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Abstract: This paper proposes a real-time multi-class disturbance detection algorithm based on YOLO
for distributed fiber vibration sensing. The algorithm achieves real-time detection of event location
and classification on external intrusions sensed by distributed optical fiber sensing system (DOFS)
based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). We conducted data collection
under perimeter security scenarios and acquired five types of events with a total of 5787 samples.
The data is used as a spatial–temporal sensing image in the training of our proposed YOLO-based
model (You Only Look Once-based method). Our scheme uses the Darknet53 network to simplify
the traditional two-step object detection into a one-step process, using one network structure for
both event localization and classification, thus improving the detection speed to achieve real-time
operation. Compared with the traditional Fast-RCNN (Fast Region-CNN) and Faster-RCNN (Faster
Region-CNN) algorithms, our scheme can achieve 22.83 frames per second (FPS) while maintaining
high accuracy (96.14%), which is 44.90 times faster than Fast-RCNN and 3.79 times faster than Faster-
RCNN. It achieves real-time operation for locating and classifying intrusion events with continuously
recorded sensing data. Experimental results have demonstrated that this scheme provides a solution
to real-time, multi-class external intrusion events detection and classification for the Φ-OTDR-based
DOFS in practical applications.

Keywords: distributed fiber sensing; Φ-OTDR; real-time detection; multi-class classification; object
detection; YOLO

1. Introduction

After being proposed in 2005 [1], the phase-sensitive optical time-domain reflec-
tion technique has been widely used [2] in geological exploration [3–5], partial discharge
monitoring [6,7], traffic sensing [8,9], marine health monitoring [10], and perimeter secu-
rity [11,12], etc. It allows long-distance (10 km or more) vibration monitoring on sensing
fiber [13,14]. The DOFS system can locate the position of the disturbance in the spatial
domain and acquire the vibration information of the disturbance in the temporal domain.
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Analyzing vibration information and classifying it into different types is a research hot
spot in this area. A lot of works are proposed based on traditional classification algorithms
that use human-extracted signal features for learning to classify disturbances [15]. Wang
et al. use the relevance vector machine (RVM) to learn the features extracted by wavelet
analysis and achieved 88.6% on the classification problem [16]. Sun et al. artificially extracts
multiple features and perform correlation analysis for dimensionality reduction on the
disturbance signals in the spatial–temporal domain and use three RVM classifiers to classify
the three types of intrusions, achieving an accuracy rate of 97.8% [17].

These traditional classification algorithms belong to “expert systems”, and they require
human-determined features. However, these features will become meaningless in real
complex engineering applications. For example, the laying method of fiber under test (FUT)
and light source quality may bring uncontrollable factors. These uncontrollable factors will
cause the correlation of the human-determined features to decrease, and the traditional
methods will no longer be applicable. Therefore, a convolutional neural network (CNN) is
required for automatic feature extraction and disturbances classifying in complex situations.
Using CNN instead of human-determined features brings stronger robustness to real-world
applications. Wu et al. used 1-D CNN to classify five types of events in pipeline monitoring
and achieved 98% accuracy [18]. Wang et al. used a deep dual-path network (Deep DPN) to
classify the disturbances, and 97% accuracy is obtained [12]. However, the deeper network
structure not only brings longer training time and increases the training burden, but also
fails at real-time operation in actual application scenarios: the computation time needed
to classify the sensing signal is several times more than the acquisition time. Therefore,
it is necessary to design an algorithm that can quickly and accurately locate and classify
external disturbances to meet the real-time operation demand in practical scenarios.

To quickly locate and classify the sensing signal, there is currently a method combining
DOFS and YOLO algorithm proposed by Zhou et al. in 2021 [19]. They took the lead in the
application of YOLO in pipeline inspection gauge detection. YOLO is a fast object detection
algorithm, which can determine the bounding box and classify events at the same time
in a network [20]. However, the method they proposed can only detect a single type of
event. Therefore, different from their work, we demonstrate a new method for detecting
and classifying multi-class disturbance events and achieving real-time operation, making it
more suitable for practical applications.

