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Atrial fibrillation (AF) is the most common arrhythmia and causes
significant morbidity and mortality. Early identification of AF may
lead to early treatment of AF and may thus prevent AF-related
strokes and complications. However, there is no current formal,
cost-effective strategy for population screening for AF. In this re-
view, we give a brief overview of targeted screening for AF, AF
risk score models used for screening and describe the different
screening tools. We then go on to extensively discuss the potential
applications of machine learning in AF screening.
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Introduction
Atrial fibrillation (AF) is the most common arrhythmia and
causes significant morbidity and mortality, including strokes,
heart failure, cognitive decline, depression, impaired quality
of life, and hospitalizations.1 AF can be difficult to identify,
as it can be paroxysmal and patients may be asymptomatic.
Individuals with AF have a 5-fold increased risk of devel-
oping strokes, which can be reduced significantly (by up to
two-thirds) with appropriate anticoagulation.2 However,
currently, only opportunistic screening for AF is recommen-
ded by the European Society of Cardiology (ESC)1 and UK
National Institute for Health and Care Excellence (NICE)3

and relies on patients presenting to general practices them-
selves, while in the United States, the US Preventive Services
Task Force does not recommend AF screening.4 In this
review, we will discuss how AF screening has previously
been carried out and the current application of machine
learning (ML) in AF screening.
Recent studies on clinical outcomes of AF
screening
Two recent studies reported the long-term clinical outcomes
of AF screening. The STROKESTOP5 study performed in
Sweden recruited 75- to 76-year-old participants between
2012 and 2014. They were randomized to a screening group
or a control group (usual care). Individuals in the screening
group were screened for AF over a 2-week period twice daily,
using a single-lead electrocardiogram (ECG) recorder,
Zenicor. There was a small net benefit of screening with
regard to the primary endpoint, which was a composite of
ischemic or hemorrhagic stroke, systemic embolism,
bleeding requiring hospitalization, and all-cause death.

The LOOP study,6 carried out in neighboring Denmark,
also looked at long-term clinical outcomes of AF screening.
In this study, participants aged 70–90 years with at least 1
additional stroke risk factor were recruited. They were
randomized in a 1:3 ratio to an implantable loop recorder
monitoring group or control group (usual care). If a minimum
of 6 minutes of AF was detected, anticoagulation was recom-
mended. However, in this study, there was no reduction in
stroke or systemic arterial embolism with screening.

The STROKESTOP study showed benefit for systematic
AF screening, while the LOOP study did not. It has been
postulated that a reason for this was that the background
AF detection rate in the control group in LOOP was signifi-
cantly higher than would be expected, thus reducing the
benefit of AF screening. The duration of 6 minutes of AF
requiring anticoagulation in LOOP may have also been too
short a duration and perhaps anticoagulation should only be
considered for longer periods of AF, although the minimum
duration of AF that should require anticoagulation is still un-
known.
Targeted AF screening groups
Although there may be some clinical benefit in screening for
AF, it is not cost-effective to conduct systematic screening, as
only 1 case is identified after screening 145 individuals.7

Different screening studies have chosen specific groups of
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KEY FINDINGS

� There may be long-term clinical benefits of atrial fibril-
lation (AF) screening suggested by the recent STROKE-
STOP study, but it is currently not cost-effective to
conduct systematic AF screening.

� Machine learning can be applied to AF screening to help
with AF risk prediction or to improve the automated
diagnosis of AF using different rhythm monitoring mo-
dalities.

� Machine learning AF risk prediction can be used to pre-
dict incident, paroxysmal, and future AF. Prediction
models have been developed using 12-lead electrocar-
diograms (ECGs), ambulatory ECGs, and electronic
health records.

� Machine learning automated AF diagnosis has been
achieved using a variety of rhythm modalities including
12-lead ECGs, ambulatory ECGs, and photoplethysmog-
raphy.
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individuals for targeted screening to make systematic
screening more cost-effective. The criteria for inclusion
into these studies often have similarities, such as age, a
certain CHA2DS2-VASc score or prior history of stroke.

