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Abstract

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The
spatiotemporal structure of waves can indicate the information they encode and the physiological processes that
sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive
neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue
as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity
patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to
activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or
pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over
time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible
stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience
of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized
by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
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1 Introduction

Coherent neural activity patterns respond to and even predict sensory stimuli (Ermentrout and Kleinfeld, 2001).

The spatiotemporal dynamics that emerge in the context of sensory processing can be substantially complex but

nevertheless reproducible, implying internal features of neural populations organize activity responses in repeatable

ways (Wu et al, 2008a). Along these lines, the careful characterization of these evoked dynamics across trials can

provide insight into network structure and its role (Xu et al, 2007). Moreover, repeatedly evoked coherent patterns

of activity can reverberate even in the spontaneous dynamics that follow stimulus trials (Han et al, 2008). These

results suggest that the coherent spatiotemporal activity dynamics that emerge in sensory cortices following stimulus

presentations subserve computations determining animals’ future expectations and behavior (Zanos et al, 2015).

Visual cortical waves are a well studied example of coherent cortical dynamics, which are generated both by

electrical and visual stimulation (Wu et al, 2008a). The visual system continually converts ongoing and complex

input into abstract but appropriately detailed representations (Tenenbaum et al, 2011). These computations serve
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to not only represent position, motion, and shape of objects (Born and Bradley, 2005), but also to resolve ambigui-

ties including anticipated changes (Knill and Pouget, 2004). As this process unfolds over time, new observations are

merged with previous estimates, potentially inferring object features via the spatiotemporal neural activity of corre-

sponding cortical networks (Cichy et al, 2014; Bill et al, 2022). Moreover, propagating neural activity waves resulting

from complex visual stimuli, even those arising in visual cortex, appear to subserve the onset and specifics of motor

outputs, like saccades (Zanos et al, 2015).

Object motion tracking and prediction are important visual functions for animals behaving in their natural

environments (Eckert and Zeil, 2001). Flying predators must accurately track and predict the movement of prey

animals along the ground to plan their pursuits and strikes (Kane and Zamani, 2014), while flocking and herding

animals anticipate and rapidly respond to the movements of their neighbors to avoid collisions and stay together (Nagy

et al, 2010; Torney et al, 2018). Often, conspecifics or objects are only intermittently seen by animals, requiring their

velocity and position estimates to be made during the occlusion periods (O’Reilly et al, 2008). Such abilities suggest

a normative account of the apparent motion illusion in which successive stationary flashes at different locations are

perceived as a single moving object hidden from view between flashes (Ramachandran and Anstis, 1986). Voltage

sensitive dye recordings from awake fixating monkeys observing such stimuli reveal an interaction of neural activity

waves with external inputs suggesting early visual cortical activity helps represent perception of a moving object and

its velocity (Chemla et al, 2019). This study also proposed a detailed computational model in which a suppressive

wave of activity is generated by the second of two flashes, either explaining away the ambiguity of the first flash as

possibly another object or representing the two flashes as a single moving object.

Here, we analyze a neural field description of the apparent motion illusion that relies on the entrainment of travel-

ing activity wave solutions to a sequence of transient and localized stimulations. Neural fields model neuronal networks

as a continuous and spatially-extended excitable medium described by nonlinear integrodifferential equations allow-

ing for direct analysis using methods adapted from nonlinear partial differential equations, such as reaction diffusion

models (Bressloff, 2011). Such a framework is ideal as it affords analytical treatments of the local network mech-

anisms underlying emergent spatiotemporal patterned activity (Huang et al, 2004; Goulet and Ermentrout, 2011)

and stimulus-behavior relationships commonly recorded in cognitive tasks (Bressloff and Webber, 2012; Kilpatrick,

2018; Erlhagen and Schöner, 2002). Traveling wave solutions can be identified explicitly in many instances (Pinto and

Ermentrout, 2001; Coombes, 2005), as can their response to non-trivial stimuli (Folias and Bressloff, 2005; Ermen-

trout et al, 2010; Amari, 1977). Our model incorporates a physiologically realistic form of negative feedback as short

term synaptic depression, leading to an attenuation at the back of waves, producing traveling pulses (Kilpatrick and

Bressloff, 2010c). We will solve for traveling waves and identify their response to flashing stimuli, interpreting the

resulting dynamics as a stimulus motion percept. Such an approach allows for explicit and dynamical characterization

of the conditions required to promote the apparent motion illusion across a range of potential stimulus types.
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Our perturbative approach to studying how traveling waves respond to transient or weak stimuli specifically

estimates how a wave’s position changes in response to inputs. Linear asymptotics and even weakly nonlinear analysis

have been used previously to understand how perturbations in synaptic connectivity, input, or model parameters

shape waves and patterns in neural field equations (Bressloff et al, 2003; Venkov et al, 2007; Bressloff, 2001; Coombes,

2005; Amari, 1977). Perturbative theories describing how waves transform inputs and synaptic weight heterogeneities

into changes in position and speed have been used as a model of idiothetic position (i.e., where an animal is or what

direction they are heading) (Zhang, 1996; Xie et al, 2002; Burak and Fiete, 2009). Weak inputs alter the dynamics

enough to displace wave positions without substantially disrupting their shape, allowing for an accurate linear input-

response theory (Kilpatrick and Ermentrout, 2012). Since our model incorporates nonlinear negative feedback, care

must be taken in performing the asymptotic calculations to characterize the response to inputs (Kilpatrick and

Bressloff, 2010d). In addition, we can study the differential effects of inputs to the synaptic depression variable, which

recovers more slowly, as opposed to the neural activity variable.

The response of traveling waves to transient inputs can be accurately captured by our perturbation theory,

providing closed form expressions for the distance traveling waves are shifted by perturbations. Realizing wave position

as a model of inferred object motion, we conclude that these position shifts encode the history of encountered inputs.

Flash sequences that hop to new locations according to effective speeds that are sufficiently close to the intrinsic

speed of a traveling wave can entrain it. Our framework precisely characterizes the width of this band of entrainable

speeds as a function of the amplitude and frequency of the input, providing testable predictions concerning the

psychophysics of apparent motion.

2 Neural field model with synaptic depression

Prior models of local negative feedback in neural fields often employ heuristics like linear adaptation (Pinto and

Ermentrout, 2001), not based directly on physiology. Continual activation of neurons can transiently reduce the

efficacy of synapses originating from them, often due to vesicle depletion (Fortune and Rose, 2001). Activity-

based models of neural activity, like neural fields, typically incorporate such short-term depression according to the

Tsodyks-Markram model, derived by temporally smoothing the dynamically evolving efficacy of resource-dependent

synapses (Tsodyks et al, 1998; Bart et al, 2005). Dynamic reductions in the strength of synaptic weights originating

from recently active neural populations curtails spatiotemporal activity and can produce propagating waves and pat-

terns in continuum neural fields (York and van Rossum, 2009; Kilpatrick and Bressloff, 2010b; Bressloff and Webber,

2012). We will move beyond these prior studies to consider the effects of transient and persistent inputs upon waves

in networks subject to synaptic depression, and consider how such a model can represent visual motion encoding.

