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Abstract: The rapid and reliable detection of chemical and biological agents in the field is important for
many applications such as national security, environmental monitoring, infectious diseases screening,
and so on. Current commercially available devices may suffer from low field deployability, specificity,
and reproducibility, as well as a high false alarm rate. This paper reports the development of a portable
lab-on-a-chip device that could address these issues. The device integrates a polymer multiplexed
microchip system, a contactless conductivity detector, a data acquisition and signal processing system,
and a graphic/user interface. The samples are pre-treated by an on-chip capillary electrophoresis
system. The separated analytes are detected by conductivity-based microsensors. Extensive studies
are carried out to achieve satisfactory reproducibility of the microchip system. Chemical warfare
agents soman (GD), sarin (GB), O-ethyl S-[2-diisoproylaminoethyl] methylphsophonothioate (VX),
and their degradation products have been tested on the device. It was demonstrated that the device
can fingerprint the tested chemical warfare agents. In addition, the detection of ricin and metal ions
in water samples was demonstrated. Such a device could be used for the rapid and sensitive on-site
detection of both chemical and biological agents in the future.

Keywords: lab on a chip; chemical warfare agent; conductivity sensor; microchip capillary electrophoresis

1. Introduction

Lab-on-a-chip (LOC) devices have the potential to revolutionize modern medicine, environmental
monitoring, and a range of industrial applications due to their advantages such as portability, rapid
analysis, automation, and reduced usage of sample and reagents [1–5]. The research in the field has
exploded over the last 20 years, resulting in numerous applications in medicine [6–8], food security [9],
and environmental monitoring [10–12]. Chemical and biological warfare agents have been the subject
of significant scientific research over the last 20 years due to the increased threat of terrorism and
usage in war zones. Many detection techniques have been developed to identify chemical warfare
agents (CWA) such as G-type and V-type nerve agents. Alkylphosphonic acids, the nerve agents’
hydrolysis degradation products, are specific to their parent nerve agents, and can also be used for such
identifications in environmental samples [13]. The developed detection techniques include infrared
spectroscopy, ion mobility spectroscopy, capillary electrophoresis (CE), GC-MS, and LC-MS [14,15].

CE has emerged as a suitable analytical method for the identification of nerve agents [16–18]. This
technique has been extensively studied for applications in chemical and biological analysis [19–26].
The prevailing CE-based detection techniques for CWAs are UV [27–29] and conductivity detection.
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Of all the aforementioned techniques, the microfluidics-based LOC concept is the most attractive for
identification of chemical and biological warfare agents in the field due to its inherent potential for
the integration of filtration, preconcentration, separation, and detection on one platform [16,30–36].
Microchip capillary electrophoresis (MCE) was the electrophoretic sample separation method adopted
for LOC devices, and the capacitively coupled contactless conductivity detection (C4D) was the
detection method of choice. With small injection volumes, short separation channels, and a high
electric field across them, MCE is designed to result in analysis times of several seconds. In addition, it
enables low sample and reagents consumption and higher integration into portable devices. C4D is
based on two electrodes arranged along a conduit containing an electrolytes-based sample solution.
The electrodes form capacitance in an electric double layer of the microchannel that allows the passage
of alternating currents. C4D is an attractive proposition due to its low power requirements and low
cost of miniaturization and integration. C4D was initially introduced by coupling with CE [37–39], and
later with MCE [30–32,36,40–42].

