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Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present 
in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the dis-
covery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile 
acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and 
have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid–related 
signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications 
of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
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Abbreviations
ANIT  Alpha-naphthylisothiocyanate
alpha-GalCer  Alpha-galactosylceramide
AP-1  Activator protein 1
ASBT  Apical sodium–dependent bile acid 

transporter
ASC  Apoptosis-associated speck-like pro-

tein containing a CARD
BSEP  Bile salt export pump
CA  Cholic acid
CAR   Constitutive androstane receptor
CDCA  Chenodeoxycholic acid
CCL2  C-C motif chemokine ligand 2
C/EBPβ  CCAAT/enhancer-binding protein β
CFTR  Cystic fibrosis transmembrane con-

ductance regulator

CFLD  Cystic fibrosis–related liver disease
Con A  Concanavalin A
CRE  CAMP response element
CREB  CAMP response element-binding 

protein
CYP3A11  Cytochrome P450 3A11
CYP450  Cytochrome P450 family 7 subfamily 

A member 1
CYP7A1  Cholesterol 7-a-hydroxylase
Cxcl2  X-X-C motif chemokine ligand 2
DAMPs  Damage-associated molecular 

patterns
DCA  Deoxycholic acid
DMET  Drug metabolizing enzymes and 

transporters
FGF19  Fibroblast growth factor 19
FGFR4  Fibroblast growth factor receptor 4
FIC1  Familial intrahepatic cholestasis 1
FXR  Farnesoid X receptor
HSC  Hepatic stellate cells
HDV  Hepatitis D virus
IκBα  Nuclear factor of kappa light polypep-

tide gene enhancer in B-cells inhibi-
tor, alpha

JAM-A  Junctional adhesion molecule A
KLB  Coreceptor β-klotho
LCA  Lithocholic acid
LIP  Liver-inhibitory protein
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lncRNA H19  Long non-coding RNA H19
LPS  Lipopolysaccharide
MCA  Muricholic acid
MDR2  Multidrug resistance protein 2
MDR3  Multidrug resistance protein 3
MDSCs  Myeloid-derived suppressor cells
MRP2  Multidrug resistance–associated pro-

tein 2
mTOR complex 1  Mammalian target of rapamycin com-

plex 1
NASH  Non-alcoholic steatohepatitis
NTCP  Na+-dependent taurocholate cotrans-

porting peptide
NFAT  Nuclear factor of activated T-cells
NF-κB  Nuclear factor kappa-light-chain-

enhancer of activated B cells
NLRP3  NOD-, LRR-, and pyrin domain–con-

taining protein 3
norUDCA  Nor-ursodeoxycholic acid
NR1H4  Nuclear receptor subfamily 1 group H 

member 4
OATP2  Organic anion–transporting polypep-

tide 2
OCA  Obeticholic acid
PAMPs  Pathogen-associated molecular 

patterns
PBC  Primary biliary cholangitis
PFIC1  Progressive familial intrahepatic chol-

estasis type 1
PFIC2  Progressive familial intrahepatic chol-

estasis type 2
PFIC3  Progressive familial intrahepatic chol-

estasis type 2
PSC  Primary sclerosing cholangitis
PXR  Pregnane X receptor
SHP  Small heterodimer partner
SOCS3  Suppressor of cytokine signaling 3
STAT3  Signal transducer and activator of 

transcription 3
SULT2A1  Sulfotransferase family 2A member 1
TCA   Tauro-cholic acid
TGR5  Takeda-G-protein-receptor-5
TLR9  Toll-like receptor 9
TUDCA  Tauro-ursodeoxycholic acid
UDCA  Ursodeoxycholic acid

In humans, the primary bile acids cholic acid (CA) and 
chenodeoxycholic acid (CDCA) are synthesized in the 
liver from cholesterol and secreted as bile components into 
the duodenum. In the small intestine, bile acids aid in the 
absorption of fat, cholesterol, and fat-soluble vitamins and 
orchestrate bile acid, lipid, and energy metabolism by acting 

as ligands for bile acid receptors. The intestinal microbiota 
transforms the primary bile acids CA and CDCA into the 
secondary bile acids deoxycholic acid (DCA) and litho-
cholic acid (LCA), respectively. In mice, CDCA can also be 
converted to muricholic acid (MCA), which renders mouse 
bile more hydrophilic than human bile [1]. A small amount 
(~ 5%) of bile acids are lost in feces, whereas the remainder 
is reabsorbed either actively in the ileum (conjugated bile 
acids via the apical sodium–dependent bile acid transporter, 
ASBT) or passively in the colon (deconjugated bile acids) 
[2].

Upon reabsorption in the ileum, bile acids bind to the 
nuclear receptor farnesoid X receptor (FXR), which reg-
ulates the expression of genes involved in the uptake and 
efflux of bile acids to prevent their accumulation, and which 
cross-signals with other nuclear receptors to regulate bile 
acid, xenobiotic, and nutrient metabolism. Importantly, bile 
acid binding to intestinal FXR induces the production of 
fibroblast growth factor 19 (FGF19), which travels to the 
liver via the portal circulation along with the reabsorbed 
bile acids to inhibit hepatic bile acid synthesis, effectively 
providing a negative feedback mechanism to maintain bile 
acid pool homeostasis. FXR expressed in the liver further 
regulates bile acid synthesis and nutrient signaling [3].

Bile acids returning from the portal circulation and bile 
acids in the systemic circulation are taken up by hepato-
cyte  Na+-dependent taurocholate cotransporting peptide 
(NTCP) and, together with the newly synthesized bile acids, 
are secreted into canaliculi via the bile salt export pump 
(BSEP), thereby completing their enterohepatic circulation 
[4] (Fig. 1).

Besides their well-studied roles in fat absorption and 
nutrient signaling, bile acids and their receptors contribute 
to the modulation of immunity. The interplay between bile 
acids and immunity is multifaceted and includes physico-
chemical interactions of bile acids with cells and immune-
related pathways dependent or independent from interaction 
with bile acid receptors as well as interactions between bile 
acids and the gut microbiota. The scope of this review is 
to provide an overview of the bile acid–related signaling 
pathways that affect inflammation in the liver, and to review 
the preclinical and clinical evidence of how modulators of 
these pathways and receptors perform in the treatment of 
cholestatic and autoimmune liver diseases.

