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Abstract: Malignant melanoma accounts for about 1–3% of all malignancies in the West, especially in
the United States. More than 9000 people die each year. In general, it is difficult to characterize a skin
lesion from a photograph. In this paper, we propose a deep learning-based computer-aided diagnostic
algorithm for the classification of malignant melanoma and benign skin tumors from RGB channel
skin images. The proposed deep learning model constitutes a tumor lesion segmentation model
and a classification model of malignant melanoma. First, U-Net was used to classify skin lesions
in dermoscopy images. We implement an algorithm to classify malignant melanoma and benign
tumors using skin lesion images and expert labeling results from convolutional neural networks. The
U-Net model achieved a dice similarity coefficient of 81.1% compared to the expert labeling results.
The classification accuracy of malignant melanoma reached 80.06%. As a result, the proposed AI
algorithm is expected to be utilized as a computer-aided diagnostic algorithm to help early detection
of malignant melanoma.

Keywords: malanoma; computer aided diagnosis; convolutional neural network

1. Introduction

Malignant melanoma accounts for approximately 1–3% of all the cases of malignant
tumors diagnosed in Western countries. The disease is particularly common among Cau-
casians, and its cases have been increasingly observed in South Korea as well [1]. In the
United States, the International Skin Imaging Collaboration (ISIC) was established as an
international cooperation organization to automatically analyze skin lesions, obtain rele-
vant data, and expand research base for this field [2]. The ISIC has provided approximately
2000 images of malignant melanoma obtained from different clinical centers located in the
world with professional diagnosis results. This study was conducted based on images and
diagnosis results related to dermoscopy, which were provided by the ISIC in 2017 [3].

Malignant melanoma is a malignant skin tumor made of melanocytes. A melanocyte
is a normal cell on the skin or mucous membrane that generates melanin on the skin.
Malignant melanoma refers to cancer caused by such normal melanocytes. Malignant
tumors generated on the skin include malignant melanoma, squamous cell carcinoma, and
basal cell carcinoma. Among these diseases, malignant melanoma has the highest degree
of malignancy. It is the most fatal form of skin cancer and accounts for approximately 75%
of skin cancer deaths [4]. However, it is difficult to visually diagnose malignant melanoma
because of its insignificant contrast effects against the skin and great similarity with benign
skin tumors [5]. Therefore, a dermoscopy technique has been recently adopted in South
Korea and other countries to increase the accuracy of skin cancer diagnosis.

Dermoscopy is a non-invasive skin imaging technique used to obtain enlarged skin
images. Based on this technique, a skin lesion can be enlarged by approximately 10 times
for observation. Dermoscopy is not used as a simple magnifier but as a tool that enables
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the user to observe the epidermis, the boundary between the epidermis and dermis, and
the upper layer of the dermis through the stratum corneum by preventing light reflection
on the skin surface based on mineral oil, alcohol, or water applied on a lesion [6]. Figure 1
shows dermoscopy images of malignant melanoma (Figure 1a) and seborrheic keratosis
(Figure 1b), a type of a benign skin tumor.
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Figure 1. Dermoscopy images of (a) malignant melanoma and (b) a benign skin tumor (seborrheic
keratosis).

An effective treatment method has not been developed to cure malignant melanoma,
which has progressed to a certain degree. However, this disease can be completely treated
when it is diagnosed in an initial stage; thus, it is crucial to accurately diagnose it [1]. For
the diagnosis of malignant melanoma, cancer is generally observed with the naked eye or
based on dermoscopy. When the lesion observed is suspected as malignant melanoma, a
biopsy is carried out to derive more accurate diagnosis. Among the rules applied in the
stage of observing a skin lesion for diagnosis, the ABCDE rule is as follows. First, A is an
asymmetry, which represents asymmetrical properties. Second, B stands for border, which
is irregular properties at the edge. C is color and it means diversity of color. D indicate
diameter, the criterion for diagnosis based on diameter is 6 mm. The last E is evolution and
represents change in size [7].