A useful and commercially attractive analytical instrument for a quick and accurate detection
of chemical warfare agents (CWA) in environmental samples has to satisfy several criteria such as
portability, sample processing, sensitivity, selectivity, reproducibility, analysis time, low false alarms,
power requirements, ongoing cost, simplicity of use, and safety of operation [43,44]. The main challenge
for currently commercially available portable instruments for the detection of CBW agents is to increase
the reproducibility, sensitivity, and specificity; and to reduce the frequency of false alarms operation.
Hauser at al. was the first to develop a prototype device based on the concept of a portable CE [24].
Kuban et al. developed a portable CE-C4D instrument for an in situ analysis of sarin (GB), soman (GD),
and VX in environmental samples [43]. Internal standards were used to improve the reproducibility of
analytical results. Including sample preparation, results were generated in 10 minutes. However, the
instrument was not tested for false alarms, and no information was available about the user interface,
power consumption, and ongoing costs. In addition, it did not have multiplexing capability. Saiz
et al. developed a portable CE-C4D instrument for the determination of nitrogen mustard (HN) in
water samples [45]. The problem of reproducibility was addressed by optimizing different capillary
coating procedures. The limit of detection was down to 5 µM. A CE-C4D-based mobile platform for air
sampling has been developed by da Costa et al. [46]. The system could not be tested on real HN, but
it has demonstrated its potential for the remote sensing of organic acids in air samples [46]. Ansari
et al. developed a modular, MCE-C4D-based and battery-powered instrument with improved dual
top-bottomC4D [47]. The instrument was tested on inorganic cations, anions, and urine and blood
samples with the limit of detection of 5 µM. The instrument has a potential to be used for determination
of chemical and biological agents.

The aim of this study is to develop an integrated LOC system for CWA detection in the field.
To the best of our knowledge, this paper presents the first portable, multiplex, MCE-C4D device for
the on-field detection of CWA agents and addresses several critical issues hindering the commercial
acceptance of LOC technology. These include the batch-to-batch reproducibility of the microchip
separation, an accuracy of detection in environmental samples with interference substances, cost and
speed per analysis, lack of testing data from real warfare agent samples, and its associated device
design considerations.

2. Methodology

The methodology of the current device is to detect the presence of chemical warfare agents
together with their degradation products. In realistic scenarios, chemical agents and their degradation
products may co-exist, thus providing a unique signature of detection that minimizes the false alarm
rate. For the chemical warfare agents soman (GB), sarin (GD), and VX, the hydrolysis products
are pinacolyl methylphosphonic acid (PMPA), isopropyl-methylphosphonic acid (IMPA), and ethyl
methylphosphonic acid (EMPA), respectively. These products will be further degraded slowly over time
to methylphosphonic acid (MPA) [48]. We use a MCE-based molecule separation as a pre-treatment
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step to the sample and use a C4D sensor to detect the presence and concentration of these chemical
substances. The aim is to provide a unique signature of detection in environmental samples and to
reduce the rate of the false alarms.

3. Experimental Details

3.1. Chemicals

All chemicals employed in this study were of analytical grade, and ultra-pure water (Milli-Q
systems, 18.2 MΩ × cm (mega-ohms) at 25 ◦C) were used throughout. Methylphosphonic acid
(MPA) and its sodium salts: ethyl methylphosphonic acid (EMPA) and pinacolyl methylphosphonic
acid (PMPA) were purchased from Sigma Aldrich, while isopropyl methylphosphonic acid (IMPA)
was obtained from Cerilliant Corporation (Austin, TX, USA). The background electrolyte (BGE)
(10 mM MES/His, pH = 5.9) for microchip electrophoresis measurements was prepared daily
from stock solutions of 2-(N-morpholino) ethanesulfonic acid (MES), DL-histidine (His), and
3-morpholino-2-hydroxypropane sulfonic acid (MOPSO), which were obtained from Sigma Aldrich.
The environmental samples were collected from the Yarra River (Melbourne, Australia). Standards of
GB, GD, VX, and ricin samples were supplied and handled by the staff of the Defence Science and
Technology (DST, Melbourne, Australia). All measurement tests involving the real chemical warfare
agents were conducted at DST laboratories.