Bile acid accumulation and inflammation 
in cholestasis

In cholestatic diseases, elevated levels of bile acids within 
the liver cause injury and inflammation, which can progress 
to fibrosis and cirrhosis. The exact mechanisms of liver 
injury consequent to bile acid accumulation have not been 
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fully clarified and are likely multifactorial and different in 
different types of cholestatic diseases. Bile acids are amphi-
pathic molecules with different degrees of hydrophobicity, 
with ursodeoxycholic acid (UDCA) being the most hydro-
philic and CA, CDCA, DCA, and LCA being progressively 
more hydrophobic [5].

Because of their hydrophobicity, based on early in vitro 
studies, it was proposed that bile acids could directly lyse 
hepatocyte cell membranes [6–8] or induce hepatocyte apop-
tosis [9]. However, these studies did not always recapitu-
late the cholestatic situation in vivo in terms of bile acid 

species and concentrations used to challenge hepatocytes. 
The mechanisms mediating bile acid–induced hepatocyte 
death are still debated [10] and different bile acid concentra-
tions at different stages of cholestasis likely lead to differ-
ent responses [11]. There is evidence supporting direct bile 
acid–mediated hepatocyte death, which is a pro-inflamma-
tory event that likely propagates inflammation to other liver 
cell types. Hepatocyte necroptosis was observed in hepato-
cytes from PBC patients and after bile duct ligation in mice 
[12]. Another study suggested that hepatocyte death occurs 
primarily in the acute phase of cholestasis, 1–3 days after 

Fig. 1  Bile acid homeostasis 
and bile acid–related treatments 
in cholestatic liver diseases. 
Bile acids are synthesized by 
hepatocytes in the liver from 
cholesterol and secreted into 
bile. After being  modified by 
the bile duct epithelium, the bile 
is secreted in the duodenum to 
accomplish digestive func-
tions. Under the action of the 
intestinal microbiota, primary 
bile acids are modified into 
secondary bile acids. Bile acids 
are in large part re-absorbed by 
ileal ASBT to be returned to the 
liver via the portal circulation. 
Upon intestinal reabsorption, 
bile acids activate FXR-FGF19 
that negatively regulates bile 
acids synthesis in the liver. The 
different steps of the enterohe-
patic circulation can potentially 
be targeted in cholestatic liver 
diseases to antagonize the 
effects of bile acids accumula-
tion. In the figure are reported 
selected drugs that are in 
experimental trial or approved 
for (1) interrupting the entero-
hepatic circulation, (2) reducing 
bile acids uptake, (3) reducing 
bile acids synthesis, (4) increas-
ing bile flow and decreasing 
bile acid hydrophobicity. ASBT: 
apical sodium–dependent bile 
acid transporter; BAs: bile 
acids; FXR: farnesoid X recep-
tor; FGF19: fibroblast growth 
factor 19; nor-UDCA: nor-
ursodeoxycholic acid; NTCP: 
 Na+-dependent taurocholate 
cotransporting peptide; UDCA: 
ursodeoxycholic acid
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bile duct ligation in mice. In this situation, the pathogenetic 
sequence sees rupture of the hepatocyte apical membrane, 
entry of bile, and death of single cells followed by the death 
of surrounding hepatocytes (bile infarcts). This response was 
not observed in chronic cholestasis, either after 3 days from 
bile duct ligation or in Mdr2−/− mice, which chronically lack 
phospholipid secretion in bile [13]. Recent research sug-
gests that increased bile acid levels in cholestatic conditions 
induce the secretion of cytokines by hepatocytes [14–17], 
which can recruit neutrophils to initiate the inflammatory 
response [16, 18] (Fig. 2). In these studies, bile acid–induced 
secretion of cytokines by hepatocytes was unrelated to cel-
lular toxicity, apoptosis, or necrosis [14, 15], required bile 
acid uptake by hepatocytes via the bile acid importer NTCP 
[16], and was mediated via the nuclear factor of activated 
T-cells (NFAT) and toll-like receptor 9 (TLR9) [16, 17]. 
Consistently, NTCP deficiency, which prevents bile acid 
uptake by hepatocytes, does neither cause a hepatic pheno-
type in humans [19], nor in mice [20]. Instead, deficiency of 
the bile salt export pump BSEP (causing progressive familial 
intrahepatic cholestasis type 2, PFIC2) and FIC1 (causing 
PFIC1), in which bile acids enter hepatocytes but cannot 

be efficiently secreted into bile, causes severe liver injury 
[10, 21]. Unlike in hepatocytes, bile acid–induced cytokine 
secretion was not observed in liver non-parenchymal cells 
using the same bile acid concentrations [16]. Hepatic stellate 
cells (HSC) do not express NTCP and do not take up bile 
acids. Whereas no bile acid–induced apoptosis was observed 
in HSC, bile acids induced HSC proliferation [22], which 
promotes fibrosis (Fig. 2).

Central to cholestatic diseases is cholangitis, suggesting 
either direct or indirect bile acid–related damage to chol-
angiocytes. Cholangiocytes lining bile ducts are routinely 
exposed to high concentrations of bile acids in bile without 
sustaining injury. This can likely be attributed to (1) bile 
acid micellization with cholesterol and phospholipids in 
bile; (2) the capability of cholangiocytes to secrete bicar-
bonate in the lumen [23] that, in the presence of glyco-
proteins and other mucus-like components, may form a 
glycocalyx on the cholangiocyte luminal side; evidence 
so far is limited to in vitro studies, but this bicarbonate 
shield (or umbrella) may protect against bile acid–induced 
injury [24]; (3) the expression of FXR and its target genes 
that may be orchestrated to prevent intracellular bile acid 

