contrast). A variant of the metric of
similarity used here and by Sebastian et al. (2017)
may better predict sensitivity if it encodes phase
information. Computationally, similarity is analogous
to a normalized correlation coefficient; retaining phase
would yield similarity scores ranging from −1 (perfectly
matched counter-phase) and 1 (perfectly matched in
phase). However, Sebastian et al. used targets and
a template-matching ideal observer model that had
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a fixed phase, in which case sensitivity may indeed
scale inversely with phase-invariant similarity. We
also note that the similarity between target filters and
backgrounds in our study was approximately double
those reported by Sebastian et al., and so it is possible
that a linear inverse influence of similarity on sensitivity
holds for relatively low levels of similarity.

In Experiment 1, there was no clear relationship
between the number of filters added to the target image
and observers’ performance (Figure 3B and Figure 4B).
We expected to find such a relationship based on the
simple principle that there is an additional opportunity
to detect a target for each filter added (Macmillan &
Creelman, 2004). On closer inspection of the proportion
correct data presented in Figure 3B, only a single data
point in each of RKW and WJH’s data is inconsistent
with the expected trend for all observers. The lack of
a statistically robust finding, therefore, may be due to
our limited number of observers. A clear main effect of
the number of filters was possibly also obscured by an
interaction with target amplitude as shown in Figure 5.
It is interesting that our generative model also produced
a somewhat noisy relationship between accuracy and
the number of filters. It is possible that observers
outperformed our model in the phase-mismatched
condition of Experiment 2 because they integrated
information over multiple locations rather than using
the maximum in each image. However, even when
our model had access to the top 1,000 maxima in the
images, it still performed below chance.

Detection thresholds in our experiments are
approximately an order of magnitude greater than
those reported by Sebastian et al. (2017). This is not
particularly surprising given that we did not attempt
to replicate their design and instead used stimuli and
methods that differed from theirs. One aspect of our
experiments that would have likely decreased sensitivity
was the lack of spatial certainty in the position of
targets. Target filters could appear anywhere within
the natural image background, maximizing spatial
uncertainty. The ability to identify targets depends on
spatial (un)certainty, particularly in peripheral vision
(Bennett & Banks, 1991; Harrison & Bex, 2015, 2017;
Levi, Klein, & Yap, 1987). Sebastian et al. reduced
spatial uncertainty by presenting targets at the same
location on each target-present trial. Lower thresholds
should be expected with such reduced uncertainty
relative to our experiment in which observers had to
search the entire background region. When observers
are required to search for a potential target in a
new background, false alarms can occur anywhere
in the image. Computationally, such search can be
performed using the same basic processes as involved in
detection of a target at a cued location. In addition to
determining whether a filter response is greater than a
threshold (e.g., Sebastian et al., 2017), however, search
involves determining which of several locations is most

Figure 12. Similarity alone is a poor predictor of visibility. Top
and bottom panels show a 16-cyc/image target and
Gaussian-derivative target, respectively, in each of three
backgrounds (left to right): zero noise, vertical noise, and
horizontal noise. Noise is one-dimensional Gaussian (standard
deviation = 0.15), and targets have the same amplitude in all
panels (0.1). Similarity masking is demonstrated in the top right
panel, in which the high-frequency target is rendered invisible.
Such a masking effect is phase invariant. As shown in the
bottom right panel, however, a broader-band target with the
same amplitude remains unmasked by the same noise.
Importantly, the structural similarity between the target and
background is greatest in the bottom right panel (0.15 in the
bottom right vs. 0.12 in the top right).

likely a target. We modeled this by taking the spatial
interval with maximum luminance and contrast energy.

Despite the differences between our study and
previous studies, we can confidently conclude that
phase plays an important role in target detection for
at least the sorts of targets used in our study (i.e.,
directional first derivative of Gaussians). This result
was foreshadowed by Bex and Makous (2002), who
suggested detection thresholds for natural images
depend on local phase alignment within or across
frequency bands. Our modeling suggests that observers
detected the target interval by using local luminance
extremes and contrast maxima. These local visual
cues were most apparent in conditions in which the
target phase was additive with the background. Phase,
therefore, played an important role in our experiments.
However, the failure of this model to capture observers’
accuracy in the phase-mismatched condition of
Experiment 2 reveals that a rule using local extremes is
overly simple. We do not think it is likely that observers
were switching strategies across conditions, because
observers could not have known on a given trial which
condition was displayed. In phase-mismatched trials in
which the extremes of the target image were reduced
to below the level of the extremes of the distractor
image, observers must have been using other image
cues that have escaped our description. Anecdotally,
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Figure 13. Mean spectra of all images in the THINGS database. (A) Mean contrast energy as a function of spatial frequency. The solid
line is the fit of the function 1/fa, which explains 99% of the variance. The free parameter, a, was 1.2. (B) Mean contrast energy as a
function of orientation. We computed contrast energy in the frequency domain using a series of raised cosine filters centered on a
given orientation and spanning all spatial frequencies (“bow-tie filters”; full width half height = 12.5°). These data were then fit with a
function that captures the overrepresentation of cardinals, as well as the greater contrast energy for horizontal contrast compared
with vertical contrast (this function has the following form: E = (a − mag*|sin(2θ ) |b) *( p*(cos(2θ )) + p + 1), where E is contrast
energy, θ is orientation in radians, and a,mag, b, and p are free parameters; see Harrison (2021) for a more detailed analysis of the
THINGS images). This function explains 99% of the variance.