3.2. Microchip Fabrication

A high-resolution transparency mask (2400–20000 dpi) was used in the transfer of the four-channel,
simple T-cross and polycarbonate-based, microfluidics chip (70 µm × 70 µm, channel’s cross-section)
pattern onto a dry laminar resist (Shipley 5038, Shioley, Marlborough,m MA, USA) by UV lithography
(Collimated UV exposure system, ABM-USA Inc, San Jose, CA, USA) (Figure 1c). The four-channel design
was adopted to enable multiplexing and simultaneous detection to achieve a high throughput of detection.
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A sputter deposition of a thin film of nickel (100 nm) and electroplating of 200 µm of nickel (Ni
sulfamate bath, 45 ◦C, 20 mA/cm2) followed in the process of the nickel shim fabrication. The nickel
shim, whose design is equivalent to the design of the four-channel microchip depicted in Figure 1c,
was used in the process of injection molding for fast microfluidics chips prototyping (Battenfeld BA800
CDC, Battenfeld, Awans, Belgium). The 2-mm diameter liquid reservoirs (Figure 1c) were drilled and
150 µm of PET (poly(ethylene terephthalate)) film was used to thermally seal the microfluidics chips.

3.3. C4D Sensor Fabrication

A four-C4D, planar sensor array pattern, was deposited on the microchip PET capping layer
using a stencil mask, metal evaporation, and the deposition from a resistive boat. The deposition of Cr
(15 nm) and Ag (150 nm) was performed at 5 × 10−5 Torr. The C4D detection cell geometry adopted
in this work has been described in detail previously [49–51]. The PET film was an insulating layer
between the deposited C4D electrodes and the liquid inside the channels and allowed for the capacitive
coupling between the two.

3.4. Microchip Electrophoresis

All microchip electrophoresis tests were carried out starting with the same preconditioning
protocol. The protocol consisted of flushing the microfluidics channels with 1 M NaOH solution
for 10 min, followed by rinsing with Millipore water for 10 min and finally conditioning with the
BGE solution for 10 min. The strict application of this protocol was critical for obtaining the desired
reproducibility of analytical results. The other critical point was a precise dispensing of the same
amount of liquid in the liquid reservoir to avoid the effects of induced pressure-driven flow. The sample
injection was accomplished by applying an electric field across the sample injection channel, while the
separation was accomplished by applying an electric field across the separation channel.

4. Device Development

4.1. Development of Portable Multiplex Microfluidics Device

A prototype, portable, multiplex microchip instrument for the on-field detection of the chemical
warfare agents with dimensions of 200 × 100 × 50 mm (length × width × height) that is powered by a
12 V DC power adapter is presented in Figure 1a. The grounded instrument main body is housing three
main components: a microfluidics module coupled to a C4D detection circuit board, a high-voltage
(HV) power supply module, and a tablet PC with a touch screen for the data analysis and display.

4.2. Microfluidics and High Voltage Power Supply Module

The HV power supply module consists of four small EMCO C-series high voltage modules (XP
Power, Sunnyvale, CA, USA) and switching relays interfaced to the microfluidics module via 16 HV
cables (four per each microfluidic channel). These HV power supply units were selected because of
their high filtered output, a reduced noise on the high voltage rails, and because an embedded controller
can easily control them. The maximum output voltage was 5 kV. Each power supply uses an ATmega
8-16 microcontroller (Microchip Tech. Inc., Chandler, Arizona, USA) to program the electrophoresis
procedures electric field requirements and the time needed for the test runs. In addition, the controllers
were monitoring the DC current in both injection and separation microchannels. The four high voltage
circuits are coordinated over an I2C communications bus by one master controller, which handles
all the data interfacing with the main touch-panel display unit. A rapid prototyping technique was
adopted for the fabrication of the main microfluidics housing body and the HV connection plate. A set
of 16 sprung connectors, mounted at 30◦ from vertical on the HV connection plate, and wired to the
HV cables was used to make the high-voltage contact with the copper discs on the lid of the cartridge.
A signal conditioning circuit was secured on the rear of the main housing body, and interfaced to a
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data acquisition board (USB-6210, 10v max, National Instrument, Austin, Texas, USA) for analog to
digital processing. It provided a signal DC offset, amplification, and active rectification.