Fig. 2  Effects of bile acid 
accumulation in the liver. Bile 
acid accumulation in cholestatic 
conditions can activate different 
signaling pathways in different 
cell types of the liver. Dam-
aged hepatocytes can initiate 
an inflammatory response 
by secreting chemokines and 
DAMPs that activate other cells 
(i.e., cholangiocytes, HSCs, and 
inflammatory cells). High levels 
of bile acids can also directly 
disrupt tight junctions and basal 
membrane of bile ducts, leading 
to activation of cholangiocytes 
and perpetuation of the inflam-
matory/fibrotic response with 
proliferation and activation 
of HSCs. Persistent chronic 
inflammation and fibrosis can 
progress into cirrhosis. DAMPs: 
damage-associated molecular 
patterns; HSCs: hepatic stellate 
cells; lncRNA H19: long non-
coding RNA H19
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accumulation during cholestasis [25]. It was proposed 
that free biliary bile acids (i.e., not micellized) can dam-
age cholangiocyte membranes [26]. PFIC3, caused by 
deficiency of multidrug resistance protein 3 (MDR3), a 
transporter that facilitates phospholipids secretion in the 
canaliculus [21], is modelled by Mdr2−/− mice, which 
feature sclerosing cholangitis. In Mdr2−/− mice, however, 
cholangiocyte death is a late pathogenic event, suggest-
ing it may not be caused by bile acid cytotoxicity. This 
study suggested that bile acids damage cholangiocyte 
tight junctions and basement membranes first, leading 
to bile leakage in the periductal area, which initiates the 
inflammatory and fibrotic response (Fig. 2). Cholangio-
cyte death would occur after the insurgence of fibrosis, 
which may deprive cholangiocytes from their blood supply 
[27]. In bile duct–ligated mice, cholangiocyte prolifera-
tion and periportal fibrosis occur after hepatocyte death 
[12]. Interestingly, cholangiocytes are capable of secret-
ing inflammatory mediators to induce neutrophil activa-
tion in response to stimuli such as pathogen-associated 
molecular patterns (PAMPs) [28–33]. Whether induction 
of cytokine and chemokine expression occurs in cholan-
giocytes directly in response to bile acids in cholestatic 
conditions is still debated due to conflicting results [16, 
34]. A series of studies showed that TCA stimulated chol-
angiocyte proliferation [35] and that cholangiocyte expres-
sion of exosomal lncRNA H19 in response to cholestatic 
injury promoted HSC activation and proliferation [36], as 
well as macrophage activation [37] to increase cholestatic 
liver injury (Fig. 2). Cholangiocyte mitochondrial dam-
age was observed in isolated bile duct units in response 
to unconjugated, but not conjugated bile acids [38]. How-
ever, bile contains almost exclusively conjugated bile acids 
[39], and the authors did not observe cholangiocyte dam-
age when perfusing isolated rat livers with unconjugated 
bile acids [38]. Patients with rare mutations impairing bile 
acid conjugation show signs of biliary ductular reaction 
and cholangiopathy, although inconsistently [27].

In summary, there is evidence supporting direct cyto-
toxic effects of bile acids on hepatocytes, especially in the 
acute phase of cholestatic injury, whereas damage to chol-
angiocytes seems primarily directed at the tight junction 
and basement membrane. Hepatocyte death likely initiates 
an inflammatory response that affects other liver cell types, 
which in turn further amplify inflammation. Independently 
from cell death, there is evidence supporting a role for 
bile acids in the induction of pro-inflammatory responses 
in hepatocytes, as well as in the proliferation of cholan-
giocytes and HSC. Interestingly, different signaling path-
ways were described in different cell types, highlighting 
the multifactoriality of the response to bile acid overload 
that ultimately results in cholestatic liver injury (Fig. 2).

Bile acid receptors and inflammation 
in cholestatic and autoimmune liver diseases

Immune modulation by bile acid has long been hypoth-
esized. Early studies investigated whether elevated serum 
bile acids in cholestatic liver diseases could be responsible 
for infectious complications and endotoxemia by directly 
suppressing the immune response. Accordingly, numer-
ous in vitro studies were carried out to assess the effect of 
bile acids on immune cell function. Lymphocyte prolif-
eration, immunoglobulin production, and cytokine secre-
tion were suppressed by bile acids [40–44]. Decreased 
cytokine release by monocytes upon bile acid stimulation 
was reported by several [43, 45, 46], but not all [47] stud-
ies. The phagocytic function of the Kupffer cell was also 
reported to be decreased by bile acids [48, 49].

On the other hand, a recent study found that bile acids 
act as damage-associated molecular patterns (DAMPs) that 
can activate the NOD-, LRR- and pyrin domain–contain-
ing protein 3 (NLRP3) inflammasome in macrophages by 
promoting intracellular calcium influx. In this study, the 
promotion of inflammasome activation by bile acids was 
synergistic with LPS and, in vivo, cholestasis aggravated 
LPS-induced sepsis [50].

The mechanisms underlying the immune-modulating 
effects of bile acids were studied only recently, after it was 
discovered that most of the biological actions of bile acid 
are mediated through the modulation of bile acid recep-
tors. In the next sections, we review the role of bile acid 
receptors (FXR, TGR5, and PXR) in modulating inflam-
mation and the preclinical and clinical evidence assessing 
their utility in the treatment of liver diseases.

FXR

Farnesoid X receptor (FXR, NR1H4) is a nuclear receptor 
central to nutritional homeostasis. Its major endogenous 
ligands are bile acids, with CDCA > DCA > LCA > CA in 
order of FXR activation potency [51, 52]. The mouse bile 
acid muricholic acid (MCA), which is derived from CDCA 
by the enzyme Cyp2c70, is a FXR antagonist [53]. The 
use of Cyp2c70−/− mice with a human-like bile acid pool 
is thus recommended in preclinical studies testing FXR 
modulators [1]. Of note, being a nuclear receptor, FXR 
activation requires cellular entry of bile acids. In response 
to ligand activation, FXR regulates the fed state response 
by modulating the expression of genes involved in (a) bile 
acid homeostasis (to maintain the bile acid pool size by 
regulating the amount of newly synthesized bile acids), 
(b) glucose homeostasis (to reduce postprandial glyce-
mia by limiting hepatic glucose generation), and (c) lipid 
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metabolism (to reduce hepatic fatty acid generation, stor-
age, and release) [54]. A favorable effect of FXR agonism 
in liver diseases is thought to arise from the reduction of 
bile acid synthesis and accumulation and increase in bile 
acid and xenobiotic modification and secretion as well as 
decrease in hepatic lipogenesis [55]. Besides the well-
known role as nutritional homeostat, FXR is also involved 
in the inflammatory response, which is the focus of this 
section. As for tissue distribution, the highest mRNA 
expression of NR1H4 is found in the liver [56, 57]. Here, 
NR1H4 is mostly expressed by cholangiocytes and hepato-
cytes and, to a lower extent, by Ito cells, Kupffer cells, and 
T cells. Other cell types that highly express NR1H4 are 
enterocytes in the intestine and cells lining the collecting 
duct system in the kidney [56, 57]. Importantly, in the 
mouse and under physiological conditions, FXR seems 
to be basally active in the intestine, but not in the liver. 
However, in the liver, FXR becomes strongly activated 
under cholestatic conditions [58].

FXR and inflammation

As for other nuclear receptors involved in nutrient metabo-
lism [59], the expression and activation of FXR are repressed 
during inflammation [60–63]. Since FXR activation is gener-
ally anti-inflammatory, FXR repression during inflammation 
could allow for the inflammatory response to be amplified.