This paper proposes a real-time multi-class disturbance detection algorithm for Φ-
OTDR sensing system based on YOLO algorithm, which can quickly and accurately locate,
and classify multi-class disturbance. Firstly, to achieve fast detection speed, this method
turns two-steps (traditional object detection: locate THEN classify) into one-step (one
network), like its name, YOLO: “You Only Look Once”, which completes the same task
with less computation complexity, so the detection speed can be improved compared
with the traditional algorithms. Secondly, to achieve precise locating and multi-class
classification, this method based on the advanced YOLO Network for training and testing.
As a result, a real-time multi-class disturbance detection scheme for Φ-OTDR-based DOFS
is provided to the community, which we believe will have a positive effect on practical
applications, especially online monitoring scenarios.

2. Principle of Operation

The distributed optical fiber sensing system we use is the direct detection Φ-OTDR and
the experimental setup is shown in Figure 1a. The pulsed light is driven into the sensing
fiber, and the original one-dimensional sensing data is obtained through the Rayleigh
backscattering (RBS) signal returned by the circulator. We arrange the RBS traces brought
back by each pulse in sequence, convert into a two-dimensional spatial–temporal sensing
data matrix, a typical data structure of DOFS, as shown in Figure 2, in which the horizontal
axis represents the space domain, and the vertical axis represents the time domain. We
calculate the differential between two adjacent RBS traces to demodulate the external
vibration [1]. We normalize the differential result, save it as an image, and finally label the
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event on the image to complete the construction of the dataset. We use the open-source tool
named labelImg from Github to label the intrusion events in the spatial–temporal sensing
images, label the type and location of events and save them in a txt file. The images and
the corresponding label information will be used for supervised learning.

Figure 1. (a) Experimental setup of the direct detection Φ-OTDR. (b) Workflow of the real-time multi-
class classification disturbance detection algorithm. NLL: narrow-linewidth laser; AOM: acousto-
optic modulator; EDFA: erbium-doped fiber amplifier; Cir: circulator; FBG: fiber Bragg grating; AWG:
arbitrary wave generator; PD: photodetector; DAQ: data acquisition card; PC: personal computer. As
shown in step 5, the results of locating and classification are shown in the following image (partial
magnification of the detection results).

Figure 2. The schematic diagram of the spatial-temporal sensing matrix.
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The workflow of the YOLO-based real-time multi-class disturbance detection algo-
rithm is shown in Figure 1b, which mainly includes five stages: signals acquisition, data
preprocessing, data labeling to form a dataset, training the YOLO network, and using
the well-trained model for testing. As the physical resolution of the sensing system is
affected by the pulse width of high frequency pulsed light, the nearby data of the vibration
center contains rich information. The data matrix near the center point as the sample of
the disturbance signal for positioning and labeling, and the labeling method meets the
requirements of the training set of the original YOLO algorithm. YOLO is pursuing the
optimal speed and accuracy trade-off for real-time applications. As shown in Figure 3, the
network has two main components, the first part uses Darknet53 for feature extraction, and
the second part uses Feature Pyramid Networks (FPN) for feature fusion to generate the
prediction results at three scales. Darknetconv2d_BN_Leaky (DBL) is the smallest compo-
nent of Darknet53, which is used to do the two-dimensional convolution operations. DBL
contains convolution (conv), batch normalization (BN) and nonlinear activation function
(LeakyReLU). Resblock is the main component in Darknet53 and consists of DBL and n
residual units. Residual unit refers to ResNet and solves the degradation problem caused
by increasing the number of layers in the network [21]. YOLO uses FPN to generate three
different scales of feature maps, which can be used for cross-scale prediction. Therefore,
our YOLO-based scheme has great detection ability of tiny-sized objects with almost no
reduction in detection speed, which is why it is suitable for localization and classification
of weak disturbance events in long-range sensing information.

Figure 3. Network structure of YOLO-based real-time multi-class classification disturbance detection
algorithm. DBL: Darknetconv2d_BN_Leaky; Res: Resblock_body; Res unit: residual unit; Up-
Sampling: increase the dimensions of the image by interpolation; Concat: concatenates features
for feature fusion; conv: convolution; BN: batch normalization; LeakyReLU: a type of nonlinear
activation function.

Randomly divide the dataset as train set (70%) and test set (30%). The training set is
used to adjust the weight of the network, and the test set is used to verify the generated
network model and focus on the accuracy and detection speed of the algorithm for the
detection and classification of disturbance events.