Specifically, we consider the following integro-differential equation system:

∂

∂t
u(x, t) = −u+ w ∗ (qf [u]) + εIu(x, t), (1a)
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τq
∂

∂t
q(x, t) = 1− q − βqf [u(x, t)] + εIq(x, t). (1b)

Here, u(x, t) and q(x, t) denote the average normalized voltage and synaptic efficacy, respectively, at location x and

time t, and f(u) represents the output firing rate (Ermentrout, 1998). The synaptic timescale τq is generally chosen

to be longer than the non-dimensionalized time units τq > 1 representing the timescale of neural activity (Tsodyks

et al, 1998). Both u and q are normalized so that typical activity (in the absence of stimuli, and with suitable initial

conditions) places each variable in the interval [0, 1] for any particular point in space-time. The weight kernel w(x, y) ≡

w(|x − y|) is purely distance-dependent and gives the density of synaptic connections from pre-synaptic neurons at

location y to post-synaptic neurons at location x, as is common (Wilson and Cowan, 1973; Amari, 1977; Pinto and

Ermentrout, 2001) (See Bressloff (2001); Kilpatrick et al (2008) for examples of the effects of breaking this translation

symmetry). The non-local spatial operator takes the form of a convolution w∗(qf [u]) =
∫
R w(x−y)q(y, t)f [u(y, t)]dy.

We will take the weight kernel to be a decaying exponential w(x) = 1
2e

−|x| for explicit calculations.

The firing-rate function f is non-linear, monotonic, and is often normalized so it is lower bounded to 0 for small

values and saturates to 1 for large values. Common choices are sigmoidal or Heaviside functions. Throughout this

paper, we will choose f(u) = H(u− θ) where H is the Heaviside function, and θ is a threshold parameter describing

the input activity needed to generate output activity from a local population. The binary output of the Heaviside

function approximates firing rates to simply be low or high but allows us to, for any given time t, partition the spatial

domain into an active region {x ∈ R | f(u(x, t)) = 1}, inactive region {x ∈ R | f(u(x, t)) = 0} and a set of threshold

crossings {x ∈ R | u(x, t) = θ} (Coombes et al, 2012). Spatiotemporal inputs Iu(x, t) and Iq(x, t) representing the

impact of visual stimuli are assumed to be weak (ε ≪ 1) compared to ongoing activity and may arise in either the

neural activity or synaptic efficacy variables.

The strength of synaptic depression is parameterized by the rate β > 0 (Tsodyks et al, 1998; Bart et al, 2005).

Notice that in regions where u > 0, we have f [u] = 1, and then Eq. (1b) can be written γτqqt = γ − q + γεIq, where

γ = 1
1+β ∈ (0, 1]. Under this formulation, τq is the timescale of synaptic replenishment, γτq is the timescale of synaptic

depletion, and γ is the ratio between them. For γ ≈ 1 (0 < β ≪ 1), the timescales of replenishment and depression

are similar, and when β is not small, the depression timescale is shorter and thus depression happens at a faster rate.

Inclusion of synaptic depression dynamically reduces synaptic efficacy (q < 1), attenuating the active regions within

waves. In the next section, we characterize front and pulse solutions more precisely through explicit construction.

3 Traveling Wave Solutions

The neural field model with synaptic depression supports a variety of traveling wave solutions that are qualitatively

different than the corresponding scalar model (Kilpatrick and Bressloff, 2010b) without synaptic depression. In a
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purely excitatory scalar neural field model,

∂

∂t
u(x, t) = −u+ w ∗ f [u], (2)

a sufficiently large, initially active region will spread indefinitely as counterpropagating traveling fronts in the long

time limit (Faye and Kilpatrick, 2018). Traveling front solutions, which take the form of heteroclinics connecting the

active (u = 1) to the inactive (u = 0) state in traveling wave coordinates ξ = x − ct can be constructed explicitly

in the case of step nonlinearities f(u) = H(u − θ) (Pinto and Ermentrout, 2001) and using a homotopy argument

in the case of smooth nonlinearities (Ermentrout and McLeod, 1993). That is, for u ≡ U(ξ), we have a solution

that satisfies limξ→−∞ U(ξ) = 1 and limξ→+∞ U(ξ) = 0. Our analysis of traveling waves in the model with synaptic

depression hinges upon the manipulation of the left limit.

The different form of traveling waves in the model with synaptic depression emerges due to attenuation of the

activity level within the active region. To demonstrate this, we examine the fixed points of the analogous space-clamped

equations of Eq. (1) in the absence of inputs (Iu ≡ Iq ≡ 0) obtained by assuming u(x, t) ≡ u(t) and q(x, t) ≡ q(t),

so u′(t) = −u + qf [u] and τqq
′(t) = 1 − q − βqf [u], where we have assumed the normalization

∫
R w(x)dx = 1. For

f [u] = H(u−θ), we always have the quiescent fixed point (ū, q̄) = (0, 1) and if γ > θ we will also have (ū, q̄) = (γ, γ).

As we will show, if γ > θ, traveling front solutions of Eq. (1) for Iu ≡ Iq ≡ 0 can be supported with an attenuated

active state, but if γ < θ, traveling pulse solutions with a finite active region can emerge.

Previously, in Kilpatrick and Bressloff (2010b), traveling front and pulse solutions were characterised for a gen-

eralization to the model Eq. (1) that incorporated spike rate adaptation. Here we rederive and extend some of these

results (See Figs. 1 and 2) in anticipation of our later derivations. Analyzing the model without spike frequency

adaptation allows us to more clearly characterize the impact of synaptic depression. We also identify a previously

overlooked traveling wave solution, the stable retreating front, which co-exists with the stable advancing front and

emerges due to the negative feedback.

3.1 Fronts

Changing variables to wave coordinates ξ = x − ct in Eq. (1) and assuming u ≡ U(ξ) and q ≡ Q(ξ), we find that

such solutions must satisfy

−cU ′(ξ) = −U(ξ) +

∫
R
w(ξ − y)Q(y)f(U(y))dy,

−cτqQ′(ξ) = 1−Q(ξ)− βQ(ξ)f(U(ξ)).

Traveling fronts in an excitatory neural field (with w(x) > 0) with a step nonlinearity f(u) = H(u − θ) can be

shifted such that the single threshold crossing point occurs at ξ = 0, so that U(0) = θ. The active region is thus
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{ξ ∈ R | U(ξ) > θ} = (−∞, 0). Note, that the function U(ξ) is not necessarily monotone decreasing in ξ as it is in the

scalar system due to the negative feedback resulting from synaptic depression. Thus, we must impose an additional

inequality U(ξ) > θ for ξ < 0, which should be checked for self-consistency:

−cU ′(ξ) = −U(ξ) +

∫ 0

−∞
w(ξ − y)Q(y)dy, (3a)

−cτqQ′(ξ) = 1−Q(ξ)− βQ(ξ)H(−ξ). (3b)

Eq. (3b) is now piecewise linear, decoupled from Eq. (3a), and can be solved piecewise along with enforcing continuity

and appropriate boundary conditions depending on the direction (sign(c)) of travel. Before analyzing the case of

moving fronts (c ̸= 0), we examine the degenerate case of a standing wave solution with speed c = 0. In this case,

Eq. (3b) reduces to a stationary equation, we have ξ ≡ x, and the profile of synaptic efficacy is given by

Q(x) =

 1, x > 0,

1
1+β ≡ γ, x < 0.

Substituting into Eq. (3a), we see

U(x) = γ

∫ 0

−∞
w(x− y)dy,

so for a normalized (
∫
R w(x)dx = 1) and even (w(−x) = w(x)) weight function, we have θ = U(0) = γ

2 , implying

standing fronts only arise for a specific choice of the depression rate β = 1
2θ −1 which perfectly balances the tendency

of the active region to invade inactive regions with the rate of activity decay (Ermentrout and McLeod, 1993).

For forward moving fronts (c > 0), we solve Eq. (3b) with the boundary conditions limξ→∞Q(ξ) = 1 and

limξ→−∞Q(ξ) = γ, yielding

Q(ξ) =


1, ξ > 0,

γ + (1− γ) exp
(

ξ
cγτq

)
, ξ < 0.