Malignant melanoma cannot be accurately diagnosed although it is observed based
on dermoscopy and the ABCDE rule. Therefore, this study proposed an algorithm that can
support an expert to analyze malignant melanoma based on a deep neural network (DNN).
In this study, medical images of unspecified patients were utilized as dermoscopy images.
Because these images were obtained from different distances, the D and E rules cannot be
applied. To address this problem, this study conducted processes of splitting a lesion area
and performing training of features from RGB lesion images according to the A, B, and C
rules in a CNN [8].

Machine learning is a field of artificial intelligence where algorithms and techniques
are developed to learn patterns and features from the data provided, independently define
tasks, and perform tasks according to new data. It is also defined as a planning process
for enabling a computer to exhibit optimal performance based on past experience such as
sample data. For example, if a model consists of parameters, learning or training refers to
an action of a computer program for optimizing the model parameters based on training
data or past experience. Subsequently, the trained model can predict results from new data
that were not provided in the training process. Machine learning has recently been applied
to medical technologies including medical image analysis. It has also been widely used for
overall medical image analyses, such as extraction and segmentation of organs or cancer
parts from medical images, image matching, and image search.

In a previous study, a computer-aided decision support system for macro images
taken with a general-purpose camera was proposed [9]. It is said in this paper that
general imaging conditions are negatively affected by non-uniform illumination, which
further affects the extraction of relevant information. To alleviate this, we use a multi-step
illumination compensation approach to process the image to define a smooth illuminated
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surface and extract the infected area using the proposed multi-mode segmentation method.
Lesion information was calculated as a set of features consisting of geometry, photometry,
boundary series, and texture measurements. Information theory methods were used to
reduce the redundancy of feature sets and model classification boundaries to differentiate
between benign and malignant samples using support vector machine, random forest,
neural network, and fast discriminant mixed member-based naive Bayesian classifiers.

Another study combined recent advances in deep learning with established machine
learning approaches to create an ensemble of methods capable of segmenting skin lesions
and proposed a system to analyze the detected area and surrounding tissues for melanoma
detection [10]. The study evaluated using the largest public benchmark data set of dermo-
scopic images containing 900 training images and 379 test images and demonstrated a new
state-of-the-art performance level with an area under the receiver operating characteristic
curve of 7.5%, average precision was improved to 4%.

Existing computer-aided diagnosis methods exhibit limited performance for extracting
optimal features and developing an appropriate algorithm for all the images because
human involvement is required to perform medical image processing and implement a
pattern recognition algorithm [11]. These methods can be properly applied when the image
data are few or when only a certain image needs to be processed [12]. However, these
methods cannot be utilized when medical images captured under the same conditions
show different property cases [13].

The computer-aided diagnosis method based on deep learning, which was proposed
in this study, can perform a training process by itself under the supervision of a human
being using the concept of deeply staking artificial neural networks for fields, including
feature extraction, lesion area extraction, and lesion classification [14]. To this end, U-
Net [15] is utilized to segment a lesion area in a dermoscopy image and extract a lesion
area from the original image. Subsequently, the CNN is utilized to predict malignant and
benign tumors in the RGB image of the extracted lesion area.

2. Lesion Area Segmentation
2.1. Data

In this study, training sets of 2000 images among data provided by ISIC 2017 were
utilized. A training set consists of a dermoscopy image (Figure 2a) showing a lesion, a
binary splitting image (Figure 2b), which is a label for a correct answer, and a label for
a correct answer provided by a medical expert for supervised learning in the CNN [16].
Binary splitting images provided by ISIC 2017 were manually segmented by medical
experts. The datasets used in this study were classified in three cases: malignant melanoma,
seborrheic keratosis, and moles [17]. Because this study focused on diagnosing malignant
melanoma, cases of seborrheic keratosis and moles were analyzed as benign cases.
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based on binary splitting.

Among 2000 dermoscopy images used in this study, the images including an exces-
sive amount of hair (Figure 3a), unnecessary marks for the training process of the model
(Figure 3b,c), and a great amount of magnifier noise (Figure 3d) were removed from the
datasets for deep learning. Consequently, 1161 images were utilized.
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Figure 3. Examples of dermoscopy images excluded from the dataset: images including (a) an
excessive amount of hair, (b) unnecessary marks, (c) an unnecessary mark, and (d) a great amount of
noise.