Several members of the nuclear receptor superfam-
ily, including FXR, repress pro-inflammatory genes 
by regulating the transcription factors that control the 
expression of these genes, mainly NF-κB and AP-1, in a 

process known as transrepression [64]. NF-κB is a fam-
ily of transcription factors that regulates the transcription 
of an array of pro-inflammatory genes [65]. FXR activa-
tion was shown to antagonize NF-κB activation in vitro in 
hepatocytes, macrophages, enterocytes, other cell types, 
and in vivo in liver tissue [63, 66–70]. NF-κB inhibition by 
FXR can also occur via small heterodimer partner (SHP) 
activation [67]. SHP, an atypical nuclear receptor and a 
FXR target gene, also prevents AP-1 binding to inflam-
matory genes [71] and downregulates the expression of 
the chemokine CCL2 [72]. Furthermore, in cholestasis, 
loss of SHP was linked to increased lncRNA H19 [73], 
which is pro-inflammatory. As another mechanism, in a 
study in hepatocytes, the inhibition of NF-κB signaling 
by the FXR agonist obeticholic acid (OCA) was dependent 
on the induction of cytochrome P450 epoxygenases, the 
enzymes responsible for the synthesis of anti-inflamma-
tory eicosanoids [70]. As discussed in the previous sec-
tion, hepatocytes responded to bile acids with induction 
of cytokines. These effects were observed in absence of 
NF-κB stimulation and were FXR-independent [14, 16]. 
Interestingly, post-translational modifications of FXR can 
affect the signaling pathways it modulates. FXR sumoyla-
tion is promoted by FXR agonism. SUMOylated FXR 
transrepresses NF-κB signaling without affecting classi-
cal FXR target genes such as SHP. On the contrary, FXR 
acetylation, which is constitutively active in obesity, pro-
motes hepatic inflammation by inhibiting FXR sumoyla-
tion [74]. An FXR modulator that represses inflammation 
via NF-κB without inducing other classical FXR target 
genes was developed, demonstrating that gene-selective 

Fig. 3  Effect of FXR activation on liver inflammation. Activation 
arrows are indicated in black and inhibition arrows in red. AP-1: 
activator protein 1; CA: cholic acid; CDCA: chenodeoxycholic acid; 
CYP450: cytochrome P450 family 7 subfamily A member 1; DCA: 
deoxycholic acid; FGF19: fibroblast growth factor 19; FXR: farnesoid 

X receptor; LCA: lithocholic acid; MDSCs: myeloid-derived sup-
pressor cells; NF-κB: nuclear factor kappa-light-chain-enhancer of 
activated B cells; NLRP3: NOD-, LRR- and pyrin domain–contain-
ing protein 3; SHP: small heterodimer partner; SOCS3: suppressor of 
cytokine signaling 3
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FXR modulation is possible [75]. FXR activation thus 
decreases inflammation by repressing NF-κB and AP-1 
via several mechanisms (Fig. 3).

In addition to repressing NF-κB signaling, FXR affects 
inflammasome activation. Inflammasomes are multiprotein 
complexes that control the inflammatory response and are 
assembled in response to PAMPs and DAMPs [65]. The 
FXR target gene SHP was shown to repress NLRP3 forma-
tion by inhibiting NLRP3 binding to ASC [76]. Additionally, 
it was observed that FXR could inhibit NLRP3 by directly 
interacting with NLRP3 and caspase 1 [50]. In mouse 
models of alcoholic liver disease, FXR agonism increased 
NLRP3 ubiquitination, which was associated with decreased 
steatosis and inflammation [77]. Thus, FXR negatively regu-
lates the NLRP3 inflammasome (Fig. 3).

Several studies utilizing mouse models of different liver 
diseases have assessed the effectiveness of FXR agonism 
at decreasing hepatic inflammation and shed light on addi-
tional anti-inflammatory mechanisms, in addition to negative 
regulation of NF-κB and NLRP3 (Fig. 3). In mouse models 
of LPS-induced liver injury, FXR agonism decreased LPS-
induced hepatic inflammation [78, 79]. Xu et al. [80] showed 
that the anti-inflammatory effects of FXR agonism in LPS-
induced liver injury were mediated by increased expression 
of suppressor of cytokine signaling 3 (SOCS3), which down-
regulates cytokine-STAT3 signaling. Of note, STAT3 signal-
ing is involved in tumorigenesis [81]. Accordingly, ageing 
Fxr−/− mice are prone to liver inflammation and spontane-
ous tumor development [82–85]. FXR is downregulated in 
hepatocellular carcinoma and cholangiocarcinoma [86, 87], 
whereas there is experimental evidence suggesting that FXR 
activation reduces the carcinogenic potential in both types 
of cancers (the reader is referred to recent, comprehensive 
reviews on this topic, [88, 89]). Fxr−/− mice are also more 
susceptible to autoimmune hepatitis induced by concanava-
lin A (Con A) and FXR agonism in wild-type mice atten-
uated liver damage. It was found that FXR in NKT cells 
activates SHP-mediated inhibition of osteopontin produc-
tion [90]. Again in models of immune-mediated liver injury, 
induced by alpha-galactosylceramide (alpha-GalCer) or Con 
A, FXR agonism reduced inflammation and simultaneously 
promoted the hepatic accumulation, function, and homing 
of immune-suppressive granulocytic myeloid–derived sup-
pressor cells (MDSCs) [91].

Preclinical studies

FXR agonism has been proposed as a therapeutic interven-
tion for cholestatic liver diseases because of its potential to 
prevent the accumulation of bile acids by regulating bile acid 
synthesis and transporters. During cholestasis, the expres-
sion of bile acid transporters is modulated to prevent the 
accumulation of bile acids in hepatocytes. This was evident 

in a mouse model of ANIT-induced cholestasis, where 
wild-type mice had a lower hepatic expression of the bile 
acid uptake transporter Ostβ and higher expression of the 
bile acid efflux transporter Bsep. Fxr−/− mice lacked this 
response, suggesting FXR-dependency, and were more sus-
ceptible to liver injury [92]. Conversely, in rats with bile 
duct ligation and ANIT-induced cholestasis, FXR ago-
nism decreased expression of bile acid synthesis genes and 
increased expression of genes related to canalicular bile acid 
transport such as Bsep, Mrp2, and Mdr2, which was associ-
ated with improved serum liver enzymes, markers of inflam-
mation, liver damage, and decreased bile duct proliferation 
[93]. However, evidence for a positive role of FXR agonism 
in animal models of cholestasis is conflicting. Bsep upregu-
lation by FXR agonism in a bile duct ligation model was also 
reported in another study; however, FXR agonism aggra-
vated liver injury. Here, Bsep upregulation was regarded as 
counter-productive, as it would further promote bile duct 
obstruction by facilitating bile acid efflux from the hepato-
cyte [94]. Furthermore, another study reported decreased 
liver injury in bile duct–ligated Fxr−/− mice [95].