Substituting this into Eq. (3a) and solving the ξ > 0 case with integrating factors gives

U(ξ) = eξ/c
(
U0 −

γ + cγτq
2(1 + c)(1 + cγτq)

)
+ e−ξ γ + cγτq

2(1 + c)(1 + cγτq)
,
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which we bound as ξ → ∞ by requiring the coefficient on eξ/c to be zero. Recalling that U(0) = θ we then have

θ =
γ + cγτq

2(1 + c)(1 + cγτq)
⇐⇒ (2θγτq)c

2 + (2θ + 2θγτq − γτq)c+ (2θ − γ) = 0, (4)

whose solutions c are roots of a quadratic:

c± =
γτq − 2θ(1 + γτq)±

√
4θ2(1− γτq)2 − 4θγτq(1 + γ(τq − 2)) + γ2τ2q

4θγτq
,

plotted in Fig. 1A,B. We can also solve the ξ < 0 case, which automatically satisfies our boundedness condition, and

completes the profile for advancing fronts

U(ξ) =


θe−ξ, ξ > 0,

γ +K1e
ξ/(cγτq) +K2e

ξ + (θ − γ −K1 −K2) e
ξ/c, ξ < 0,

K1 =
cγτq

1− γτq
· (1− γ)cγ2τ2q
1− (cγτq)2

, K2 = − 1

2(1− c)
·
(
(1− γ)cγτq
1− cγτq

− γ

)
.

The self-consistency inequality ensuring the active region remains superthreshold then requires lim
ξ→−∞

U(ξ) = γ > θ

or 1/(1 + β) > θ implying β < (1− θ)/θ. Profiles are plotted in Fig. 1C,D.

On the other hand, if we assume c < 0 (retreating fronts), we can similarly find solutions for which the quiescent

region invades the active region. We again solve Eq. (3b), with the same boundary conditions, but now having c < 0

implies

Q(ξ) =


1 + (γ − 1)eξ/(cτq), ξ > 0,

γ, ξ < 0.

Again we substitute into Eq. (3a), enforce boundedness and the threshold condition U(0) = θ. After integrating, we

find a condition determining the speed of the front

c =
γ − 2θ

2γ − 2θ
,

and a formula for the activity variable of form

U(ξ) =


θe−ξ, ξ > 0,

γ + (θ − γ)eξ, ξ < 0.

(5)
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Fig. 1: Traveling fronts in a neural field with synaptic depression. A. Speeds of stable (solid) and unstable
(dashed) traveling fronts as a function of the γ = 1

1+β (synaptic depletion/replenishment timescale ratio). For γ < θ,

self-consistency is broken, and traveling pulses emerge (see Section 3.2), and for θ < γ < 2θ, retreating front solutions
emerge (red), with speed and profile independent of τq. Stable speed c curves coalesce as γ → 1 as effects of synaptic
depression vanish. B. Speeds as a function of synaptic timescale τq, clearly showing that the speed of retreating
fronts is independent of τq. Black line indicates saddle node bifurcation where the stable and unstable advancing
front speeds meet. C, D, E. Example profiles of fast stable advancing (blue), slow unstable advancing (green), and
retreating (red) fronts. Note the ξ-dependent region of Q(ξ) trades places between advancing and retreating cases.
For all panels θ = 0.1; for the profile panels γ = 0.15 and τq = 20.

Speeds are plotted in Fig. 1A,B and example profile in Fig. 1E. Such fronts exist for sufficiently strong depression as

bounded by the standing front condition β > (1− 2θ)/(2θ) or γ < 2θ, but not too strong (β < (1− θ)/θ or γ > θ).

The speeds of stable progressing traveling waves decrease with the amplitude β of synaptic depression (increasing

with γ = 1/(1 + β), the ratio of synaptic depletion and replenishment timescales, Fig.1A). The parameter γ defines

the steady state average voltage in the active region so fronts cannot exist if γ < θ, and for θ < γ < 2θ, a

retreating traveling front emerges (red curve). A branch of unstable and slow traveling fronts also exists in this

region. Complementarily, wavespeeds increase with the synaptic depression timescale τq (Fig. 1B). Retreating fronts

(Fig. 1E) are not simply reflections of advancing fronts (Fig. 1C,D). Rather, an advancing (retreating) front evolves as

the active (inactive) region invades the inactive (active) region, so the synaptic depression is constant in the inactive

(active) region. In contrast, traveling pulses are always advancing, so that a finite length active regions moves into

an inactive region, but can be reflected to produce a solution that moves the opposite direction.
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3.2 Pulses

Sufficiently strong synaptic depression produces traveling pulses as negative feedback brings the average voltage u

below threshold θ to create a pulse back (if θ > γ = 1
1+β ). These solutions are characterized by both a speed c and

width ∆ which are determined by the model parameters.

Changing variables to traveling wave coordinates and considering step nonlinearity f(u) = H(u − θ), we define

an active region {ξ ∈ R | U(ξ) > θ} = (−∆, 0) so the pulse crosses threshold twice at θ = U(0) = U(−∆). In the

absence of stimulus, the system Eq. (1) then becomes

−cU ′(ξ) = −U(ξ) +

∫ 0

−∆

w(ξ − y)Q(y)dy, (6a)

−cτqQ′(ξ) = 1−Q(ξ)− βQ(ξ) [H(ξ +∆)−H(ξ)] . (6b)

Without loss of generality, we take c > 0, since backward moving pulses are simply reflections of forward moving

pulses. The synaptic efficacy equation is now a decoupled piecewise linear equation. Enforcing the boundary conditions

lim
ξ→±∞

Q(ξ) = 1, we obtain the solution

Q(ξ) =


1, 0 ≤ ξ,

γ + (1− γ)eξ/(cγτq), −∆ ≤ ξ < 0,

1− [1−Q(−∆)] e(ξ+∆)/(cτq), ξ < −∆.

Substituting back into Eq. (6b), we find

−cU ′(ξ) = −U(ξ) +
1

1 + β

∫ 0

−∆

(1 + βe(1+β)y/(cτq))w(ξ − y)dy,

which can be solved piecewise up to free constants that can be identified by enforcing continuity, boundedness,

and boundary conditions. Notice in the limit ∆ → ∞, we recover the equation for U(ξ) in the front case. For the

exponential weight function, and the threshold conditions U(−∆) = U(0) = θ we can then obtain the following

equations for the wavespeed c and pulsewidth:

θ =
cγτq

2(c+ 1)(cγτq + 1)

[
1− γe−∆

[
1 + e−∆/(cγτq)

]]
, (7a)

θ =
(2c+ 1)γ

2(c+ 1)

(
1− e−∆/c

)
+

γ

2(c− 1)

[
1 +

c(1− γ)τq
cγτq − 1

](
e−∆ − e−∆/c

)
(7b)

− c(1− γ)τqe
−∆/(cγτq)

2(c+ 1)(cγτq + 1)
+
c2γ3(1− γ)τ3q (e

−∆/(cγτq) − e−∆/c)

(c2γ2τ2q − 1)(γτq − 1)
.
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Fig. 2: Traveling pulses in a neural field with synaptic depression. (A,D) Stable and unstable pulse profiles
for parameters τq = 20, γ = 1

6 , (or equivalently β = 5), and θ = 0.2. (B,E) The pulse speed c and width ∆ are plotted
as a function of the synaptic timescale τq with color indicating γ, solid lines indicating stable branches and dotted
lines indicating unstable branches. (C,F) The pulse speed c and width ∆ as a function of γ with color indicating
τq, solid lines indicating stable branches and dotted lines indicating unstable branches. We see that as the synaptic
efficacy time-scale becomes shorter (τq small), depression is more rapid and both the width and speed of the pulse
shrink. Similarly increasing the strength of depression (β large) or equivalently shortening the effective timescale of
synaptic depression (γ small) will also reduce the width and speed.