It is known that the incidence of AF increases with age.
Many screening studies choose age 65 as the minimum age
to enter their screening study for AF. However, 1 meta-
analysis of single–time point AF screening studies calculated
the number needed to screen (NNS) to identify 1 case of AF
in a population greater than 65 years old was still as high as
69, with the number rising to 83 to identify 1 treatable new
AF case. This number increased the lower the age of the pop-
ulation chosen to screen.8

Another approach that has been used is to screen for AF
based on the CHA2DS2-VASc score, which will be discussed
in the next section, while others have used a prior history of
stroke as an inclusion criterion for AF screening, as AF
increases one’s risk of a stroke by 5-fold. However, despite
targeting screening to the above groups, a cost-effective
screening program with sufficiently low NNS has not been
developed. Therefore, more work needs to be done to identify
appropriate individuals for systematic targeted screening.
Risk score models to target AF screening
Over the last 15 years, several clinical risk score models have
been developed to predict the likelihood of the development
of AF. They can provide a 5-year or 10-year prediction risk of
AF, and they are listed in Table 1. Most of these were devel-
oped from data from particular population cohorts. The
earlier risk scores were developed in the United States (US)
from population cohorts, including FRAMINGHAM,9

ARIC,10 and CHARGE-AF,11 which have C-statistic values
of 0.78, 0.78, and 0.765, respectively.
Following the development of a clinical risk score model
from a particular population cohort, the model is usually eval-
uated on a different population cohort where the data are
readily available. However, it has been recurrently found
that the performance of a model is not as accurate as when
performed on the original population cohort. The C-statistic
value is often greater than 0.75 in the original population
cohort and this drops below 0.75 when external validation
of the model is performed. AGES, the Rotterdam study,
and the EPIC Norfolk cohort are examples of population
cohorts used for external validation. Recalibration or modifi-
cations of the model are required to maintain adequate perfor-
mance.12,13 There are many differences in clinical variables
between the cohorts that could affect the performance of
the model, including median age, proportions of different
ethnicities, and prevailing cardiovascular risk factors within
the population cohort.

The CHA2DS2-VASc risk score is a score designed for
stroke risk prediction in individuals with AF. Although
CHA2DS2-VASc risk score is not formally validated for
AF risk prediction, it has been used to identify individuals
to screen for AF. It has been tested on a retrospective Israeli
database to give an area under the receiver operating charac-
teristic curve (AUROC) of 0.744 for prediction of new-onset
AF.14 There are also a few clinical risk score models devel-
oped from Asian population cohorts, which include a Japa-
nese simple risk score,15 Suita score,16 C2HEST,17 and the
Taiwan AF score,18 which were developed more recently.
There was a need for these, as previous risk scores have
been developed from populations where Asian groups were
underrepresented.

As listed in Table 1, there are now many clinical risk score
models that have been developed for AF risk prediction.
However, they are not applicable worldwide, as risk factors
for AF will vary from population to population. One study
compared 9 clinical risk score models on the ARIC cohort
and found that only 5 risk scores were superior to using
age alone. The best risk model, CHARGE-AF, was only
able to identify 82% of the AF patients in the ARIC group.19

Many risk score models have attempted to incorporate exam-
ination findings, blood tests, ECG data, and echo data
without improving the performance of the risk score model
significantly. It is also difficult to obtain these types of data
for individuals, as they are often missing and therefore affect
the performance of the risk score model. These factors have
limited the ability of these clinical risk score models to be
used effectively for systematic AF screening.
Screening tools to diagnose AF
There has been a recent growth in the number of technologies
available for heart rhythm monitoring, which provides more
opportunities for ambulatory monitoring, therefore
increasing the likelihood of detecting AF. There are currently
over 400 wearable devices available for monitoring and
detection of AF.1 Clinically validated mobile health technol-
ogies include handheld or smartphone single-lead ECG



Table 1 Risk score models for atrial fibrillation detection

Risk score model Factors Internal validation External validation Prediction

FRAMINGHAM9 Age, blood pressure,
hypertension, body mass
index, PR interval,
murmur, age of heart
failure

C-statistic 0.78 C-statistic 0.65–0.73
Montefiore Medical Center
(Bronx County): 0.734/
0.72412

ARIC 0.6810

AGES 0.65211

Rotterdam 0.68611

CHARGE-AF
0.73411

10 -year risk of AF

ARIC10 Age, race, height, systolic
blood pressure,
hypertension medication,
smoking, murmur, left
atrial enlargement, LVH,
diabetes mellitus, heart
failure, age of coronary
heart disease