It should be noted that before the YOLO network is trained with the Φ-OTDR dataset,
the idea of transfer learning is adopted [22]. YOLO uses the ImageNet data for pre-
training [23]. In CNN, different depths of convolutional layers have different functions
for extracting image features. In image processing, most of the first few layers extract the
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common features of training data such as color blobs and Gabor filters, and subsequent
layers are trained according to the requirements of the specific tasks. Therefore, ImageNet
dataset is used for pre-training. The parameters of the first 20 layers from the pre-trained
model are retained, and the remaining parameters are initialized randomly to form the
initial model of our algorithm for Φ-OTDR dataset. Pre-training using a large dataset like
ImageNet can effectively improve the network’s image processing capabilities and shorten
the time required for training [22].

3. Experiment and Result
3.1. Distributed Optical Fiber Sensing System & Data Collection

The Φ-OTDR system used in this work is shown in Figure 1a. It uses a narrow-
linewidth laser (NLL, 1550 nm) with 5 kHz linewidth and 23 mW output power as a light
source and an acousto-optic modulator (AOM) to transform the continuous laser into pulsed
light. The pulse width is 100 ns, and the repetition frequency rate is 60 kHz. We use the
erbium-doped fiber amplifier (EDFA) to amplify the optical signal, which can compensate
for insertion loss and transmission loss. The amplified pulsed light is driven into the
sensing fiber through the circulator. As the light pulse advances, the RBS light carrying
different position vibration information returns along with the fiber to the circulator and
is output from the circulator 3 port to the second EDFA for re-amplification. At the end
of the optical system, the spontaneous emission noise from the EDFA is filtered by a fiber
Bragg grating (FBG). The RBS signal is finally fed into the photodetector (PD), completing
the conversion from optical signals to electrical signals. Finally, the data acquisition (DAQ)
device records the data with a sampling frequency of 240 MSa/s.

In this experiment, the optical fiber is laid on a metal protective net and the ground
near the net, to detect 5 types of events, which are calm state (I), rigid collisions against
the ground (II), hitting the protective net (III), shaking the protective net (IV), and cutting
the protective net (V). These events act on different positions of the sensing fiber. In order
to reduce the cost of data collection, we used the FUT (1.6 km) laying method shown in
Figure 4. One vibration event is detected by multiple sections of the FUT and subsequently
treated as multiple signal samples.

Figure 4. FUT laying method: multi-point sensing experiment on protective net and wooden board.

The specific number of samples collected for each event is shown in Table 1, and the
schematic diagram of sensor images for different events is shown in Figure 5.



Sensors 2022, 22, 1994 6 of 12

Table 1. Experiment database: the sample number of each type of event.

Type I II III IV V
Calm State Rigid Collision Hit Net Shake Net Cut Net

Train set size 560 520 1352 1195 424
Test set size 240 223 580 512 181

Total dataset size 800 743 1932 1707 605
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The details of the 5 events are as follows:

(I) Calm state

Collect the signal under the ordinary environment, the main component is the envi-
ronmental noise, no one interferes.

(II) Rigid collisions against the ground

In order not to damage the outdoor ground, a hammer (536 g) dropped from a height of
10 cm is used as a representative of rigid collision to collect data. The rigid collision formed
the pattern in Figure 5II, which was in line with our expected result of the hammer falling.

(III) Hitting the protective net

We use a hammer to hit the upper and middle beams at different positions of the metal
protective net (1.4 m × 1.45 m) at a stable frequency and use random forces to simulate
the impact. The regular blue–red pattern appearing in Figure 5III is consistent with the
characteristics of stable frequency. The patterns appearing at 1340 m and 1380 m are caused
by the FUT laying method. It can be observed that the three groups of patterns at 1340 m,
1360 m and 1380 m do not affect each other.

(IV) Shaking the protective net

The experimenters faced the protective net, grasped the grid of the protective net, and
shook it with normal strength and frequency. Our shaking causes the protective net to
shake within a range of 15◦ from front to back, with a frequency between 1 Hz and 3 Hz.
Such an event eventually formed a diagonally staggered blue–yellow pattern as shown in
Figure 5IV, which was highly recognizable.

(V) Cutting the protective net

The optical fiber is laid in an S-shape on the protective net and is used to emulate the
behavior of cutting the net. If the fiber is cut along with this behavior, it can be clearly found
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in the sensing information; if the protective net is cut off, but the optical fiber is not broken,
the optical fiber will fall naturally. Use cable ties to fix the fiber on the protective net and
cut the cable tie to simulate the natural fall of the second situation and the corresponding
pattern is shown in Figure 5V.