Numerical root-finding techniques can subsequently be used to identify the speed c and width ∆ of traveling pulse

solutions given implicitly by Eq. (7). For sufficiently weak synaptic depression (corresponding to small β and large

γ), there are coexisting branches of (stable) wide and (unstable) narrow traveling pulse solutions (Fig. 2). Increasing

either γ or τq increases the speed and width of the stable traveling pulses. Explicit results on linear stability could

be obtained by extending the weak methods developed for piecewise smooth pseudolinear operators developed in

Kilpatrick and Bressloff (2010d), but here we have determined branch stability by full numerical simulation. With

the traveling pulse solutions in hand, and noting they are generally sufficiently wide so interactions between the front

and back are weak (0 < e−∆ ≪ 1), we now proceed with performing an asymptotic analysis determining how weak

forcing modeling sensory input guides the position of a pulse over time.

4 Wave Response Function

Prior studies of the impact of external inputs on spatiotemporal patterns in neural fields have both considered cases

in which direct construction is possible as well as perturbative studies in which the impact of forcing is taken to be
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weak. Special cases which allow for the calculation of explicit solutions, have revealed the onset of complex dynam-

ics using linear stability or even weakly nonlinear analysis yielding descriptions of breathers (Folias and Bressloff,

2004, 2005; Folias, 2011) or even oscillations reminiscent of perceptual rivalry (Loxley and Robinson, 2009; Kilpatrick

and Bressloff, 2010a; Bressloff and Webber, 2012). Numerical studies have also been used to identify the emergence

of topological defects in patterns based on transient and localized inputs (Hutt et al, 2003). However, in cases of

weak forcing, it is possible to follow the asymptotic approach of Amari (1977), assuming waves or bumps approxi-

mately retain their shape but are shifted in space due to the projection of the input along the pattern’s marginally

stable direction (Zhang, 1996; Ben-Yishai et al, 1997; Wu et al, 2008b; Burak and Fiete, 2009; Ermentrout et al,

2010; Itskov et al, 2011). Effects of a weak but otherwise arbitrary spatiotemporal input can be approximated by

deriving a pattern’s corresponding spatiotemporal filter determined by the adjoint of the linearization about the

pattern (Ermentrout et al, 2010; Kilpatrick and Ermentrout, 2012). Such an approach bears resemblance to theory

describing how perturbations phase shift nonlinear oscillators, which defines a phase response function (Ermentrout,

1996; Brown et al, 2004), so we refer to our formulation as the wave response function. We consider the impact of

a nonlinear auxiliary variable in the neural field (synaptic depression) on such input-response relationships, defining

an entrainment problem for a set of periodic spatiotemporal inputs, as a means of framing visual motion process-

ing. Ultimately, this allows us to describe potential neural mechanisms to account for behaviorally reported visual

phenomena like the apparent motion illusion.

4.1 General Framework

As shown above, in the absence of inputs (Iu(x, t) ≡ Iq(x, t) ≡ 0), Eq. (1) can support traveling wave solutions

(U(ξ), Q(ξ)) that can be determined explicitly for step nonlinearities f(u) = H(u − θ) and weight kernels with

defined integrals. The speed c (and for pulses, the width ∆) can be specified implicitly and thus calculated with

root finding. Weak stimulation perturbatively shapes both the profile and position (within the original traveling

coordinate frame) of these waves. However, importantly, waves are linearly stable to shape-changing perturbations

but marginally stable to those that shift their position within the wave coordinate frame (Amari, 1977; Pinto and

Ermentrout, 2001; Coombes and Owen, 2004). Since we treat wave positions as an internal model of the represention

of visual object location, we are concerned with wave position shifts as they determine entrainment to moving stimuli

of different speeds. To derive an approximate equation for the time-dependent evolution of the wave position εν(t)

relative to the coordinate frame ξ = x− ct, we begin by changing variables in Eq. (1) from (x, t) to (ξ, t). As a result,

we have an evolution equation for u(ξ, t) and q(ξ, t) defined

−cuξ + ut = −u+ w ∗ (qf [u]) + εIu(ξ, t), (8a)

−cτqqξ + τqqt = 1− q − βqf [u] + εIq(ξ, t), (8b)
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where Eq. (8) generalizes solutions in the traveling frame to allow them to be time-dependent. Effects of external

perturbations representing sensory stimuli are then accounted by considering the perturbation expansion

u(ξ, t) = U(ξ − εν(t)) + εϕ(ξ − εν(t), t) + · · · , (9a)

q(ξ, t) = Q(ξ − εν(t)) + εψ(ξ − εν(t), t) + · · · , (9b)

where (U(ξ), Q(ξ)) is an unperturbed wave solution and εν(t) is a small time-dependent function determining position

shifts in the traveling coordinates generated by the inputs. The terms ϕ(ξ) and ψ(ξ) weakly modify the wave shape.

Plugging the expansion Eq. (9) into Eq. (8), we find the O(ε) terms satisfy the inhomogeneous linear system

 ϕt

τqψt

+ L

 ϕ

ψ

 = ν′(t)

 U ′(ξ)

τqQ
′(ξ)

+

 Iu(ξ + εν, t)

Iq(ξ + εν, t)

 , (10)

where L is the linear operator

L

 ϕ

ψ

 = −c

 ϕξ

τqψξ

+

ϕ
ψ

+

−w ∗ [Qf ′(U)ϕ+ ψf(U)]

βQf ′(U)ϕ+ βf(U)ψ

 .

A bounded solution of Eq. (10) exists if its right hand side is orthogonal to all elements of the null space of the

adjoint operator L∗ (Keener, 2000a,b; Bressloff, 2001). Defining the L2 inner product ⟨f ,v⟩ =
∫
R gT (ξ)f(ξ)dξ, we can

then identify the adjoint operator by requiring ⟨Lu,v⟩ = ⟨u,L∗v⟩. Integrating by parts and rearranging integrals in

this equation, we obtain the definition

L∗

 ϕ

ψ

 = c

 ϕξ

τqψξ

+

ϕ
ψ

+

−Qf ′(U) · w ∗ ϕ+ βQf ′(U)ψ

−f(U) · w ∗ ϕ+ βf(U)ψ

 , (11)

so the one-dimensional null space (v, p)T defined L∗(v, p)T = (0, 0)T satisfies the system

cvξ = −v + f ′(U)Q · w ∗ v − βQf ′(U)p, (12a)

cτqpξ = −p+ f(U) · w ∗ v − βf(U)p. (12b)

We apply our orthogonality condition to ensure boundedness and obtain the evolution equation

dν

dt
= −

∫
R [v(ξ)Iu(ξ + εν, t) + p(ξ)Iq(ξ + εν, t)] dξ∫

R U
′(ξ)v(ξ) + τqQ′(ξ)p(ξ)dξ

, (13)
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revealing that the leading order description of wave perturbation arises through how the null vector filters inputs to

the traveling wave.

Our asymptotic approximation is thus determined implicitly as a solution to the nonlinear and non-autonomous

differential equation, Eq. (13). In the rest of this section, we analyze the predictions of this approximation and

compare them to numerical simulations in response to transient inputs. In the first case, we will study the impact

of an abrupt and spatially homogeneous input upon the relative location of a propagating traveling front, showing

the effects of synaptic depression. Second, we examine the effects of spatially localized inputs. Transient and abrupt

inputs are assumed to shift in the relative position of the wave εν(t) at a single localized moment in time, so the

recurrence of Eq. (13) can be ignored, allowing us to integrate the differential equation explicitly. Subsequently, we

must treat the recurrence in Section 5, considering the effects of spatially localized but moving stimuli, since the

ν-dependence of the right hand side of Eq. (13) is then non-trivial.