To increase the signal and reduce the noise, the four dual operational amplifiers (OPA21132) with
a high bandwidth and low offset voltage are mounted on a circuit board close to the C4D sensor array
on the chip. The board had an extra ground plane to provide the shielding from the AC excitation
signal (XR2206, 14 VPP 100–380 kHz), and it was connected to the sensor array by means of fine wires
and conducting epoxy, which provided a very good physical and electrical connection. The main
purpose of the chip cartridge (Figure 1b) is to avoid the contamination of the instrument. Together with
the polycarbonate, the microchip is designed as a single use, disposable unit. In addition, it holds the
copper discs for interfacing with the HV cables. The platinum electrodes (500 µm) were incorporated
to the copper discs on the hinged lid to coincide with the microchip liquid reservoirs. When the chip
and the chip cartridge are inserted into the main housing body, the buffered sensor signal is passed to
a signal conditioning circuit at the rear of the housing for rectification, processed by a data acquisition
card, and sent to the PC on board for further processing and displaying.

4.3. Display Module and Graphic User Interface (GUI)

The data analysis and display module embodies an industrial panel PC (PPC-L62T, Advantech,
Milpitas, CA, USA). The two primary applications are intended for the PC. The first application is
for the laboratory testing purposes as a mean for developing libraries for CWAs of interest and their
relative interferents. This application allows the expert user a high-level control over the device and
the real-time data viewing. The setup page of the user interface allows the definition of electrophoretic
operational conditions for each of four channels on a microfluidics chip. The second application is
for on-field use and provides a high level of abstraction for an easy on-field operation. Accordingly,
it features a single large push button, which covers the upper half of the display for the start/stop
operation while wearing heavy protective gear and thick gloves. The PC interfaces to the data
acquisition board via a USB link and to the device electronics via an RS232 serial link. Commands sent
via the RS232 are received by a master microcontroller, which uses a two-wire serial interface (TWI) to
control multiple slave microcontrollers. In turns, each slave controls a single channel pairing on the
microfluidics chip by providing a pulse-width modulation (PWM) to control high-voltage modules,
switching relays, and sampling current sensor readings.

5. Results

5.1. Designing Background Electrolyte for MCE-C4D

To maximize the sensitivity of the conductivity detection, a higher mobility of the BGE counter-ion
and a higher difference between the mobilities of a BGE co-ion and an analyte ion are desired. At the same
time, this difference should be minimal to satisfy the basic criteria of the capillary electrophoresis, as this
difference usually leads to a peak shape deformation (fronting or tailing) [39]. Hence, designing a BGE
composition for MCE-C4D is not a trivial task, and it is usually performed experimentally. Following
the Plackett–Burman experimental design method, and by testing several co-ions (MES, MOPSO),
counter-ions (His, Arg, Tris), electroosmotic flow modifiers (TTAB (tetradecyltrimethylammonium
bromide), CTAB (cetyltrimethylammonium bromide)), the BGE selected for the detection of warfare
agent degradation products in this study was 10 mM MES/His and 10 µM CTAB (pH = 5.9,
σ = 256 µS/cm). The same BGE composition was used previously for the detection of CWA degradation
products by capillary electrophoresis [27,52]. The CTAB, a cationic surfactant, was used as an
electromosis flow (EOF) reverser for the detection of anions. A large system peak originated from
bromide and as previously reported [52], was not observed. This was probably due to the low
concentration of CTAB, which was sufficient to reverse the EOF on the polycarbonate microchannel
surface. Pumera et.al [16] reported that polymethylmethacrylate (PMMA)-based microchips did not
require an EOF reverser due to the low EOF on their native surface. This study confined similar findings
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for PC surfaces, but adopted the use of CTAB and a glycerol additive to improve the reproducibility of
the analytical results. The significant advantage of the instrument presented here when compared to
CE-based portable devices is its multiplexing capability. The BGE composition requirements will be
different for different types and mixtures of environmental samples contaminated with CWA. This
instrument offers the possibility of screening the four different BGE combinations in one test run and
reducing the time on the field necessary to find the optimum separation conditions.

5.2. Reproducibility, Linearity and Limit of Detection

While performing routine test runs on the instrument presented here, irreproducible migration
times and the peaks’ shapes were observed. A number of different, interconnected factors were identified
as a likely cause; out of these, the Laplace pressure-induced volumetric flow rate, superimposing to the
EOF, was identified as the major contributor. Increasing the BGE viscosity was identified as one way of
reducing the effects of Laplace pressure on the reproducibility of data in MCE-C4D. The reproducibility,
linearity, and limit of detection (LOD) data for the determination of NA degradation products using a
modified, higher viscosity, BGE (10 mM MES/His, 10 µM CTAB 30% glycerol) are presented in Table 1.