To avoid that the disturbance classification is influenced by its occurrence location
during disturbance detection (one FUT location corresponds to a specific disturbance type),
it is necessary to decouple the disturbance type from its occurrence location. Therefore,
after the data acquisition of the “cutting the protective net “(V) at each location, all the
remaining ties are cut and the FUTs of other different areas are re-laid on the net and the
board according to Figure 4.

3.2. Data Pre-Processing

After using a photodetector to convert the optical signal into an electrical signal,
the DAQ is used for data collection. The one-dimensional sensing data is subsequently
converted to spatial–temporal sensing matrix as shown in Figure 2, whose horizontal axis
direction is the spatial domain, and the vertical axis direction is the time domain. The
moving average method is adopted to suppress the random noise of the raw data [24]. We
calculate the differential between two adjacent RBS traces and normalize the differential
result. The processed 2D data will be stored as an image, and the amplitudes are converted
into the color of each pixel. The converted images are labeled according to the type of
vibration event within and stored for network training and testing.

3.3. Comparison between YOLO and Traditional Detection Algorithms

With the development of computer vision, more image object detection algorithms
have been proposed, among which the most representative ones are RCNN and its im-
proved versions Fast-RCNN and Faster-RCNN. RCNN was proposed by Ross Girshick in
2014 [25]. It is the pioneering work of object detection using deep learning. He innovatively
combined Selective Search, CNN, and Support Vector Machine (SVM) to do object detection
for images.

However, because of its CNN computation for all region proposals, the same feature
extraction task was repeated many times. Therefore, there is a large time cost for both
training and testing. Fast-RCNN uses ROI (region of interest), and use softmax to replace
the SVM in RCNN, and uniformly maps the bounding box information to the feature
map [26]. Compared with RCNN using stretching for normalization, ROI reduces the
repeated calculation of the layer before feature extraction, thus speeding up the calculation.
Faster-RCNN uses RPN (Region Proposal Network), which generates a bounding box faster
to replace Selective Search, and completes an end-to-end CNN object detection model,
which improves the overall operating speed [27]. The differences of structure between
algorithms are shown in Figure 6.

Figure 6. Schematic diagram of the workflow and structure of RCNN, Fast-RCNN, Faster-RCNN
and YOLO.
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These three algorithms are based on the two-stage scheme of traditional image object
detection. First determine where it is (determine the bounding box), then determine what
it is (classification). The YOLO object detection algorithm we use innovatively proposes
one-stage, which uses a single network to complete the traditional two-step work, which
further improves the speed and achieves real-time operation. Therefore, YOLO is widely
used in autonomous driving and video surveillance. We use Fast-RCNN, Faster-RCNN
and YOLO (all three schemes were pre-trained using ImageNet dataset) to compare their
performance in spatial–temporal sensing images, and the results are shown in Figure 7.

Figure 7. Confusion matrix of Fast-RCNN (a), Faster-RCNN (b) and YOLO-based scheme (c).

Since one event will produce multiple continuous patterns on the spatial–temporal
sensing images, and the detection results of different algorithms are quite different, we
explained the indicators (correct locating and correct classification) and explained detecting
results of the “calm state (I)”.

1. Locating

We believe that after an event occurs, if one of the multiple patterns caused by the
event is recognized as any event, it can be considered as successful locating. If a pattern
corresponding to no event is located as any event, it is a false alarm, not a misclassification.

We use the result of the perturbation detection to locate the location of the perturbation.
More specifically, we use the horizontal coordinate of the center point of the bounding box
to locate the perturbation. Therefore, the accuracy of localization is highly dependent on
the quality of perturbation location labeling in the training set.
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2. Classification

Only the classification results of the data considered as “events” will be counted, and
the confusion matrix will be calculated and drawn.

For example, a pattern caused by a “shaking the protective net (IV)” is classified as
“hits the protective net (III)”, we think this is a misclassification but successfully located.

3. About (I) calm state

The detecting results of the “calm state” will be displayed only if no disturbance
event is found. Therefore, when something happens, our special treatment of the “calm
state” reduces the redundant information display and makes the disturbance event we are
concerned about more visible.