2.2. Preprocessing

The resolution of original images in the datasets varies; most images exhibit a high
resolution of 1000 × 1000 or more. Therefore, it was deduced that the process where U-Net
learned the original images was inefficient. Thus, original dermoscopy and binary splitting
images were resized to have the resolution of 128 × 128. U-Net proposed by Ronneberger
et al. [18] is a DNN model, which can perform semantic segmentation in an image. Because
it conducts a training process based on unpadded convolution, the size of the output
image according to the input image decreases in proportion to the number of convolutional
layers. Thus, symmetric padding (Figure 4a) was applied to the dermoscopy images used
in this study before they were trained by the model. Moreover, zero padding (Figure 4b)
was applied to the binary splitting images before they were trained by the model. The
dermoscopy images were also normalized to facilitate a smooth training process before
being input in the model.
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2.3. U-Net

U-Net, proposed by Ronneberger et al. [18] in 2015, is a U-shaped CNN used to
perform semantic segmentation in medical images. According to Ronneberger et al. [18],
the CNN is generally used to perform single class label classification for the output of
an image. However, segmentation of a lesion area in a medical image includes regional
information during image processing, requiring class labeling for each pixel [18]. Thus, the
U-Net trained binary splitting images to distinguish lesion areas under the condition of
supervised learning.

The softmax function used in the learning process is expressed based on Equation (1)
and applied to derive an estimated value for the correct answer for the input image.

pk(x) = exp(ak(x))/

(
K

∑
k′=1

exp(ak′(x))

)
(1)

The cross-entropy loss function for each correct answer pixel is expressed based on
Equation (2). A weight, ω(x), is additionally applied to the existing cross entropy loss
function.

E = ∑
x∈Ω

ω(x) log(p`(x)(x)) (2)

Here, ω(x) is a parameter that applies a weight to a pixel located at x among ob-
jects when several objects need to be segmented in an image. It can be calculated using
Equation (3).

ω(x) = ωc(x) + ω0 exp

(
− (d1(x) + d2(x))2

2σ2

)
(3)

Here, ωc(x) is determined according to the frequency of x; that is, it increases when
adjacent pixels have the same class label. The exp equation includes a function (d1), which
indicates the distance of the lesion area located the closest to x and a function (d2), denoting
the distance of the lesion area located the second closest to x. This equation applies a higher
weight as the gap between the pixels included in the lesion area decreases. In Equation (2),
`(x) of p`(x) is a function that returns a k value corresponding to the label of the correct
answer in the softmax function. Therefore, the k value is returned to the log function in the
cross-entropy loss function. Thus, the possibility of deriving a correct answer according to
each pixel was derived to apply the weight of ωc(x) and output the weight map presented
in Figure 5. The weight map determined based on Equations (1)–(3) shows the number of
weights to be applied for the learning process of U-Net.
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It has also been enhanced based on overlapping and dense skip connections to address
the need for more accurate segmentation in medical images. This allowed the model to
more effectively capture the finer details of foreground objects when the high-resolution
feature maps of the encoder network were progressively enhanced before being fused with
the corresponding semantically rich feature maps of the decoder network. Fast delivery
of high-resolution feature maps directly from the encoder to the decoder network, fusing
semantically different feature maps [19].

It consists of an encoder and decoder connected via a series of nested dense convolu-
tion blocks. The main idea is to bridge the semantic gap between the functional maps of the
encoder and decoder before fusion. For example, the semantic spacing between (x0,0,x1,3)
is connected using a dense convolution block with three convolution layers.

xi,j =

γ(xi−1,j) j = 0

γ

([[
xi,k
]j−1

k=0
, υ(xi+1,j−1)

])
, j > 0

(4)

where function γ is a convolution operation followed by an activation function and υ
denotes an up-sampling layer. By default, a node at level j = 0 receives only one input from
the previous layer. Two of the encoder nodes at level j = 1 receive inputs from the encoder
subnetwork, but in two successive levels a node at level j > 1 receives j + 1 inputs, of which
j inputs are from the previous j node. output. The last input in the same skip path is the
up-sampled output from the lower skip path.