Table 1. Reproducibility, linearity, and limit of detection data for the determination of NA
hydrolysis degradation products MPA, EMPA, IMPA, and PMPA. MPA: methylphosphonic
acid, EMPA: ethylmethylphosphonic acid, IMPA: isopropyl-methylphosphonic acid, PMPA:
pinacolylmethylphosphonic acid.

Analyte Median Relative
Migration Time (s)

Relative Migration
Time RSD % (n = 120)

Linearity
Correlation

Limit of Detection
(ppm)

MPA 1.77 0.5 0.9898 1.73

EMPA 1.93 1.1 0.9775 3.73

IMPA 2.12 0.9 0.9775 3.73

PMPA 2.26 2.6 0.9924 4.13

Ten four-channel, polycarbonate microchips were randomly selected from a batch of 50. Three
consecutive runs were performed on each microchip, resulting in 120 test runs in total. The sample
solution consisted of 50 µM of MPA, IMPA, EMPA, and PMPA; and 200 µM of NO−3 nitrate). Nitrate
was used as an internal standard to calculate the relative mobility of each analyte. By dividing the
analyte migration time with the nitrate migration time, a very good relative standard deviation (RSD,
%) was obtained ranging from 0.5% for MPA up to 1.1% for EMPA. Only PMPA showed a slightly
higher value of 2.6%. These results were comparable or higher from the same reported for a CE
portable instrument [18], and MCE-C4D [19]. The linearity of the C4D response was tested on different
concentration solutions ranging from 50 µM to 200 µM. For all four degradation products, the linearity
correlation coefficient was equal or higher than 0.98. The limits of detection, calculated as three times
the median noise level (3 mV), are 1.73 ppm, 3.73 ppm, 3.73 ppm, and 4.13 ppm for MPA, EMPA, IMPA,
and PMPA, respectively. PMPA was the worst performing in LOD and reproducibility tests, but had
the best linearity correlation coefficient. In environmental samples, CWA degradation products will
be mixed with other analytes, such as inorganic anions. Figure 2 depicts the separation of an anionic
mixture comprising of chloride, sulfate, nitrate, MPA, EMPA, IMPA, and PMPA. The relative migration
times were 1.76 s, 1.90 s, 2.04 s, and 2.32 s for MPA, EMPA, IMPA, and PMPA, respectively. Similar
work was carried out previously, where CWA degradation products were separated in the Rio Grande
water [16]. In comparison, that study reported the same separation time of 150 s for the degradation
products, but the separation of, NO−3 , and SO2−

4 was not achieved. That was probably due to a higher
degree of sample axial diffusion along the PMMA channel surface.
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Figure 2. An electropherogram of an anionic mixture (100 µM Cl−, SO2−
4 , and NO−3 , 50 ppm MPA,

EMPA, IMPA, PMPA). BGE was 10 mM MES/His, 10 µM CTAB, 30% glycerol. Sample injection:
10 s, 1 kV, sample separation: 200 s, 3 kV. BGE: background electrolyte, MES: 2-(N-morpholino)
ethanesulfonic acid.

5.3. Detection of GB and VX in Environmental Water Samples

For the detection of nerve agents, beside glycerol, agarose was tested as a possible “viscosity
additive” for MCE-C4D. A range of concentrations was investigated (0.5%–1%), and the concentration
of 0.5% was selected as the best performing. By adding 0.5% of agarose in 10 mM MES/His and 10 µM
CTAB, GB was reproducible, which was detected together with its degradation products (IMPA, MPA)
in less than 80 s (1.5% RSD) (Figure 3). The calibration curve for neat GB peak areas was linear, with an
excellent coefficient of variation R2 = 0.99 (Figure 3 inset). The LOD was experimentally established to
be approximately 500 ppb.
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Figure 3. Fingerprinting of sarin and linearity of detection. Sample (100 µM N03, 50 ppm GB, MPA,
IMPA, PMPA). BGE was 10 mM MES/His, 10 µM CTAB, 0.5% agarose. Sample injection: 20 s, 1 kV,
sample separation: 200 s, 3 kV. CTAB: cetyltrimethylammonium bromide. GB: sarin.