We train these three algorithm models by GeForce GTX 1080 Ti with 12 GB memory
and compare their performance on the same hardware. After being well-trained, the three
algorithms have a good performance on the same dataset, all of which are 100% located to
the event with no false alarm, and the classification accuracy rate has reached more than
95.737%. Although the accuracy of the YOLO-based algorithm is slightly inferior to the
Faster-RCNN, it has a unique advantage in detection speed, as shown in Table 2. The speed
is 44.90 times that of Fast-RCNN and 3.79 times that of Faster-RCNN. YOLO uses FPN for
feature fusion, so it has better detection results for tiny objects in large data in principle.
Therefore, we believe that the YOLO algorithm can be applied to detect the disturbance
events on DOFS dataset.

Table 2. Performance of algorithms.

Method Accuracy
(%)

Testing Time
(sec/img)

Rate
(FPS)

Fast R-CNN 95.74% 1.9665 0.5085
Faster R-CNN 97.29% 0.1659 6.0277
YOLO-based 96.14% 0.0438 22.8311

3.4. Real-Time Sensing Video Processing

The faster computing speed achieved by YOLO meets the demand for real-time
processing, so further experiments are carried out using brand new data which has not
been included in the previous dataset. We use the same system parameters for continuous
data collection. After slicing and pre-processing the raw data, a sensing signal up to 30 s is
obtained. In order to be more suitable for industrial scenes, we converted the matrix into a
video by applying a sliding window to the original signal matrix during data acquisition.
A window length Tl of 0.5 s is used for 30 s video generation, as shown in Figure 8, and
the frame rate of the video is 20 FPS, corresponding to a sliding step ts of 0.05 s. From the
previous experiments, it can be seen that the processing time Tp for a sensing image with
Tl of 0.5 s is 0.0438 s. As Tp is less than the sliding step ts between two adjacent frames,
real-time operation is achieved with the proposed method.

If we consider the events required for other steps such as DAQ sampling, data pre-
processing, etc., we can solve the real-time problem by increasing the sliding step ts and
decreasing the frame rate of the video. As long as all other events Tother plus Tp are smaller
than ts, the real-time operation still holds.

The sensing video contains the above-mentioned 5 types of events, and there are
situations where multiple events occur at the same time. We used the well-trained model
to detect disturbance events in the video, and the detection results are shown in Figure 9.
At different moments in the video, each disturbance event was detected separately. In
Figure 9a, the monitoring results of the “Calm State” are presented as no other disturbing
events are detected, which is in accordance with our expectation and presentation logic.
In Figure 9b, a “Rigid Collision” event is detected at 1019 m of the sensing fiber (position
information is obtained by mapping the coordinates of the center point of the bounding
box to the actual sensing distance). In Figure 9c, the behavior of the “Hit Net” is detected
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twice in sensing image, and the mean value of the centroids of the two bounding boxes
corresponds to 1486.63 m, and the pattern corresponds to 1484.72 m, which have a small
error (1.9 m). In Figure 9d, we fixed two sections of sensing fiber at 130 m intervals to the
protective net, so that the “Shaking Net” behavior was detected at 1335.65 m and 1480.91 m,
respectively. In Figure 9e, we cut the tie to allow the sensing fiber that was secured to the
protective net to fall and collide with the net. At 1411.81 m, our method recognizes the
“Cut Net” event and does not misidentify several other patterns. The collision of the fiber
with the net in the “cut net” event also affects other fibers in proximity (laid according to
Figure 4). In Figure 9f, two events have been detected at the same time (“Rigid Collision”
at 681.95 m and “Hit Net” at 1106.72 m), demonstrating the multi-class vibration detection
ability of the proposed method. The results present that there is no missed detection of
vibration events or misclassification in real-time detecting of sensing video.
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4. Conclusions