4.2 Front Wave Response to a Global Flash

Here we consider the leading edge position of a traveling front as encoding a position, which is then perturbed by

a spatially homogeneous and instantaneous in time input (Fig. 3A). This basic case allows for explicit calculations

which will guide our subsequent analysis of moving input tracking. We assume Eq. (13) supports a traveling front

solution and is stimulated only through the neural activity variable, (Iu(ξ, t), Iq(ξ, t)) = (δ(t − t0), 0), arising via

feed-forward input from upstream sensory areas. This could model a weak but broad visual light flash covering the

receptive fields of a visual cortical region of interest. Recall that the perturbative scaling ε does not appear in Eq. (13)

as these are all factors themselves multiplied by ε.

We first explicitly calculate the nullspace profile (v(ξ), p(ξ))T in the case of a traveling front solution whose adjoint

linearization is Eq. (12) with a Heaviside nonlinearity and so satisfying

c
dv

dξ
+ v(ξ) = δ(ξ)

Q(0)

|U ′(0)|

∫
R
w(y)v(y)dy − βδ(ξ)

Q(0)

|U ′(0)|p(0),

cτq
dp

dξ
+ p(ξ) = H(−ξ)

∫
R
w(ξ − y)v(y)dy − βH(−ξ)p(ξ).

The Heaviside and delta distributions arise from the nonlinearity f(U(ξ)) = H(U(ξ) − θ) = H(−ξ) and its

linearization f ′(U(ξ)) = H ′(U(ξ)− θ) = δ(ξ)/|U ′(0)| which can be determined by noting

−δ(ξ) = d

dξ
H(−ξ) = d

dξ
H(U(ξ)− θ) = H ′(U(ξ)− θ)U ′(ξ).

Note the form of the v(ξ) equation, cv′(ξ)+v(ξ) = Aδ(ξ), suggests a bounded solution of the form v(ξ) = H(ξ)e−ξ/c,

whose step magnitude we are free to pick to be unity. No matter what scaling we pick for this term, it will be canceled

in the fraction of Eq. (13) since the terms of the null vector each appear once in the numerator and denominator.
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Fig. 3: Traveling front advanced by global flash stimulus. A. Spatiotemporal evolution of a traveling front
perturbed by a spatially homogeneous, temporally pulsatile stimulus εIu(x, t) = εδ(t−t0) with ε = 0.09. We compare
the prediction (green dashed line) of our linear theory Eq. (15) to the leading edge computed directly from simulation
(blue line). B. Wave response function ν∞ predicted by the theory Eq. (15) (black line) and compared to simulations
(green dots). Weight function is exponential, firing rate nonlinearity is Heaviside, and model parameters are θ = 0.1,
γ = 0.2, and τq = 20.

Turning then to the p(ξ) equation, we see that for ξ > 0, it takes the form dp
dξ = − 1

cτq
p and p(ξ) = Be−ξ/(cτq). On the

other half of the domain, ξ < 0, we substitute the form of v(ξ) and compute the integral for an exponential weight

function, finding

dp

dξ
+

1

cγτq
p =

1

2(c+ 1)τq
eξ, (14)

which can also be solved with a boundedness requirement as ξ → −∞ to yield a particular solution of form p(ξ) = Ceξ

whose coefficient can be determined by plugging into Eq.(14). Piecing together the solutions on each half-line using

a continuity condition, we find

p(ξ) =
cγ

2(c+ 1)(cγτq + 1)

[
eξ +

(
e−ξ/(cτq) − eξ

)
H(ξ)

]
.

Finally, we recall (Iu(ξ, t), Iq(ξ, t)) = (δ(t− t0), 0) in Eq. (13) for this particular scenario and integrate with respect

to time to find

ν(t) =
2(c+ 1)(cγτq + 1)2

2θ(cγτq + 1)2 − (1− γ)γτq
H(t− t0). (15)

We demonstrate this prediction and compare to numerical simulations in Fig. 3B. Note, we generally underestimate

the degree to which the front is advanced because this is a global stimulus and so higher order nonlinear effects
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further speed along the front while it remains away from equilibrium. However for sufficiently small ε, the linear

approximation is reasonably close. Taking the limit of no synaptic depression γ → 1−, we see we recover

lim
γ→1−

ν(t) =
c+ 1

θ
H(t− t0) =

H(t− t0)

2θ2
,

which was derived previously in Kilpatrick and Ermentrout (2012). Note well that because we are not considering

persistent stimuli here, the dependence upon ν on the right-hand-side of Eq. (13) does not come into effect and so

it is straightforward to solve the equation by integration. As noted, spatially global stimuli perturb waves in ways

that are not always well captured by linear theory, but more spatially localized stimuli have a more modest effect on

wave position, which can also be captured well by our linear theory as we now show.

4.3 Pulse Wave Response

Traveling front solutions are unaffected by activity (Iu) perturbations behind their leading edge (ξ < 0) as demon-

strated above. On the other hand, traveling pulses have both a front and back which can be perturbed by weak

inputs. Moreover, spatially localized inputs that may model the position of a visual object interact with wave posi-

tion in ways that depend on their width as well as strength. To better understand the dynamics of such interactions

as a means of building a theory of visual object tracking, we begin by deriving the nullspace of the adjoint operator

in the case of a traveling pulse. Taking a Heaviside nonlinearity in Eq. (12) we find

c
dv

dξ
+ v =δ(ξ)

Q(0)

|U ′(0)| ·
[∫

R
w(y)v(y)dy − βp(0)

]
+ δ(ξ +∆)

Q(−∆)

|U ′(−∆)| ·
[∫

R
w(y +∆)v(y)dy − βp(−∆)

]
, (16a)

cτq
dp

dξ
+ p = [H(ξ +∆)−H(ξ)] ·

[∫
R
w(ξ − y)v(y)dy − βp(ξ)

]
, (16b)

where again the right-hand-side of Eq. (16a) is singularized due to the derivative of the step nonlinearities f(U(ξ)−

θ) = H(ξ +∆)−H(ξ) such that

δ(ξ +∆)− δ(ξ) =
d

dξ
[H(ξ +∆)−H(ξ)] =

d

dξ
H(U(ξ)− θ) = H ′(U(ξ)− θ)U ′(ξ).

As such, it has the form cv′(ξ) + v(ξ) = Aδ(ξ) + Bδ(ξ + ∆) suggesting the following ansatz v(ξ) = 1
c ·[

A0H(ξ)e−ξ/c +A−∆H(ξ +∆)e−(ξ+∆)/c
]
whose coefficients satisfy the linear system

cA0 =
Q(0)

|U ′(0)| · [A0G(0) +A−∆G(−∆)− βcp(0)] , (17a)

cA−∆ =
Q(−∆)

|U ′(−∆)| · [A0G(∆) +A−∆G(0)− βcp(−∆)] , (17b)
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Fig. 4: Response of traveling pulse to localized pulsatile square stimulus. Stimuli εIj(x, t) =
εĪjδ(t)P (x, x0,∆x) (j = u, q) are centered in space P (x, x0,∆x) = H(x − x0 + ∆x/2) − H(x − x0 − ∆x/2) at x0
with width ∆x = 1 and presented at time t = 0 either to (A) the neural activity variable: Īu = 1 and Iq ≡ 0; or
(B) the synaptic efficacy variable: Īq = 1 and Īu = 0. Asymptotic theory (black line) approximates the results from
numerical simulation (green dots) very well. Note that the spatially square pulse input shifts and widens the core
null space function (blue curve), which describes how the wave filters forcing. Other parameters are θ = 0.2, γ = 1/6,
τq = 20, and ε = 0.05.

where we have defined the integral function

G(z) =

∫ ∞

z

w(y)e−(y−z)/cdy.

To solve this linear system, we need to determine p(ξ) to constrain its values at ξ = 0,−∆. Of course, recall (v, p)T

is a vector eigensolution and so can be freely scaled. As such, we should expect the two equations in Eq. (17) are

linearly dependent, so we need only solve one.