all observers, who are experienced psychophysical
observers, reported using a template-matching strategy.
This insight is obviously limited in its usefulness,
because a template-matching strategy is equivalent to
the computations performed in our model.

Our results are consistent with those of Neri (2011),
who investigated the influence of target phase relative to
the structure of a natural image background and how
these effects differ when the stimulus is inverted. Neri
found that, when the background is upright, observers
tune to feature detectors that are in phase with a natural
edge. When the background is inverted, observers’
tuning is less phase-aligned with the natural edge. These
results suggest that upright scenes produce a bias in
visual processing that steers observers’ filtering toward
the local phase of natural structures. These results are
consistent with our own finding that observers are
most sensitive to filters that are spatially aligned, and in
phase, with the background.

The extent to which the design of visual targets
determines detectability in natural backgrounds is
thus clearly an important consideration. As shown
in a demonstration by Sebastian et al. (2017), it is
incontrovertible that there are some targets for which
phase is unimportant for visibility. We reproduce
such a demonstration in the top row of Figure 12.
We question, however, the relevance of a similarity
metric in explaining the visibility of the target in this
demonstration, considering that similar demonstrations
can be produced in which target-background similarity
is greater and yet the target is easily visible (bottom
row, Figure 12). The importance of target-background

phase (in)variance likely depends on multiple factors,
such as target design, as well as differences in the
background in the region of the target (i.e., “partial
masking”; see Sebastian et al., 2020). In addition to
testing target visibility in different backgrounds based
on contrast, luminance, and similarity (Sebastian et
al., 2017, 2020), binning backgrounds according to
their phase similarity with targets may clarify these
interactions in future experiments.

We used images from the THINGS database as
naturalistic backgrounds. The THINGS database
is a recently released database with over 26,000
images from 1,854 categories (Hebart et al., 2019).
Relatively little has been reported about the basic
statistical properties of the images in this database,
and so it is possible that they may deviate from
what one may expect from typical natural images.1
In Figure 13, we show the mean image spectra as
a function of spatial frequency and orientation.
This analysis shows that THINGS images have, on
average, the same basic image spectra as typically
found in natural images: Contrast energy decreases
with increasing spatial frequency (Figure 13A), and
there is an overrepresentation of cardinal orientations
(Figure 13B). It is therefore unlikely that something in
particular about the distribution of contrast energy in
the THINGS images played a key role in our results.
However, it is likely that the visual system performs
different operations when processing visual objects like
those in the THINGS images compared with visual
textures (Wallis et al., 2019). Sebastian et al. (2017)
used images of scenes that had no particular focus on
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objects per se. To the best of our knowledge, no study
has systematically investigated whether target detection
differs on backgrounds of things versus backgrounds of
stuff.

Several studies suggest that there are high-level
influences over the tuning of low-level feature detectors
like those used to detect targets in the present study. For
example, Teufel et al. (2018) found that prior knowledge
about image content influences the detectability of
oriented targets aligned to locally occluded edges. Neri
(2017) similarly found that sensitivity is greatest on
edges implied by image content, regardless of whether
local contrast detectors would respond at the region
of the target. Harrison and Rideaux (2019) further
showed that edge detection in visual noise can be greatly
influenced by the allocation of visual attention. Taken
together, these findings suggest that the detectability
of targets in the present study may have depended on
the specific objects in background images and how
combinations of low-level and high-level factors guided
observers’ visual attention. However, we did not design
our experiments to examine such possible differences
across object images. The availability of repositories
such as the THINGS database makes such questions
possible to address in future studies.

In summary, we tested observers’ ability to detect
targets in natural image backgrounds. Observers were
most sensitive to targets when they were aligned and
phase-matched with their backgrounds. Inverting the
phase of aligned targets reduced observers’ detection
performance to chance. To best model the image
factors that predict human sensitivity to contrast
defined targets in natural backgrounds, therefore, the
phase of the target relative to the background must be
considered.

Keywords: contrast sensitivity, visual search, image
statistics, natural images
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