Clinical studies

The FXR activators that have undergone or are undergo-
ing clinical trial are the steroidal FXR agonist obeticholic 
acid (OCA) and the non-steroidal FXR agonists cilofexor, 
tropifexor, and MET409.

So far, numerous clinical trials for OCA in PBC patients 
with insufficient response to UDCA [96–102] have shown 
improvements in liver enzymes. Consequently, OCA is rec-
ommended as a second-line treatment in addition to UDCA 
for PBC patients with insufficient response to UDCA, and as 
a first-line treatment for patients who are intolerant to UDCA 
[103]. A large international placebo-controlled phase 4 trial 
is ongoing to further assess the effectiveness of OCA in PBC 
(NCT02308111), as well as a phase 3 study assessing OCA 
plus bezafibrate in PBC (NCT04594694). Mechanistically, 
OCA increased the transport of bile acids from hepatocytes 
to canaliculi in UDCA-treated PBC patients [104]. Impor-
tantly, the FDA advises against the prescription of OCA 
to PBC patients with advanced cirrhosis, as a result of 25 
reports of liver decompensation or failure associated with 
OCA use. Most of these incidents involved patients with 
compensated cirrhosis, mostly with portal hypertension, or 
patients with decompensated cirrhosis. Liver decompensa-
tion occurred 10 days to 10 months after initiation of OCA 
[105]. In eligible patients, the recommended starting dose is 
5 mg, which can be titrated to 10 mg after 3 months if OCA 
is well-tolerated. It is further recommended to monitor liver 
function before and after initiating OCA therapy [103].

In PSC, OCA brought a reduction in ALP in a phase 2 trial 
[106]; however, further clinical trials are not in the pipeline 
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at this time [107]. OCA is also being tested in patients with 
pediatric biliary atresia (EudraCT 2014–004,693-42). Pre-
liminary data showed that tropifexor improved γGT and ALT 
in PBC patients [108]. Cilofexor, another non-steroidal FXR 
agonist, decreased serum ALP, γGT, AST, ALT, and bile 
acid levels in PSC [109] and PBC patients, according to 
preliminary data [110]. A phase 3 clinical trial for cilofexor 
in PSC is underway (NCT03890120).

Regardless of the liver disease treated, the most com-
mon side effects of FXR agonists were dose-dependent 
pruritus, fatigue, and increased LDL:HDL ratio, which 
could increase atherosclerotic risk. The addition of statins 
to OCA mitigated the latter side effect [111]. Assessment of 
the interactions of antipruritus drugs with OCA is underway 
(NCT05133830). These side effects seem target-specific, as 
they occurred with different FXR agonists.

FXR modulation is a promising therapeutic avenue for 
various liver diseases, as highlighted by the approval of 
OCA for PBC and the numerous clinical trials in progress. 
However, the side effects of FXR agonists pose a challenge 
and the long-term efficacy still needs to be characterized. 
The working mechanisms of FXR modulation in the various 
liver diseases also need to be further elucidated.

FGF19

Bile acid signaling is not restricted to the liver. Actually, a 
major part takes place in the intestine. An important hor-
mone to fully understand the effects of (pan and intestinal) 
FXR activation by bile acids is FGF19, as it is mainly pro-
duced in the ileum in response to FXR activation by bile 
acids. After traveling from the ileum to the liver via the 
enterohepatic circulation, FGF19 exerts its effects through 
binding to the fibroblast growth factor receptor 4 (FGFR4) 
and its coreceptor β-klotho (KLB), which are mostly co-
expressed in the liver [112].

In hepatocytes, FGF19 downregulates bile acid synthesis 
by inhibiting the major bile acid synthesis enzyme choles-
terol 7-a-hydroxylase (CYP7A1) [113], a property that can 
be exploited to prevent bile acid overload-related liver injury. 
Because chronic FGF19 overexpression was shown to induce 
hepatocellular carcinoma in mice by activating STAT3 
signaling [114, 115], a nontumorigenic FGF19 analogue 
(NGM282, also known as M70 and aldafermin) that does not 
activate STAT3 was developed [116]. NGM282 suppressed 
bile acid synthesis in humans [116] and reduced serum lev-
els of hydrophobic bile acids in patients with NASH and 
PSC [117]. In mouse models of cholestasis induced by bile 
duct ligation or ANIT, NGM282 decreased the bile acid pool 
size and diminished liver injury [118]. In Mdr2−/− mice, 
FGF19 and NGM282 decreased liver injury, inflammation, 
and fibrosis [119]. A different FGF19 analogue lacking 
tumorigenic properties, FGF19-M52, similarly protected 

Mdr2−/− mice from cholestatic injury [120]. Moreover, con-
stitutive activation of intestinal FXR in mice reduced the 
bile acid pool size and attenuated cholestatic injury caused 
by Mdr2 deficiency, bile duct ligation, and ANIT treatment 
[121]. Consequently, NGM282 was tested in humans for 
the treatment of cholestatic disorders. In PBC patients with 
inadequate response to UDCA, NGM282 decreased ALP, 
GGT, ALT, AST, and IgM levels after 28 days of treatment. 
Diarrhea was the most commonly reported side effect [122]. 
In PSC patients, NGM282 treatment for 12 weeks improved 
fibrosis biomarkers; however, it did not improve ALP levels, 
the primary endpoint [123]. NGM is not planning to pursue 
further clinical trials of NGM282 for PSC and PBC at this 
time [124].

TGR5

TGR5 (GPBAR1) is a G-protein-coupled receptor that is 
ubiquitously expressed. The highest mRNA expression of 
GPBAR1 is found in the gallbladder and in monocytes [56, 
125]. In the liver, GPBAR1 is expressed by cholangiocytes, 
both intrahepatic [126] and extrahepatic [127], Kupffer cells 
[128], sinusoidal endothelial cells [129], activated hepatic 
stem cells [130], NTK cells [131], and hepatocytes [132]. 
In the intestine, GPBAR1 is mostly expressed by intestinal 
endocrine cells in the colon and goblet and Paneth cells in 
the small intestine [56, 133].