We thus next examine Eq. (16b) in pieces. First, along ξ < −∆, we find a simple homogeneous equation cτqp
′(ξ) =

−p(ξ) whose solution must be bounded as ξ → −∞, so p(ξ) = 0 on this portion of the domain implying p(−∆) = 0.

Then on −∆ < ξ < 0, we can rewrite the equation as

dp

dξ
+

1

cγτq
p(ξ) =

1

c2τq
[A0G(−ξ) +A−∆G(−∆− ξ)] , (18)

which we can integrate with the boundary condition p(−∆) = 0 to find

p(ξ) =
e−ξ/(cγτq)

c2τq
· [A0J(ξ, 0) +A−∆J(ξ,−∆)] , (19)
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where we have defined

J(ξ, z) =

∫ ξ

−∆

G(z − y)ey/(cγτq)dy.

Evaluating Eq. (19) at ξ = 0 to find the remaining term in the self-consistency Eq. (17),

p(0) =
A0

c2τq
J(0, 0) +

A−∆

c2τq
J(0,−∆)

Substituting into the consistency conditions Eq. (17), we have that A0 and A−∆ satisfy the singular linear system

[ |U ′(0)|
Q(0)

c+
β

cτq
J(0, 0)−G(0)

]
·A0 +

[
β

cτq
J(0,−∆)−G(−∆)

]
·A−∆ =0

−G(∆)A0 +

[ |U ′(−∆)|
Q(−∆)

c−G(0)

]
·A−∆ =0.

Ignoring the trivial solution A0 = A−∆ = 0 and fixing the first entry A0 = 1, we may solve this singular equation by

satisfying the second equation to find

A−∆ =
G(∆) ·Q(−∆)

c|U ′(−∆)| −G(0) ·Q(−∆)
, (20)

so by defining A−∆ as in Eq. (20) and A0 = 1, we find the one-dimensional nullspace of L∗ is spanned by (v(ξ), p(ξ))T

where

v(ξ) = H(ξ)e−ξ/c +A−∆H(ξ +∆)e−(ξ+∆)/c, (21a)

p(ξ) =
e−ξ/(cγτq)

c2τq
· [J(ξ, 0) +A−∆J(ξ,−∆)] . (21b)

To study the impact of spatially locaized and temporally pulsatile stimuli on traveling pulses, we again use Eq. (13)

to formulate an approximation to the phase advance of the pulse from an abrupt input at a single point in time,

ν(t) = −ε
∫ x0+∆x/2

x0−∆x/2

[
Īu · v(ξ) + Īq · p(ξ)

]
dξ∫

R U
′(ξ)v(ξ) + τqQ′(ξ)p(ξ)dξ

H(t− t0). (22)

Integrating against both perturbations of the neural activity of amplitude Īu and synaptic efficacy of amplitude Īq

variables, we adjust the position x0 of the stimulus relative to the pulse and see the approximation agrees well with

numerical simulations (Fig. 4). Note that the effect of inputs is stronger (See axis scaling on Fig. 4A vs 4B) when

applied to the neural activity variable (Īu > 0 and Īq ≡ 0). Taking the width of the stimulus to zero ∆x → 0+ and

its amplitude arbitrarily strong (Īu → ∞ or Īq → ∞), the input approaches a delta distribution in space and the
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integral in Eq. (22) is proportional to the nullspace as a function of x0. Generally, we find contributions to the phase

advance of the wave are quite weak when originating at the back (threshold crossing) of the pulse (A−∆ ≈ 0) as can

be seen by evaluating Eq. (20) across a wide range of parameters. Thus, pulses are only substantially perturbed by

inputs at their front.

Our experiments for simple stimuli (spatially homogeneous inputs to fronts, Fig. 3; and square wave pulses to

traveling pulses, Fig. 4) result in trivial differential equations we can solve by integrating due to the stimulus being

localized to a single point in time. When stimuli varying non-trivially in space and time, we must heed the nonlinear

nature of the asymptotic approximation of the wave phase given by the differential Eq. (13). In the next section, we

demonstrate that the recurrence represented in this nonlinear equation allows us to better approximate the effects of

persistent as well as periodic stimuli providing a simplified theory for predicting the entrainment of traveling waves

to localized moving stimuli.

5 Entrainment to Moving and Apparently Moving Stimuli

We now describe an asymptotic theory of the encoding of moving objects by the position of perturbed traveling waves.

In the absence of stimulation, Eq. (1) supports traveling wave solutions that move at a fixed natural wavespeed. A

wave’s leading edge is interpreted as the visually encoded position of a moving object. When objects move at speeds

other than the natural wavespeed, external stimulation must be able to shift the phase and/or increase the speed of

the wave to appropriately encode the position. Sensory input is modeled as a spatially localized but moving stimulus

Iu with a different speed. We will say such a stimulus entrains a wave if the wave’s speed is altered so as to match

that of the stimulus (Alamia and VanRullen, 2023).

Our wave response approximation Eq. (13) can be used to predict conditions for the entrainment of traveling

pulses to both persistent and moving stimuli as well as intermittent flashing stimuli meant to mimic the forcing

common to the apparent motion illusion. As opposed to the theory developed previously for the tracking of persistent

and moving stimuli (Folias and Bressloff, 2005; Wu et al, 2008b), flashing stimuli that hop require a periodic map-

based theory to determine conditions on speed and input amplitude for perceived motion. We begin by examining a

perturbative theory of tracking persistent and moving stimuli first.

5.1 Front Entrainment

For simplicity, and to demonstrate the techniques we will use to determine entrainment, we first consider a moving

step stimulus defined

εIu(x, t) = εH
[
(c+∆c)t− x

]
. (23)

applied to a traveling front solution to Eq. (1). For the purposes of this calculation, we consider the propagation

of the step at x = (c + ∆c)t as the location of this stimulus. Note, we will take the difference of the input speed

c + ∆c and natural wavespeed c to be positive ∆c > 0 so the wave must catch up to the input. We are concerned
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with deriving conditions on the strength ε and speed offset ∆c of the input that allow for the perturbed wave’s

speed to match that of the input (entrainment). When the input leads the wave, it will speed the wave up beyond

its natural speed, and if the stimulus is sufficiently strong and slow, the perturbed wavespeed will catch up to that

of the input, so the front lags the stimulus at a distance that remains bounded in time. Stimuli that are too fast

and/or weak, however, will outrun the wave, so the distance between them grows in time (and entrainment fails).

Analyzing Eq. (13), we will determine the relation between input parameters and boundaries of entrainment as well

as the distance entrained fronts lag inputs.

For inputs that drive only the neural activity variable of traveling fronts, we find the associated component of the

nullspace filtering the input is v(ξ) = H(ξ)e−ξ/c. Note, the wave will only be affected by inputs ahead of the front.

Moreover, upon defining the scaling factor

K ≡ ⟨U ′, v⟩+ τq⟨Q′, p⟩

that appears in the denominator of Eq. (13), we can simplify the expression for ν′(t). Now, upon assuming the input

is initially ahead of the front, and recalling ξ = x− ct, so H(ct− x+∆ct) = H(−ξ +∆ct), we have

K
dν

dt
=

∫
R
v(ξ)Iu(ξ + εν)dξ =

∫ ∞

0

H(−(ξ + εν −∆ct))e
−ξ/cdξ = c

(
1− e(εν−∆ct)/c

)

Applying the change of variables y(t) = εν(t) −∆ct, we can define y(t) < 0 as the time-dependent lag of the front

behind the stimulus, and we find

K
y′ +∆c

ε
= c ·

(
1− ey/c

)
,

dy

dt
= −∆c +

εc

K
·
(
1− ey/c

)
(24)

Since this is now an autonomous differential equation and assuming the stimulus is ahead of the front (y < 0), we can

derive a corresponding fixed point y∞ < 0 under the condition ∆c <
εc
K . The equilibrium is specified by the equation

∆c =
εc

K

(
1− ey∞/c

)
⇒ y∞ = c log

(
1− ∆cK

εc

)
. (25)

When ∆c ≥ εc
K , the solution defined in Eq. (25) does not exist, and the stimulus speed (c + ∆c) is too fast for the

wave to entrain. Eq. (24) can also be solved directly, yielding

y(t) = c log
εc−∆cK

εc+
(
(εc−∆cK)e−y0/c − εc

)
· exp

[
− εc−∆cK

cK · t
] ,
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where y(0) = y0. In the limit as t→ ∞, we find y(t) → y∞ as expected.