C-statistic 0.78 - 10-year risk of AF

CHARGE-AF11 Age, race, height, weight,
systolic blood pressure,
diastolic blood pressure,
murmur, hypertension
medication, diabetes
mellitus, heart failure,
myocardial infarction,
LVH on ECG, PR interval

C-statistic 0.765 C-statistic 0.66–0.81
Montefiore Medical Center
(Bronx County): 0.707/
0.69112

ARIC: 0.775
FHS: 0.75
EPIC Norfolk: 0.81/0.8 (2-
fold overestimation of
AF)13

MESA: 0.77927

Electronic health record
only: 0.747/0.75338

5-year risk of AF

CHA2DS2-VASc Congestive heart failure,
hypertension, age,
diabetes mellitus,
vascular disease, stroke,
sex

- FHS: 0.71
ARIC: 0.66
Israeli database: 0.744014

Chinese cohort: 0.68717

Korean cohort: 0.63717

Electronic health record
only: 0.701/0.70238

Stroke risk

HATCH39 Heart failure, age, previous
transient ischemic attack,
chronic pulmonary
obstructive disease,
hypertension

- Taiwan cohort: 0.771140 Progression of paroxysmal
AF to persistent AF

Suita16 Age, systolic hypertension,
weight, alcohol intake,
smoking, other
arrhythmia, coronary
artery disease, cardiac
murmur

C-statistic 0.749 - 10-year risk of AF

Japanese simple risk
score15

Age, sex, waist
circumference, diastolic
blood pressure, alcohol
intake

Added model: ECG variable

C-statistic 0.77
Added model C-statistic
0.79

- 7-year risk of AF

C2HEST17 Coronary artery disease,
chronic obstructive
pulmonary disease,
hypertension, elderly,
systolic heart failure,
thyroid disease

C-statistic 0.75 Korean cohort: 0.65
Taiwan cohort: 0.789540

Electronic health record
only: 0.735/0.75438

AF risk

Taiwan AF score18 Age, sex, hypertension,
heart failure, coronary
artery disease, end-stage
renal disease, alcoholism

AUROC 0.862 at 1 year,
0.755 at 16 years

- 1- to 16-year risk of AF

138 Cardiovascular Digital Health Journal, Vol 3, No 3, June 2022



Table 1 (Continued )

Risk score model Factors Internal validation External validation Prediction

SAAFE19 Age, height, weight,
congestive heart failure,
coronary artery disease,
chronic obstructive
pulmonary disease,
cardiac arrest, coronary
artery stenting, stroke,
diabetes, kidney
transplant

C-statistic 0.785/0.804 ARIC 0.766 Incident AF risk

Electronic health record
risk score38

Sex, age, race, smoking,
height, weight, blood
pressure, cardiovascular
and cardiometabolic
factors

C-statistic 0.77 C-index 0.80841 5-year risk of AF

AF 5 atrial fibrillation; AUROC 5 area under the receiver operating characteristic curve; ECG 5 electrocardiogram; LVH 5 left ventricular hypertrophy.
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recorders, smartwatch single-lead ECG recorders, photople-
thysmography (PPG) smartwatches or smartphones, ECG
patch monitors, blood pressure monitors, and external Holter
monitors. Several studies have been performed for each mo-
dality showing that they are feasible to use for AF detection.
The summaries of their results are listed in Table 2. A meta-
analysis suggests that the screening modality does not influ-
ence the yield of screening20; therefore, with the appropriate
targeted screening group, the use of any of these mobile
health technologies could be very promising.
Machine learning
ML is one of the approaches of artificial intelligence, which
itself is a broader concept of automation and prediction. Arti-
ficial intelligence has been proven beneficial in a wide range
of applications, from trivial tasks for humans such as recog-
nizing faces in an image or video to understanding large data
to make decisions. There are various models for ML, which
are shown in Table 3.