Known endogenous TGR5 ligands are bile acids, with 
potency for TGR5 activation LCA > DCA > CDCA > CA 
[134, 135]. Therefore, secondary bile acids produced by 
the gut microbiota are the preferred ligands for TGR5. 
Because TGR5 is expressed at the plasma membrane, unlike 
FXR, which is a nuclear receptor, TGR5 activation does 
not require bile acid entry into the cell. TGR5 can regulate 
various signaling pathways such as NF-κB, AKT, and ERK, 
among others [136]. TGR5 is also well-known as a regulator 
of energy and glucose metabolism [137].

As mentioned above, TGR5 is expressed in cholangio-
cytes, where it can be localized in the primary cilium, at 
the apical membrane and in intracellular vesicles, and its 
stimulation can cause opposite downstream effects depend-
ing on the subcellular location. TGR5 in cilia may come in 
contact with bile acids routinely, whereas TGR5 located on 
the apical membrane may be shielded from bile acids by a 
bicarbonate-rich apical glycocalyx [138]. Tgr5−/− mice had 
decreased biliary proliferation in response to cholestasis and 
TGR5 agonists induced cholangiocyte proliferation [139]. 
Increased TGR5-mediated cell proliferation could poten-
tially promote cholangiocarcinoma progression, also based 
on the observation that TGR5 is overexpressed in cholangio-
carcinoma tissue [139, 140]. In gallbladder cholangiocytes, 
TGR5 colocalizes with cystic fibrosis transmembrane con-
ductance regulator (CFTR) [127]. TGR5 activation increases 
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intracellular cAMP levels and stimulates chloride secretion 
via CFTR [127], which could contribute to bicarbonate-rich 
fluid secretion [141]. Decreased bile flow in Tgr5−/− mice 
and increased bile flow by TGR5 agonism were reported; 
however, it is not known whether these were CFTR-depend-
ent [142]. Finally, TGR5 agonism increases cholangiocyte 
barrier function by stabilizing junctional adhesion molecule 
A (JAM-A) [143]. Although mutations leading to decreased 
TGR5 were identified in PSC patients, their rarity does not 
suggest these as a causative factor in PSC [144].

TGR5 and inflammation

TGR5 was first described as a bile acid receptor in mono-
cytes and macrophages, where it suppressed their function 
in response to bile acids [134]. In macrophages, TGR5-
mediated inhibition of cytokine production occurred 
through stabilization of the alternative (non-inflamma-
tory) macrophage phenotype via CREB recruitment to the 
CRE on the promoter of the anti-inflammatory gene IL-10 
[145–147]. TGR5 activation was further shown to down-
regulate cytokine production by inhibiting the NF-κB path-
way in several cell types (Fig. 4), among which dendritic 
cells [148], NTK cells [131], endothelial cells [149], and 
macrophages and Kupffer cells [150–155]. In macrophages, 
NF-κB was inhibited by TGR5-dependent increased c-Fos 
phosphorylation [150], or by repressed phosphorylation of 
IκBα [151, 152]. Inhibition of macrophage chemokine pro-
duction by TGR5 activation also occurred through activation 
of the AKT-mTOR complex 1, which promoted the transla-
tion of the C/EBPβ isoform LIP, which could blunt NF-κB 
activation [156]. In macrophages, TGR5 was also found to 

interfere with the β-catenin destruction complex to increase 
β-catenin levels, resulting in inhibition of the TLR4-NF-κB 
pathway via PI3K/Akt signaling [154] (Fig. 4).

Like FXR, TGR5 is involved in inflammasome regulation 
(Fig. 4). TGR5 activation by bile acids inhibited the NLRP3 
inflammasome by increasing its ubiquitination, thereby 
reducing inflammation in vitro and in vivo [157–159]. In 
liver failure, raised serum bile acids correlate with infec-
tions and mortality. It was recently reported that the serum 
bile acid composition of patients with liver failure promotes 
TGR5 activation and reduces the pro-inflammatory response 
of monocyte in response to bacterial challenge. The patients 
with a TGR5-activating serum bile acid composition were 
at increased risk for a fatal outcome [160].

Preclinical studies

Tgr5−/− mice are more susceptible to LPS-induced liver 
inflammation [151], which on the contrary is improved 
by TGR5 agonist treatment in wild-type mice [151]. 
Tgr5−/− mice, which have a smaller, more hydrophobic bile 
acid pool [142], also exhibit more severe liver injury and 
inflammation after partial hepatectomy, which could be 
attenuated by cholestyramine treatment (a bile acid–bind-
ing resin that interrupts the enterohepatic circulation of bile 
acids) and Kupffer cell depletion [161].

Tgr5−/− mice are also more susceptible to cholestatic dam-
age caused by bile duct ligation, showing increased inflam-
matory cell infiltration [153, 154, 161], whereas TGR5 acti-
vation in wild-type mice protected against liver injury by 
decreasing the NF-κB pro-inflammatory response as well as 
oxidative stress [153]. Despite the positive effects of TGR5 

Fig. 4  Effect of TGR5 activa-
tion on liver inflammation. 
Activation arrows are indi-
cated in black and inhibition 
arrows in red. AKT-mTOR: 
protein kinase B—mammalian 
target of rapamycin signal-
ing pathway; CA: cholic acid; 
CDCA: chenodeoxycholic acid; 
DCA: deoxycholic acid; IκBα: 
nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells inhibitor, alpha; LCA: 
lithocholic acid; NF-κB: nuclear 
factor kappa-light-chain-
enhancer of activated B cells; 
NLRP3: NOD-, LRR- and pyrin 
domain–containing protein 
3; TGR5: takeda-G-protein-
receptor-5
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activation in cholangiocytes detailed above, a TGR5 agonist 
alone did not improve the liver phenotype of Mdr2−/− mice, 
and neither did an FXR agonist alone. However, dual TGR5/
FXR agonist treatment reduced hepatic inflammation and 
fibrosis, probably by reducing bile acid synthesis in a FXR-
dependent manner [162]. The lack of efficacy of the TGR5 
agonist was likely due to the downregulation of TGR5 in 
the Mdr2−/− mouse. TGR5 downregulation in biliary epithe-
lial cells from Mdr2−/− mice, a PSC model, was associated 
with a pro-inflammatory phenotype, which was reversed by 
TGR5 overexpression. TGR5 is also downregulated in the 
PSC liver [163].

In mouse models of acute immune-mediated hepatitis, 
Tgr5−/− mice had a more severe liver injury, while a TGR5 
agonist improved liver damage in wild-type mice by promot-
ing a shift of NKT cells to a regulatory, IL-10 producing 
NKT cell subset [131].