5.2 Localized Stimulation of Fronts and Pulses

Our theory describes visual object inputs as localized in space, which can for instance be associated with square

waves with some finite width ∆x and speed displacement ∆c beyond the natural wavespeed. Specifically, we define

our stimulus by

εIu(ξ, t) = ε [H (−(ξ −∆ct))−H (−(ξ +∆x −∆ct))] . (26)

Taking ∆x → ∞, we can recover the traveling front stimulus as in the previous section.

Consider the effect the input has upon the front at different displacements. When the front of the stimulus is ahead

of the front’s leading edge, but the active region of Eq. (26) still contains the front (∆ct ∈ [0,∆x]), only the part of

the stimulus ahead of the front will be filtered by the adjoint nullspace, the same as before. Thus, only the portion

of the stimulus ahead of or containing the leading edge of the front has any effect on the location of the leading edge

of the pulse. Either a fixed point is reached, or the lag becomes larger than the width of the square stimulus and the

impact of the stimulus on the front weakens further. We expect the front will then lose the opportunity to entrain

to the stimulus at this point, implying entrainment generally must occur before the entire stimulus slips ahead of

the leading edge. When solving for the corresponding fixed point of Eq. (24), this generates the stricter entrainment

condition

∆c < ε
c

K
(1− e−∆x/c). (27)

Stability of the fixed point described by Eq. (25) can be determined in the same way as before showing it is stable.

Boundaries on entrainment for traveling pulses are determined similarly, except that the activity nullspace term

has the form v(ξ) = H(ξ)e−ξ/c+A−∆H(ξ+∆)e−(ξ+∆)/c. However, the slow timescale τq ≫ 1 of the synaptic efficacy

results in |A−∆| ≪ 1 across a wide range of parameters. This again gives us an entrainment threshold described by

Eq. (27) and a corresponding lag described by Eq. (25), where the pulse speed c and factor K are now determined

by the roots of Eq. (7) and the appropriate inner product, respectively. As expected, in simulations, a stimulus with

speed close enough to the natural speed of the pulse will entrain it (Fig. 5A), but if the stimulus speed is too far from

the natural speed of the pulse, the pulse slips behind the stimulus indefinitely (Fig. 5B). For weak stimuli, we find

that the theory developed here accurately predicts the boundary between entrainment failure and success accurately

for corresponding simulations (Fig. 5C).

5.3 Pulse Entrainment to Apparent Motion

Apparent motion is modeled here by flashing stimuli whose positions move between but not during flashes (i.e., on

periods of the stimulus). In this case, the driven solution does not converge to a proper traveling wave, but a solution
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Fig. 5: Entrainment of traveling pulses to propagating square pulses. (A) Spatiotemporal location of the
leading edge of a traveling pulse (solid blue) perturbed by a moving square input (magenta) is ahead of that of
the unperturbed pulse (dashed blue). Stimulus has magnitude ε = 0.1 and speed c+∆c = 3.3 (compare to natural
wavespeed c ≈ 1.051). Pulse remains entrained indefinitely. (B) When stimulus speed c+∆c = 3.5 is too large, the
stimulus eventually slips off the pulse, which relaxes to its original speed. C. Numerical simulations reveal a (white)
region of failed entrainment when the stimulus speed is too large for a given magnitude ε. Otherwise the colored
region indicates the lag y∞ of entrained pulses whose stimulus speeds are not too large. Our first order approximation
of the entrainment boundary (Eq. (27), black line) matches well. Neural field model parameters are θ = 0.2, γ = 1/6,
τq = 20 and stimulus width ∆x = 10.

that is periodic under a fixed spatial shift given by the movement of the flashing stimuli. Dividing the time domain

into segments of length T , the period of the forcing stimulus, we define the length of the on phase of length Ton < T ,

during which there is a square pulse input, and off phase of length Toff = T − Ton, during which there is no input.

The stimulus is advanced by (c+∆c)T between on phases, and we thus call ∆c the speed offset of the input. Such

a stimulus can be expressed using indicator functions by

εIu(x, t) = εI(x∗−∆x,x∗)

(
x−

⌊
t

T

⌋
(c+∆c)T

)
· I(0,Ton)

(
t−

⌊
t

T

⌋
T

)
,

where we have defined the indicator function IA(x) of a subdomain A with argument x as

IA(x) =


1, if x ∈ A,

0, else.

Changing variables (x, t) to (ξ, t) and using our simplifying approximation A−∆ ≈ 0 and substituting into Eq. (13)

and making the change of variables y = εν+ ct, we can approximate the movement of the leading edge y of the front

when it is inside the stimulus,

dy

dt
= c+

εc

K

(
1− e−∆x/cey/c

)
,
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which can be solved assuming y(0) = y0 is the location of the wave front at time t = 0, to find

y(t) = −c log
[

ε

K + ε
e−∆x/c +

(
e−y0/c − ε

K + ε
e−∆x/c

)
e−(K+ε)t/K

]
≡ F (t; y0),

so the function F (t; y0) describes how the input maps y forward from y0 after a time t. During the off phase, y will

simply advance according to the natural wavespeed, so the approximate solution in the first period T is

y(t) =


F (t, y0), 0 ≤ t ≤ Ton

F (Ton, y0) + (t− Ton)c, Ton ≤ t ≤ T.

(28)

Subtracting off (c + ∆c)T , we can determine where the wave front y will be at time t = T relative to the newly

flashed stimulus

y1 = F (Ton, y0)− cTon −∆cT.

Thus, we can inductively define a map describing how the next relative location of the wave front yn+1 depends on

the current location yn as

yn+1 = F (Ton, yn)− cTon −∆cT. (29)

We shall consider wave front entrainment to the periodic, moving, and flashing stimulus possible when the map

Eq. (29) has a stable fixed point described by the condition

y∗ = F (Ton, y
∗)− cTon −∆cT,

which can be solved to find

y∗ = ∆x − c log

[
ε

K + ε
· eTon − e−εTon/K

e−∆cT/c − e−εTon/K

]
. (30)

The denominator of the argument in the logarithm above is positive, and the solution is defined if ∆c < εTon

T
c
K .

Linearizing the map Eq. (29) and plugging in the solution Eq. (30), we find its stability is determined by the single

eigenvalue λ = exp
[
∆cT
c − εTon

K

]
, so λ ∈ (0, 1) if ∆c < εTon

T
c
K , which implies that the fixed point defining periodic

entrainment is stable whenever it exists.
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Fig. 6: Wave entrainment to apparently moving stimuli. (A) The leading edge (blue line) of a traveling pulse
becomes entrained to an intermittent, moving, and flashing stimulus (magenta indicates regions where stimulus is
non-zero). The difference between the baseline wavespeed (c ≈ 1.051) and the effective speed of the forcing stimulus
is ∆c = 0.5; its magnitude is ε = 0.2; its width and starting position are ∆x = 1 and x∗ = 0; on and off phases are
Ton = Toff = 0.5 for a total stimulus period of T = 1. (B) Weakening the stimulus magnitude to ε = 0.12, the traveling
pulse fails to entrain, and slips ever further behind the stimulus. C. Asymptotic approximation to the entrainment
boundary (dashed line) ∆c = εTon

T
c
K is well matched to results of numerical simulations (solid) separating the domain

of entrainment (lower right) from entrainment failure (upper left). Increasing the ratio Ton/Toff enlarges the domain
of entrainment. Blue: Ton/Toff = 0.1/0.5 = 0.2; Green: Ton/Toff = 0.5/0.5 = 1; Black: Ton/Toff = 0.5/0.1 = 5.
Stimulus width is ∆x = 10; all other model parameters are same. Throughout, neural field model parameters are
θ = 0.2, γ = 1/6, and τq = 20.0.