In addition, we suggest using deep supervision. Due to the nested skip paths, U-Net
generates full resolution feature maps at multiple semantic levels that allow for in-depth
supervision. A combination of binary cross entropy and dice coefficients was added as a
loss function to each level of meaning.

L(Y, Ŷ) = − 1
N

N

∑
b−1

(
1
2
·Yb · log Ŷb +

2 ·Yb · Ŷb

Yb + Ŷb

)
(5)

Ŷb denote the flatten predicted probabilities and Yb denote the flatten ground truths of
bth image respectively, and N indicates the batch size.

2.4. Learning by U-Net

The hyper-parameter conditions (Table 1) for U-Net used in this study and its structure
and processing procedures (Figure 5) are as follows.

Table 1. Hyper-parameter conditions for U-Net.

Layer 3
Feature 64

Filter Size 3 × 3
Pool Size 2 × 2

Stride 1
Optimizer ‘Adam’

2.5. U-Net Training Results and Analysis

When symmetric padding is applied in the pre-processing stage, the skin lesion area
in the image is partially padded at the edge of the image as if it were reflected on a mirror.
Because the symmetric padding method can affect the image output by the U-Net model,
the input images were set to 170 × 170 in size, considering the size of the output images for
that of the input images. The dermoscopy images with the size of 170 × 170, which were
pre-processed and output, were also processed by U-Net to be output in the size of 128 ×
128. This size was consistent to that of the initially resized images. The symmetric padding
area did not affect the output results. The segmentation performance of the proposed
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method was calculated based on a dice similarity coefficient. The calculation equation is
expressed based on Equation (6). Here, P is a segmentation area predicted by the U-Net
model, and G is a labeling segmentation area suggested by a medical expert. In the dice
method, a value closer to 100 indicates more excellent segmentation performance.

DICE(%) = (2× (P ∩ G)/(P + G))× 100 (6)

Table 2 shows the ratio of the dice value based on all the datasets.

Table 2. Ratio of the dice value based on all the datasets.

Ratio of the Dice Value Based on All the Datasets (%)

Ratio of the dice value at 90% or higher 42.2%
Ratio of the dice value at 80% or higher 25.8%
Ratio of the dice value at 70% or higher 17.4%
Ratio of the dice value at 70% or below 14.3%

The average, maximum, and minimum dice values were 83.45%, 99.24%, and 9.58%,
respectively. These values indicated that the segmentation performance in most images
was satisfactory except in special cases. Figure 6 shows a dermoscopy image (Figure 6a),
a binary splitting image with a dice value of 81.1% (Figure 6b), and an expert’s labeling
image (Figure 6c).
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Figure 6. Results of professional labeling and U-Net images obtained based on a dermoscopy image.
Images obtained based on (a) dermoscopy, (b) splitting image, and (c) labeling.

In Figure 7, the lesion area (Figure 7a) extracted based on the expert labeling image is
compared with the lesion area (Figure 7b) extracted based on the binary splitting image
predicted by the U-Net model. Because the dice value was 81.1%, it was not analyzed as
high. However, as indicated in Figure 7, the method based on the U-Net also extracted the
lesion area precisely.
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As shown in Figure 8, satisfactory segmentation performance was derived despite
the presence of noise such as hair in the case (Figure 8a) where the lesion area was clearly
contrasted from the skin in terms of color. However, the segmentation performance varied
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sensitively according to noise such as hair in the case (Figure 8b) where the lesion area was
unlikely to be distinguished from the skin.
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3. Classification of Lesion Segmented Images
3.1. Convolution Calculation

This study proposed a method that can extract an RGB lesion image from a der-
moscopy image, learn features related to the A, B, and C rules, and assist a medical expert
to diagnose malignant melanoma based on the data trained [20]. The CNN is a type of
artificial neural network that performs convolution operations. Convolution calculation
facilitates machine learning under the condition where spatial information on data is main-
tained. In the convolution process, a filter or kernel with a certain height and width is
moved based on a specific stride and applied to the input data [21].