In polycystic liver disease, antagonism rather than ago-
nism of TGR5 could be beneficial. TGR5 was found to be 
overexpressed in cystic cholangiocytes, leading to increased 
cell proliferation and cyst growth. Deletion of Tgr5 signif-
icantly reduced hepatic cystic areas in a mouse model of 
polycystic liver disease, whereas TGR5 agonists stimulated 
cyst growth in vitro [164, 165]. TGR5 antagonism may also 
be beneficial in cholangiocarcinoma. TGR5 expression is 
upregulated in cholangiocarcinoma and TGR5 agonism 
increased cell proliferation and migration in vitro and chol-
angiocarcinoma growth in vivo [140, 166].

Clinical studies

Given that TGR5 is expressed ubiquitously, systemic side 
effects are likely to occur. Although these were not studied 
in humans, mouse models provide hints as to which side 
effects may occur when modulating TGR5. TGR5 activa-
tion stimulated gallbladder filling and delayed emptying by 
promoting smooth muscle relaxation in mice [142], a side 
effect that could increase the risk of cholelithiasis and chol-
ecystitis. TGR5 activation in endothelial cells increased the 
generation of the vasodilatory mediators nitric oxide [129, 
149, 167] and hydrogen sulfide [168], while it inhibited the 
secretion of endothelin-1, a vasoconstrictor [169]. These 
effects may be exploited for reducing portal pressure, as 
demonstrated in a mouse model of hepatic cirrhosis [167]. 
However, they may result in peripheral arterial vasodilation, 
leading to blood pressure drops at therapeutic dosages, as 
reported in dogs, but not in rats [170]. Furthermore, in mice, 
overexpression of TGR5 in sensory nerves or activation by 
bile acids or TGR5 agonist administration induced pruri-
tus and analgesia [171]. In light of the induction of cholan-
giocyte proliferation upon TGR5 activation [139], there is 
also a potential risk of cholangiocarcinoma development. 
TGR5 agonists that deactivate rapidly after exerting effects 

in the intestine were designed [170]; however, intestine-
restricted action may not be desirable for the treatment of 
cholestatic and autoimmune liver diseases. The TGR5 ago-
nist SB-756050 was studied in 51 type 2 diabetes patients. 
The compound was well-tolerated and there were no safety 
issues reported. A comprehensive description of side effects, 
however, is lacking [172].

Thanks to its anti-inflammatory properties, TGR5 ago-
nism is an attractive treatment for autoimmune liver dis-
eases, as shown by encouraging results in pre-clinical stud-
ies. Further studies are needed to characterize the levels of 
TGR5 expression in the context of liver diseases, which may 
determine the success of TGR5 agonism. TGR5 antagonism, 
rather than agonism, could be helpful in polycystic liver dis-
ease to reduce cyst growth and in cholangiocarcinoma to 
reduce cell proliferation and resistance to apoptosis. Unfor-
tunately, clinical application of TGR5 modulators is ham-
pered by the potential systemic side effects that stem from its 
ubiquitous expression, and translation of preclinical results 
to humans is thus largely undetermined.

PXR

The pregnane-activated receptor (PXR, NR1I1) is a nuclear 
receptor highly and primarily expressed in intestinal entero-
cytes and liver hepatocytes [173]. PXR can be activated by 
numerous and structurally diverse ligands such as xenobiot-
ics and natural and synthetic steroids, including the second-
ary bile acid lithocholic acid (LCA) [174]. PXR signaling 
is well-known to modulate the expression of drug-metabo-
lizing enzymes and transporters (DMET) to facilitate xeno-
biotics metabolism, transport, and clearance, a function that 
is shared with the constitutive androstane receptor (CAR, 
NR1I3) [175, 176]. Besides DMET regulation, PXR is also 
involved in energy homeostasis [177], bile acid metabolism, 
and regulation of inflammation.

PXR is positively regulated by FXR [178] and the two 
receptors work synergistically to ensure bile acid homeosta-
sis. Like FXR, PXR activation represses hepatic CYP7A1, 
the rate-limiting bile acid synthesis enzyme. PXR activa-
tion further promotes the expression of hepatocyte OATP2 
(which can facilitate bile acid uptake by hepatocytes), 
CYP3A11 and SULT2A1 (which transform bile acids to 
promote their detoxification and excretion), and MRP2 
(which promotes their canalicular transport) [174, 179–181]. 
These properties were hypothesized to counteract cholestatic 
injury. Accordingly, Pxr−/− mice were more susceptible to 
LCA feeding [180] and cholestasis induced by bile duct liga-
tion [182], and PXR agonist treatment reduced liver damage 
induced by both LCA and CA feeding [174, 180, 183] and 
by bile duct ligation [182] in wild-type mice.

Similar to other nuclear receptors, PXR expression is 
decreased by NF-κB activation, through interaction with 
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RXRα, which heterodimerizes with PXR [184, 185]. A 
recent study showed that PXR can suppress both NF-κB and 
AP-1 signaling, thereby reducing the expression of inflam-
matory mediators. Accordingly, treatment with a PXR ago-
nist repressed  CCl4-induced expression of chemokine genes 
Ccl2 and Cxcl2 and reduced hepatic neutrophil infiltration 
and necrosis in mice [186]. Additionally, a role for PXR in 
the negative regulation of TLR4 in the intestine has emerged 
[187, 188].

However, there are potential adverse effects of PXR acti-
vation, specifically in metabolic health parameters. Stud-
ies in healthy volunteers showed that PXR activation by 
rifampin increased blood pressure, serum LDL, and total 
cholesterol, and worsened postprandial glucose tolerance 
[189–191]. Additionally, PXR was linked to chemoresist-
ance in hepatocellular carcinoma by increasing the expres-
sion of DMET, as well as by inhibiting apoptosis [192]. Tar-
get-specific PXR activation that would circumvent adverse 
metabolic health effects, perhaps in combination with other 
treatments, could be useful for the treatment of liver dis-
eases, however much remains to be explored.