This paper proposes a real-time multi-class disturbance detection method based on
YOLO algorithm for Φ-OTDR. We use CNN-based methods to automatically extract fea-
tures, avoiding the low robustness problem of “expert systems” in complex environments.
Using the YOLO algorithm based on Darknet53 and FPN, real-time monitoring can be
performed on spatial–temporal sensing data acquired from the Φ-OTDR system. The
spatial-temporal signal collected from the Φ-OTDR system is converted into images after
pre-processing, and manually labeled according to the location and types of external dis-
turbance as a dataset. In the experiments, it only costs 0.0438 s on average to complete
the locating and classification of intrusion events for 0.5 s sensing data when treated as an
image. Meanwhile, when the sensing data is converted to a video of 20 frames per second, it
achieves real-time operation for locating and classifying intrusion events with continuously
recorded sensing data. Experimental results prove that our proposed scheme has achieved
the real-time operation (22.83 FPS, which is 44.90 times faster than the Fast-RCNN and
3.79 times faster than the Faster-RCNN) while ensuring high accuracy (96.14%) in five
types of disturbance detection. The proposed method provides a promising solution for
real-time multi-class disturbance detection for industrial application of Φ-OTDR, especially
for online monitoring scenarios.

Author Contributions: Conceptualization, W.X., F.Y. and S.L.; methodology, W.X.; software, W.X. and
S.L.; validation, W.W., F.W., H.L., P.P.S. and L.S.; formal analysis, W.X.; investigation, L.S.; resources,
W.X.; data curation, W.X., F.Y. and S.L.; writing—original draft preparation, W.X.; writing—review
and editing, F.Y., S.L., D.X., J.H., F.Z., W.L., G.W. and X.S.; visualization, L.S.; supervision, L.S.; project
administration, L.S.; funding acquisition, L.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by Future Greater-Bay Area Network Facilities for Large-scale
Experiments and Applications, grant number LZC0019; The Verification Platform of Multi-tier
Coverage Communication Network for Oceans, grant number LZC0020; Guangdong Department of
Science and Technology, grant number 2021A0505080002; Shenzhen Science, Technology & Innovation
Commission, grant number 20200925162216001; Guangdong Department of Education, grant number
2021ZDZX1023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Juarez, J.C.; Maier, E.W.; Kyoo Nam, C.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23,

2081–2087. [CrossRef]
2. Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron.

Adv. 2022, 200078. [CrossRef]
3. Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M.

Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun.
2018, 9, 2509. [CrossRef] [PubMed]

4. Lindsey Nathaniel, J.; Dawe, T.C.; Ajo-Franklin Jonathan, B. Illuminating seafloor faults and ocean dynamics with dark fiber
distributed acoustic sensing. Science 2019, 366, 1103–1107. [CrossRef] [PubMed]

5. Wang, F.; Liu, Z.; Zhou, X.; Li, S.; Yuan, X.; Zhang, Y.; Shao, L.; Zhang, X. Oil and gas pipeline leakage recognition based on
distributed vibration and temperature information fusion. Results Opt. 2021, 5, 100131. [CrossRef]

6. Philipp, R.; René, E.; Katerina, K. Distributed acoustic sensing: Towards partial discharge monitoring. In Proceedings of the 24th
International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September 2015.

7. Chen, Z.; Zhang, L.; Liu, H.; Peng, P.; Liu, Z.; Shen, S.; Chen, N.; Zheng, S.; Li, J.; Pang, F. 3D Printing Technique-Improved
Phase-Sensitive OTDR for Breakdown Discharge Detection of Gas-Insulated Switchgear. Sensors 2020, 20, 1045. [CrossRef]

8. Peng, F.; Duan, N.; Rao, Y.; Li, J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR. IEEE Photonics
Technol. Lett. 2014, 26, 2055–2057. [CrossRef]

http://doi.org/10.1109/JLT.2005.849924
http://doi.org/10.29026/oea.2022.200078
http://doi.org/10.1038/s41467-018-04860-y
http://www.ncbi.nlm.nih.gov/pubmed/29970883
http://doi.org/10.1126/science.aay5881
http://www.ncbi.nlm.nih.gov/pubmed/31780553
http://doi.org/10.1016/j.rio.2021.100131
http://doi.org/10.3390/s20041045
http://doi.org/10.1109/LPT.2014.2346760


Sensors 2022, 22, 1994 12 of 12

9. Huang, M.F.; Salemi, M.; Chen, Y.; Zhao, J.; Xia, T.J.; Wellbrock, G.A.; Huang, Y.K.; Milione, G.; Ip, E.; Ji, P.; et al. First Field Trial of
Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network. J. Lightwave Technol.
2020, 38, 75–81. [CrossRef]

10. Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical fiber sensing for marine environment and marine structural
health monitoring: A review. Opt. Laser Technol. 2021, 140, 107082. [CrossRef]

11. Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Pastor-Graells, J.; Martín-López, S.; Guillén, P.C.; Pauw, G.D.; Smet, F.D.; Postvoll,
W.; Ahlen, C.H.; et al. Real Field Deployment of a Smart Fiber-Optic Surveillance System for Pipeline Integrity Threat Detection:
Architectural Issues and Blind Field Test Results. J. Lightwave Technol. 2018, 36, 1052–1062. [CrossRef]

12. Wang, Z.; Zheng, H.; Li, L.; Liang, J.; Wang, X.; Lu, B.; Ye, Q.; Qu, R.; Cai, H. Practical multi-class event classification approach for
distributed vibration sensing using deep dual path network. Opt. Express 2019, 27, 23682–23692. [CrossRef] [PubMed]

13. He, H.; Shao, L.-Y.; Li, Z.; Zhang, Z.; Zou, X.; Luo, B.; Pan, W.; Yan, L. Self-Mixing Demodulation for Coherent Phase-Sensitive
OTDR System. Sensors 2016, 16, 681. [CrossRef] [PubMed]

14. He, H.; Shao, L.-Y.; Luo, B.; Li, Z.; Zou, X.; Zhang, Z.; Pan, W.; Yan, L. Multiple vibrations measurement using phase-sensitive
OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Opt. Express 2016, 24, 4842–4855.
[CrossRef] [PubMed]

15. Shao, L.; Liu, S.; Bandyopadhyay, S.; Yu, F.; Xu, W.; Wang, C.; Li, H.; Vai, M.I.; Du, L.; Zhang, J. Data-Driven Distributed Optical
Vibration Sensors: A Review. IEEE Sens. J. 2020, 20, 6224–6239. [CrossRef]

16. Wang, Y.; Wang, P.; Ding, K.; Li, H.; Zhang, J.; Liu, X.; Bai, Q.; Wang, D.; Jin, B. Pattern Recognition Using Relevant Vector Machine
in Optical Fiber Vibration Sensing System. IEEE Access 2019, 7, 5886–5895. [CrossRef]

17. Sun, Q.; Feng, H.; Yan, X.; Zeng, Z. Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature
Extraction. Sensors 2015, 15, 5179. [CrossRef]

18. Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-Dimensional CNN-Based Intelligent Recognition of Vibrations
in Pipeline Monitoring With DAS. J. Lightwave Technol. 2019, 37, 4359–4366. [CrossRef]

19. Sha, Z.; Feng, H.; Rui, X.; Zeng, Z. PIG Tracking Utilizing Fiber Optic Distributed Vibration Sensor and YOLO. J. Lightwave Technol.
2021, 39, 4535–4541. [CrossRef]

20. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
22. Shi, Y.; Li, Y.; Zhang, Y.; Zhuang, Z.; Jiang, T. An Easy Access Method for Event Recognition of Φ-OTDR Sensing System Based on

Transfer Learning. J. Lightwave Technol. 2021, 39, 4548–4555. [CrossRef]
23. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
24. Lu, Y.; Zhu, T.; Chen, L.; Bao, X. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. J. Lightwave Technol.

2010, 28, 3243–3249.
25. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

26. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

27. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

http://doi.org/10.1109/JLT.2019.2935422
http://doi.org/10.1016/j.optlastec.2021.107082
http://doi.org/10.1109/JLT.2017.2780126
http://doi.org/10.1364/OE.27.023682
http://www.ncbi.nlm.nih.gov/pubmed/31510269
http://doi.org/10.3390/s16050681
http://www.ncbi.nlm.nih.gov/pubmed/27187396
http://doi.org/10.1364/OE.24.004842
http://www.ncbi.nlm.nih.gov/pubmed/29092312
http://doi.org/10.1109/JSEN.2019.2939486
http://doi.org/10.1109/ACCESS.2018.2889699
http://doi.org/10.3390/s150715179
http://doi.org/10.1109/JLT.2019.2923839
http://doi.org/10.1109/JLT.2021.3073225
http://doi.org/10.1109/JLT.2021.3070583
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

	Introduction 
	Principle of Operation 
	Experiment and Result 
	Distributed Optical Fiber Sensing System & Data Collection 
	Data Pre-Processing 
	Comparison between YOLO and Traditional Detection Algorithms 
	Real-Time Sensing Video Processing 

	Conclusions 
	References