ML algorithms can be applied to a wide range of health-
care data, which include and are not limited to mobile health
technology data, electronic health records, biomedical imag-
ing data, implanted electronic device data, biochemical data,
and genomic data. This makes ML invaluable for automated
detection of pathology or conditions, for risk prediction of
future conditions, and for prediction of those who would
benefit from specific treatment strategies. Some examples
of the uses of ML for AF include prediction of recurrence
of AF following AF ablation,21 improving cardiac activation
mapping for AF,22 prediction of successful electrical cardio-
version of AF,23 and AF screening. Thus far, supervised and
unsupervised ML have been used for AF screening. ML can
be applied to AF screening to help with 2 different tasks: (1)
to identify the individuals with the highest risk for AF to
target the screening to minimize the number needed to screen,
and (2) to improve the automated diagnosis of AF using data
from different rhythm monitoring modalities. We discuss
both these applications below. Figure 1 shows a summary
of ML in AF screening.
Machine learning for AF risk prediction to target AF
screening
Several studies have looked at the use of ML to predict future
AF using 12-lead ECGs, electronic health records, or sinus
rhythm ambulatory ECGs. These approaches can be used
to help target any screening efforts to maximize the efficiency
of screening and the number of new AF cases detected.
Machine learning for AF risk prediction using 12-lead ECGs
ML has been used to predict future or paroxysmal AF from
sinus rhythm ECGs in 3 studies. The first one of these is
from the Mayo Clinic.24 This study used 649,931 normal
sinus rhythm ECGs from 180,922 patients collected over a
24-year period. Convolutional neural networks were used
to create an algorithm that predicted from a sinus rhythm
ECG the likelihood of paroxysmal AF. The AUROC was
0.87 and the sensitivity was 0.79. The algorithm was further
validated on the Mayo Clinic Olmsted Study of Aging
cohort.

Another study25 looked at predicting current AF and
future AF from a sinus rhythm ECG with 2 separate models.
The study used 12,863 sinus rhythm ECGs without a history
of structural heart disease from the Shinken Database
2010–2017. The predictive models were based on a random
forest algorithm. This study also explored ECG parameters
that could affect predictive capability using logistic regres-
sion and Spearman coefficient of correlation. It identified
that the P wave, QRS, and ST-T segment were similar in their
parameter importance to the model. The C-statistic for
prediction of current paroxysmal AF was 0.913 and the
C-statistic for prediction of future AF was 0.991.

The third study that predicts the future risk of AF from the
ECG is from Geisinger.26 This study used 1.6 million resting
12-lead ECG traces from 430,000 patients collected over a
35-year period for training, and then using new-onset AF at
1 year for testing. This model achieved sensitivity of 0.69,
specificity of 0.81, and AUROC of 0.85. In addition, this
model has been tested on patients who experienced an AF-
related stroke within 3 years of the indexed ECG, and it



Table 2 Devices to detect and screen for atrial fibrillation

Rhythm modality Reference Results

Handheld/smartphone
single-lead ECG
recorder

William et al
2018,42

Maputo et al
202043

Algorithm sensitivity
0.966

Algorithm specificity
0.94

Physician review
sensitivity 1

Physician review
specificity 0.987

Handheld/smartphone
single-lead ECG
recorder

Vaes et al
201444

Sensitivity 0.94
(0.87–0.98)

Specificity 0.93
(0.85–0.97)

Smartwatch single-lead
ECG recorder

Wasserlauf
et al 201945

Sensitivity 0.975 when
compared to
implantable cardiac
monitor

Smartphone PPG Brasier et al
201946

Sensitivity 0.915
Specificity 0.996

Smartphone PPG Proesmans
et al 201947

Sensitivity 0.96
Specificity 0.97

Smartphone PPG Poh et al
201848

Sensitivity 1
Specificity 0.996

Smartphone PPG
(iPhone 4S)

McManus et al
201349

Sensitivity 0.962
Specificity 0.975

Smartphone PPG
(iPhone 4S)

Lee et al
201350

Sensitivity 0.7461–
0.9763

Specificity 0.9961–1
Smartwatch PPG Bashar et al

201951
Sensitivity 0.982
Specificity 0.974

Smartwatch PPG D€orr et al
201952

Sensitivity 0.937
(0.898–0.964)

Specificity 0.982
(0.958–0.994)

Smartwatch PPG51 Bumgarner
et al 201853

Sensitivity 0.93
(0.86–0.99)

Specificity 0.84
(0.73–0.95)