Bile acid–related treatments in cholestatic 
liver diseases

For cholestatic liver diseases, bile acid–related treatments 
aim at (a) reducing hepatic bile acid accumulation, (b) 
reducing bile acid toxicity, (c) promoting bile flow, and (d) 
reducing inflammation. As for (a) reducing hepatic bile acid 
accumulation, an approach is to reduce the bile acid pool 
size by interrupting the bile acid enterohepatic circulation 
(Fig. 1). This can be achieved by bile acid–binding resins 
(e.g., cholestyramine, which is used for cholestatic pruri-
tus and hypercholesterolemia) or by inhibition of intestinal 
ASBT, as these treatments increase the fecal loss of bile 
acids. This treatment strategy is similar to partial exter-
nal biliary diversion performed in children with PFIC and 
Alagille disease [193]. ASBT inhibitors improved choles-
tatic injury in mice [194, 195] and cholestatic pruritus in 
PBC patients [196]. The ASBT inhibitor maralixibat was 
recently approved for the treatment of cholestatic pruritus 
in patients with Alagille syndrome [197], whereas trials 
for other cholestatic disorders are ongoing [198, 199]. The 
most common side effects were diarrhea and abdominal 
pain. The deficiency of fat-soluble vitamins, which require 
bile acids for intestinal absorption, was also reported [196, 
197]. Besides bile acid–binding resins and ASBT inhibition, 
inhibition of hepatic NTCP may reduce bile acid uptake by 
hepatocytes. Because hepatocyte NTCP is the entry receptor 
for hepatitis D virus (HDV), the NTCP inhibitor bulevir-
tide was recently approved in Europe for the treatment of 
chronic HDV infection in HDV RNA positive patients with 

compensated liver disease. In mouse models of cholestatic 
liver damage, bulevirtide attenuated liver injury by reducing 
biliary bile acid output and increasing biliary lipid output 
[200, 201]. Reduction of hepatic synthesis of bile acids can 
be achieved by agonists of FXR and PXR and recombinant 
FGF19, as discussed in the previous sections (Fig. 1). The 
FXR agonist OCA is approved for PBC patients, as dis-
cussed above. As for (b) reducing bile acid toxicity and 
(c) promoting bile flow, biliary bile acid composition can 
be modulated by UDCA, TUDCA, and norUDCA, which 
render bile less hydrophobic and thus less cytotoxic, and 
by NTCP inhibition, which increases the phospholipids/
bile acid ratio [200, 201] (Fig. 1). (T)UDCA and norUDCA 
further promote bicarbonate-rich bile flow [202]. In par-
ticular, norUDCA escapes hepatic conjugation and can be 
thereby reabsorbed passively by the biliary epithelium, to 
be returned to hepatocytes for re-secretion (cholehepatic 
shunting). Both re-secretion by hepatocytes and bicarbonate 
secretion into bile upon norUDCA reabsorption can contrib-
ute to increased bile flow [203]. UDCA is approved for PBC, 
cholestasis of pregnancy, and cholesterol gallstone dissolu-
tion. UDCA is also used for PFIC3, cystic fibrosis–related 
liver disease (CFLD), and PSC, although long-term efficacy 
is uncertain due to the lack of large clinical trials [204]. 
norUDCA as a treatment for PSC is being evaluated in a 
phase 3 study (NCT03872921) after promising results in 
a phase 2 study [205]. As for (d) reducing inflammation, 
besides anti-inflammatory and immune-modulatory agents 
[206], bile acid–related targets include hepatic FXR, PXR, 
and TGR5 agonists, as discussed in the previous sections. 
Interestingly, immunomodulatory effects of norUDCA were 
recently demonstrated in Mdr2−/− mice and mice infected 
with non-cytolytic lymphocytic choriomeningitis virus 
(LCMV), a model of non-cholestatic liver injury. By modu-
lating mTORC1 activity in  CD8+ cells, norUDCA impaired 
the activation-induced metabolic reprogramming of  CD8+ 
cells and significantly alleviated hepatic inflammation [207]. 
UDCA also has anti-inflammatory actions, reviewed else-
where [204]. In addition to cholestatic diseases, targeting 
FXR, FGF19, and TGR5 signaling have also shown impor-
tant therapeutic benefits for the treatment of NASH [208].

The most benefit from these treatments could likely be 
obtained by combining several approaches, depending on 
the type of cholestasis. Choosing the right treatment at the 
appropriate time is also important. It was proposed that 
drugs reducing bile acid synthesis are best used early, when 
the hepatic adaptations to cholestasis, which include sup-
pression of bile acid synthesis, are not yet established [11].

Bile acids shape the gut microbiome by providing feeding 
substrate and by exerting antimicrobial activities. In turn, 
the gut microbiome shapes the bile acid pool composition 
by carrying out enzymatic activities (e.g., deconjugation and 
dehydroxylation) that modify primary bile acids, resulting in 
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bile acids that have different affinities to bile acid receptors 
and can thus influence bile acid receptors signaling [209]. 
The gut-liver axis has been implicated in the pathophysiol-
ogy of several liver diseases and the gut microbiota is altered 
in several liver diseases. Therefore, modulation of the gut 
microbiota is a potential therapeutic approach and can be 
achieved by dietary changes, prebiotics, probiotics, antibiot-
ics, as well as by fecal microbiota transplantation and bacte-
riophages [210]. The relevance of the gut microbiota in liver 
diseases has been recently reviewed [211].

Conclusion

Bile acids and their receptors modulate inflammation in the 
context of liver diseases. On the one hand, bile acid accu-
mulation in cholestasis causes hepatocellular damage and 
is pro-inflammatory (Fig. 2). On the other hand, activation 
of bile acid receptors by bile acids exerts anti-inflamma-
tory actions by repressing NF-κB signaling and the NLRP3 
inflammasome, among other pathways (Figs. 3 and 4). Addi-
tional anti-inflammatory effects obtained by modulating bile 
acid receptors arise from their roles in regulating bile acid 
homeostasis, which have the potential to attenuate chol-
estasis, as observed in preclinical studies. Clinical studies 
lead to the approval of several bile acid receptor and bile 
acid–related treatments, such as obeticholic acid, UDCA, 
and the ASBT inhibitor maralixibat. A large number of 
clinical trials are ongoing, especially for FXR agonists and 
recombinant FGF19 (Fig. 1). However, the clinical use of 
bile acid receptors modulators and other bile acid–related 
treatments is hampered by their (potential, long-term) side 
effects, which stem from ubiquitous bile acid receptors 
expression, breadth of target signaling pathways, or both. 
This is a challenge especially for TGR5 modulators. The first 
steps to circumvent these challenges are underway, with the 
development of pathway-specific modulators. A combination 
treatment with nuclear receptor ligands and bile acids with 
different therapeutic effects may also be of interest. Another 
aspect that should be taken into account when designing 
clinical trials for cholestatic liver diseases is the anatomical 
heterogeneity of the disease process and the “ascending” 
pathogenesis of cholestatic liver diseases, as discussed by 
Jansen et al. [11]. Along with clinical trials, preclinical stud-
ies remain essential to further characterize the downstream 
effects of bile acid receptors modulation and to elucidate the 
working mechanisms in various liver diseases.
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