As introduced above, convolution is a process of extracting the features of an image.
A feature map in the CNN refers to the result of adding bias to the output. The size of
the matrix derived through convolution decreases as well as the resolution of the image
derived through convolution. To create the resolution of the input and output images, zero
padding is generally applied to the input image prior to the convolution process. Figure 9
shows a dermoscopy image (Figure 9a) and a feature map (Figure 9b,c). As shown in this
figure, the feature map varies according to the kernel values applied to the image.
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3.2. CNN

As described in Section 3.1, various feature maps can be output according to the kernel
values. Because it is crucial to identify a feature map that is optimized to classify certain
images, the CNN learns the parameter and bias values of the kernels that can result in
displaying the optimized feature map for classification. A loss function defined in the CNN
is consistent to the cross entropy loss function used in U-Net. However, the former adopts
a method of comparing labels based on the image, unlike the latter, which adopts a method
of comparing labels based on each pixel; that is, the former compares a dermoscopy image
with a class such as a benign or malignant case.

3.3. Training by the CNN

In this study, the CNN model used four convolution layers and 64 kernels to output
the feature map. Layers, such as max pooling and batch normalization [22], were added to
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facilitate a smooth training process of the model, and the ReLU function was applied as
an activation function. Nine hundred and twenty-eight out of 1161 images were used as a
training set for the model, and the other 233 images were used as a verification set in the
training process.

The 1161 dermoscopy images and diagnosis results based on the images were used as
input data in the CNN. Figure 10 briefly presents the CNN model used in this study.
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3.4. CNN Training Results and Analysis

The training results showed that the accuracy based on the training set was 80.06%
and that based on the verification set was 72.10%. To examine the training process of the
model, the loss (Figure 11a) and accuracy graphs (Figure 11b) of the model were output
and analyzed.
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The biggest limitation that can be confirmed from the current experimental results
seems to be the lack of the number of samples. In the existing CNN learning, techniques
such as image augmentation exist to solve this problem, but they are not suitable for
application to clinical data. Therefore, we concluded that it is necessary to obtain more
data for CNN training in order to correct the experimental results.

As shown in Figure 11, the loss and accuracy graphs of the model seemed to converge
and become accurate in the initial training stage. However, a change did not occur as the
training was repeated for a certain period. Thus, the accuracy derived based on the training
and verification sets in the proposed model cannot be regarded as the result of the training
performed by the model.
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4. Conclusions

This paper proposed a malignant melanoma classification algorithm based on deep
learning. It is important to diagnose and treat malignant melanoma in the initial state;
however, the identification of this disease only with the naked eye is limited. Therefore,
it tends to be diagnosed after progressing to a certain degree. This study verified that a
training method based on two deep learning models can contribute to the early diagnosis
of malignant melanoma through the extraction and classification of lesion areas. Among
the deep learning models, the result of performing a training process based on U-Net
indicated that satisfactory segmentation performance was achieved in most images except
for a few images where the lesion areas were unlikely to be defined through the application
of dermoscopy.

Several researchers have developed models that exhibit satisfactory performance for
analyzing malignant melanoma based on deep learning. Therefore, it is expected that
more accurate training results can be derived through the application of models such as
deep CNNs, which are characterized by the increased stacking of layers of the CNN and
represented by ResNet and GoogleNet. In this paper, a limited number of samples were
used and in the future work, we will increase the number of samples and compare the
algorithm.

Author Contributions: Conceptualization, C.-I.K. and J.-H.L.; methodology, E.-B.P.; software, S.-M.H.;
validation, J.-H.L. and C.-H.W.; writing—original draft preparation, C.-I.K.; writing—review and
editing, J.-H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1D1A1B04031182).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kye-yong, S.; Kyeongcheon, J.; Kwanghyun, C.; Jegeun, C.; Eui-Geun, H. Clinicopathological analysis on the 104 cases of

malignant melanoma. Korean J. Pathol. 1997, 31, 566–573.
2. ISIC Archive. Available online: https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main (accessed on 9

August 2021).
3. Codella, N.C.F.; Gutman, D.; Emre Celebi, M.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.K.;

Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International
Symposium on Biomedical Imaging, Washington, DC, USA, 4–7 April 2018; pp. 168–172.