Our theory is consistent with the result of numerical simulations of the response of traveling waves to periodic,

moving, and flashing stimuli. Flashing stimuli that are sufficiently strong and that travel at a speed that is not too

much faster than the natural wavespeed will entrain the traveling wave (Fig. 6A). Tracking the leading edges of these

flash-forced traveling pulses reveals that the stimulus speeds up the wave while it is on, and the pulse speed relaxes

to its natural value between flashes. Over time, the average speed of the forced solution matches that of the average

speed c+∆c of the forcing stimulus. On the other hand, if (a) the distance traveled with each hop between flashes is

too large or (b) the stimulus is too weak or short, then the pulse will not be sped up enough during the on phase of

the period. As a result, the pulse will eventually lag further and further behind the forcing stimulus as time goes on

(Fig. 6B). The combined necessity of having a forcing stimulus whose speed difference is not too large (∆c), whose

magnitude is not too weak (ε), or whose on phase is not too short (Ton) is all contained in the entrainment boundary

inequality ∆c < εTon

T
c
K . Indeed, we see that this boundary well approximates the boundary we can determine from

numerical simulations (Fig. 6C).

Thus we find that the entrainment of neural activity waves in a model of sensory cortex can be described by

a relatively accessible theory. Akin to results from past work on phase response theory, we find that stimuli whose

speed is close enough to the natural speed can indeed entrain waves. This applied not only to persistent traveling
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stimuli but also flashing stimuli, suggesting a neuromechanistic theory for the generation of apparent motion illusions

in visual cortex.

6 Discussion

In this paper, we have developed and analyzed a neuronal network model describing the stimulus-response relation-

ships of traveling activity waves to moving inputs. Our model incorporates negative feedback in the form of short-term

synaptic depression, which attenuates activity at the back of the waves, generating traveling pulses when it is strong

enough. The nonlinear model of synaptic depression can be derived directly from spiking models (Tsodyks et al,

1998), and is more physiologically motivated than heuristic linear negative feedback models (Pinto and Ermentrout,

2001). In the absence of inputs, we can explicitly derive conditions for the emergence of traveling fronts and pulses,

along with their speed and width. Building on past work (Kilpatrick and Bressloff, 2010b), we have identified condi-

tions for the coexistence of stable progressing and receding fronts. Using asymptotic theory, we have derived a general

formula describing how traveling fronts and pulses respond to generalized external input. Our formula can consider

inputs either to the neural activity or synaptic efficacy variables. This framework was then used to perturbatively

quantify the effect of different moving stimuli on the phase of traveling waves. The nonlinear differential equation

accounts for how past perturbations have shifted the wave when considering the effect of future inputs.

Weak external stimuli shift the position of traveling waves relative to their natural position, which changes linearly

in time as they propagate. Extending prior work (Kilpatrick and Ermentrout, 2012), we have demonstrated how the

impact of inputs both on the leading and trailing edge of a traveling pulse impacts the wave phase, though in general

the effect of the trailing edge is weak compared to the leading edge due to the exponential dependence on distance.

The key predictions we have made using this theory focus on entrainment phenomena, whether a traveling wave

will lock to an external moving stimulus traveling at a different speed. The natural speed of the wave in addition to

the strength and relative speed of the input, rather than the width of the stimulus, are most important for making

these predictions when inputs are persistent. Indeed propagating neural activity patterns in medial temporal (MT)

cortex have been shown to encode object motion direction and speed, suggesting these waves play an important role

in neural information processing (Townsend et al, 2017). However, given that neural activity waves can propagate

spontaneously or can persist after an initial stimulus has been removed (Xu et al, 2007), such persistent activity

could represent illusory sensory stimuli in the absence of inputs. Our theory demonstrates that propagating waves

can be perturbed to match their speed to intermittent stimuli that jump locations between flashes, providing a

simple quantitative measure to determine whether such entrainment is expected based on the strength and temporal

properties of the input.

Our reduced equations describe the movement of a traveling wave’s leading edge relative to the location of a

stimulus, allowing us to identify both the fixed points and the transient dynamics of the edge in the coordinate frame

of the moving input. For persistent and moving inputs, this corresponds to a solution to a nonlinear differential
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equation, which we can obtain explicitly. For intermittent flashing stimuli, we frame the entrainment problem as a

fixed point analysis of a map, describing the updated location of the edge after each temporal period of the stimulus.

Intermittent stimuli must be stronger than corresponding persistent stimuli to entrain wave motion, consistent with

observations that real motion is encoded more readily than apparent motion (Merchant et al, 2003). Our asymptotic

techniques allow us to derive a simple formula for the entrainment boundary, which intuitively quantifies the increasing

relative speeds that can be entrained as the on phase of the flash grows longer.

The response of traveling waves to external stimuli has been measured in vivo and in vitro (Wu et al, 2008a),

demonstrating inputs speed up (Richardson et al, 2005), displace or annihilate (Wu, 2012), or even switch the direc-

tion (Pang et al, 2020) of waves. These response properties reflect a highly dynamic and spatiotemporal form of

input processing in sensory cortices (Ermentrout and Kleinfeld, 2001; Muller et al, 2018). Disentangling the role of

synaptic network architecture in spatiotemporal processing thus requires the analysis of dynamic and mechanistic

neural network models that capture cortical complexity while still being amenable to reductions that identify key

system input-output relationships. Our analysis has developed a powerful and reduced understanding of how a spa-

tially structured network can encode apparent motion, a phenomenon originally reported in non-invasive behavioral

experiments (Anstis, 1980; Ramachandran and Anstis, 1986) and more recently shown to correspond to elevations

of activity in visual cortex in corresponding regions of perceived motion (Muckli et al, 2005; Blom et al, 2020). Acti-

vation of visual stimulus-encoding neurons in the absence of a stimulus may suggest the anticipation a temporarily

occluded and moving object’s reappearance as in the phenomenon of visual preplay (Ekman et al, 2017; Aitken

et al, 2020). Our results could guide future behavioral and neurophysiological experiments linking psychophysical

thresholds for apparent motion to the coordination of visual cortical activity and external inputs.

A number of modeling assumptions could be relaxed, only with cost to explicit tractability of the model, but

without sacrificing the core mechanisms of the model. Waves, their linearizations, and eigenfunctions can all be

calculated using alternative numerical methods such as shooting (Ermentrout et al, 2010) or Fourier methods in

approximating partial differential equation models (Coombes et al, 2007) in order to carry out a similar analysis for

smooth firing rate functions, more sophisticated weight functions, or compact domains. Distinct excitatory/inhibitory

populations could be considered or additionally short term facilitation to more fully capture the diversity of static

and dynamic models of synaptic transmission and understand how these contribute to the filtering properties of

traveling waves. Similar analyses could also be applied to planar neural field models, building on past work which has

developed perturbative theory based on a spectral analysis of linearized problems to understanding how the closed

boundary of a stationary or moving bump responds to external inputs (Coombes et al, 2012).

Code Availability

All software for carrying out model simulations and for generating figures can be found at the following code

repository: https://github.com/shawsa/neural-field-synaptic-depression
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