The current device has also demonstrated the ability to detect the presence of CWAs in spiked
water samples. Figure 4 shows the detection of GB in spiked tap water and VX in spiked Yarra River
(Melbourne, Victoria). All water samples were mixed with 100 mM MES/His (1:10) to maintain a
pH value of 5.9. The tap water was spiked with 100 ppm GB, and 50 ppm MPA and IMPA, and the
three tests were performed in parallel (Figure 4A). The BGE (Figure 4A(a)) and the raw tap water
sample (Figure 4A(b)) had no significant peaks, while in comparison, the spiked sample showed the
fingerprinting of GB in the tap water (Figure 4A(c)). In a separate test, the Yarra River water was spiked
with VX only (Figure 4B). VX could not be detected in anodic mode, but was detected in cathodic
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mode using a different BGE (10 mM MOPS (3-(N-morpholino)propanesulfonic acid) and 30 mM Arg
(pH = 7.5)). The presence of K and Na was also confirmed.
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To further demonstrate the validity of current detection results, an independent test using
GC-MS was also performed on the same sample containing GD and associated degradation products.
The results shown in Figure 5 indicates that both techniques could successfully fingerprint GD.
However, the current technique could obtain results within 30 s: this is much faster than the GC-MS
technique, which required 8–9 minutes.
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10 s, 1 kV, sample separation: 200 s, 3 kV. MOPSO: hydroxypropane sulfonic acid.

5.4. Detection of Multiple Chemical Warfare Agents (CWAs)

A simultaneous fingerprinting of GB and GD was depicted in Figure 6. A significantly smaller
peak could be observed for GD when compared with the same concentration of GB.
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GD and its degradation hydrolysis degradation products are detected in less than 30 s. Thirty
percent of methanol was used as an organic modifier in CE [53]. The addition of methanol in BGE
changes the ratio of hydrodynamic frication to dielectric friction (glycerol has a much lower dielectric
friction than water), and could modify the separation efficiency of anions in CE [53]. In comparison
with previous tests, the migration time of GB was the fastest (11.37 s) in the BGE of the lowest viscosity,
19.77 s in BGE with 30% of methanol, and slowest in the BGE with the addition of 0.5% of agarose.

5.5. Detection of Ricin

Ricin is a plant toxin that is present in the seeds of the castor bean plant Ricinus communis. It
is heterodimetric glycoprotein composed of two subunits, a toxic A subunit (RTA) and a galactose
specific lectin B subunit (RTB) via a disulfide bond [44]. Under reducing conditions, it consists of three
subunits, i.e., RTA1, RTA2, and RTB [54]. Figure 7a depicts the separation and the detection of these
characteristic peaks in less than 25 s. The independent test was performed by DST staff on the same
ricin sample using the PAGE gel electrophoresis method (Figure 7b). However, these characteristic
peaks could not be revolved, and only one combined peak could be observed (Figure 7b). In addition,
PAGE gel electrophoresis required a significantly longer preparation and detection time. To the best of
our knowledge, this is the first reporting of the detection of ricin by MCE-C4D.
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6. Conclusions

This paper reports the development of an integrated portable device that could be deployed in the
filed for the in situ detection of chemical warfare agents. The device integrates a polymer microchip
system, a contactless conductivity detector, a data acquisition and signal processing system, and a
graphic/user interface. The raw samples can be loaded onto the microchip cartridge by pipetting.
The samples are pre-treated by microchip capillary electrophoresis. The separated analytes are
detected by the conductivity-based micro sensors. Chemical warfare agents GB, GD, and VX and their
degradation products were tested on the device. The device has also demonstrated the ability to detect
ricin molecules and metal ions in water samples. Such devices can potentially be used for the rapid
and reliable on-site detection of both chemical and biological agents in the future.
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