4. Jerant, A.F.; Johnson, J.T.; Sheridan, C.D.; Caffrey, T.J. Early detection and treatment of skin cancer. Am. Fam. Phys. 2000, 62,
381–382.

5. Yuexuang, L.S. Skin Lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [CrossRef]
[PubMed]

6. Bowling, J. Diagnostic Dermoscopy: The Illustrated Guide; Wiley-Blackwell: Hoboken, NJ, USA, 2011.
7. Korean Society of Skin Cancer; Korean Dermatological Association. Skin Cancer in Koreans; Soomoonsa: Gyeonggi, Korea, 2013.
8. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
9. Gautam, D.; Ahmed, M.; Meena, Y.K.; Haq, A.U. Machine learning-based diagnosis of melanoma using macro images. Int. J.

Numer. Method Biomed. Eng. 2018, 34, e2953. [CrossRef] [PubMed]
10. Codella, N.C.F.; Nguyen, Q.D.; Pankanti, S.; Gutman, D.; Helba, B.; Halpern, A.; Smith, J.R. Deep learning ensembles for

melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 61, 1–5. [CrossRef]
11. Hinton, G.E. Learning multiple layers of representation. Trends Cogn. Sci. 2007, 11, 428–434. [CrossRef] [PubMed]
12. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]

[PubMed]
13. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the International Conference

on Machine Learning, Haifa, Israel, 21–24 June 2010.

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
http://doi.org/10.3390/s18020556
http://www.ncbi.nlm.nih.gov/pubmed/29439500
http://doi.org/10.1109/5.726791
http://doi.org/10.1002/cnm.2953
http://www.ncbi.nlm.nih.gov/pubmed/29266819
http://doi.org/10.1147/JRD.2017.2708299
http://doi.org/10.1016/j.tics.2007.09.004
http://www.ncbi.nlm.nih.gov/pubmed/17921042
http://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513


Sensors 2021, 21, 5551 12 of 12

14. Dahl, G.E. Improving DNNs for LVCSR using rectified linear units and dropout. In Proceedings of the ICASSP, Vancouver, BC,
Canada, 26–31 May 2013.

15. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

16. Bi, L.; Jung, Y.; Ahn, E.; Kumar, A.; Fullham, M.J.; Feng, D. Dermoscopic image segmentation via multistage fully convolutional
networks. IEEE Trans. Biomed. Eng. 2017, 64, 2065–2074. [CrossRef] [PubMed]

17. Bi, L.; Kim, J.; Ahn, E.; Feng, D.; Fullham, M.J. Automatic melanoma detection via multi-scale lesion-biased representation and
joint reverse classification. In Proceedings of the IEEE International Symposium on Biomedical Imaging, Prague, Czech Republic,
13–16 April 2016.

18. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

19. Zhou, Z.; Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In 4th
International Workshop on Deep Learning in Medical Image Analysis; Springer: Cham, Switzerland, 2018; pp. 3–11.

20. Bojarski, M.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.D.; Muller, U.; Zieba, K. Visualbackprop: Visualizing cnns
for autonomous driving. arXiv 2016, arXiv:1611.05418.

21. Codella, N.C.F.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep learning, sparse coding, and SVM for melanoma
recognition in dermoscopy images. In International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Switzerland,
2015; pp. 118–126.

22. Cicero, F.; Oliveira, A.; Botelho, G. Deep learning and convolutional neural networks in the aid of the classification of melanoma.
In Proceedings of the Conference on Graphics, Patterns and Images, Sao Jose dos Campos, Brazil, 4–7 October 2016; pp. 1–4.

http://doi.org/10.1109/TBME.2017.2712771
http://www.ncbi.nlm.nih.gov/pubmed/28600236

	Introduction 
	Lesion Area Segmentation 
	Data 
	Preprocessing 
	U-Net 
	Learning by U-Net 
	U-Net Training Results and Analysis 

	Classification of Lesion Segmented Images 
	Convolution Calculation 
	CNN 
	Training by the CNN 
	CNN Training Results and Analysis 

	Conclusions 
	References