ECG patch monitor Okubo et al
202154

Sensitivity 0.98
Specificity 0.982

Blood pressure monitor Wiesel et al
200955

Sensitivity 0.95
Specificity 0.86

ECG 5 electrocardiogram; PPG 5 photoplethysmography.
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predicted new-onset AF with accuracy of 62% in this sub-
group of patients. This suggests that the model could also
help predict future AF-related strokes. However, all these
models have yet to be used prospectively.
Machine learning for AF risk prediction using ambulatory ECGs
MLhas been applied to sinus rhythm segments of ambulatory
ECGs to predict the presence of paroxysmal AF.
Supplemental Table 1 summarizes these studies. The preced-
ing sinus rhythm segments can be used to predict the proba-
bility of an incoming episode of paroxysmal AF. There are 2
approaches for this, which are using heart rate variability
features or premature atrial complexes (PACs) features.
The initial approach was using PACs, as it is found that there
is an increase in PACs preceding a paroxysmal AF episode.
However, recent approaches have involved using heart rate
variability features, which include time domains and fre-
quency domains. The accuracy of models developed in the
last year for predicting paroxysmal AF have been above 0.9.

Machine learning for AF risk prediction using electronic health
records
It is not possible for everyone to have an ECG or a physiolog-
ical signal recording to predict the risk of AF. Another
approach is to use healthcare data from electronic healthcare
records to identify possible patients that may have AF. This
would reduce the number of individuals needed to screen.
The use of ML in combination with clinical risk scoring
shows potential for reducing the NNS and improving the
effectiveness of AF screening.

Random survival forests have been used in the Multi-
Ethnic Study of Atherosclerosis (MESA) cohort27 to identify
highly predictive variables for the prediction of AF. These
variables included coronary calcium score, carotid measure-
ments, blood test results, ECG measurements, and echocar-
diographic measurements. The variables were combined to
the CHARGE-AF enriched score (CHARGE-AF score with
NT-proBNP) to create a new score, which gave a C-statistic
of only 0.806. The C-statistic for the CHARGE-AF enriched
score was 0.804. In this case, the use of ML was not benefi-
cial in improving AF risk prediction.

There have been 4 further AF screening studies that have
applied an ML screening tool previously using data from
healthcare databases. They all compared different ML
models to find the most optimum model for AF screening
and are summarized in Supplemental Table 2.

A team at the University of Colorado developed their own
MLmodel for 6-month risk prediction of AF using electronic
health records.28 They compared the use of different ML
models, including Naïve Bayes, logistic regression, random
forest, shallow and deep neural networks, and gradient-
boosted machine, and found that single-layer neural
networks and random oversampling was the best model.
The sensitivity was 75.2% and the specificity was 84.9%
The AUROC was 0.8. However, they found that a simple
logistic regression model using known clinical risk factors
performed nearly as well as their ML model. This study,
however, did not take into account the time-varying effects
of the variables.

Another group,29 using secondary care data from Japanese
databases, also developed their own ML methods for the
identification of nonvalvular AF patients. The ML models
used included deep learning with lasso regression. Stacking
models of multiple single classifiers were also used,
including lasso regression, ridge regression, support vector
machine, random forest, deep learning, AdaBoost, and
gradient boosting. The AUROC was greater than 0.8 for
each individual model and, for stacking models, was as
high as 0.9. The sensitivity varied between 0.09 and 0.84.
The specificity varied between 0.79 and 0.99 for each model,
while for stacking models they were 0.8 or above. The best
model was a stacking model that included deep learning
(neural networks) with lasso regression.



Table 3 Examples of machine learning and deep learning models

Machine learning model Principle

Traditional models
Logistic regression Uses a linear combination of

variable with logistic
function for the
classification

Decision trees / random forest Uses the binary tree–based
approach

Naïve Bayes Uses probabilistic approach–
based Bayes theorem and
assumes that all the input
variables are independent

Linear discriminant analysis A dimensionality reduction
method for classification.
It looks for linear
combinations of variables
that best explain the data,
and separates 2 or more
classes of objects

Support vector machines Uses a kernel-based
hyperplane that separates
the data points with
maximum margin

K-nearest neighbor Uses the distance (eg,
Euclidian) of a given data
point to K nearest data
points using known data
points (training set) to
predict the class/value. It
is based on assumption
that data points in near
proximity have similar
values

Multilayer perceptron Fully connected neural
networks

Deep learning model
Deep neural network Originated from multilayer

perceptron, uses different
architectures and
methods of weight
sharing

Convolutional neural
networks

ResNet Uses shared weights to
exploit translation
invariance in convolution
approach. ResNet uses
skip connections, U-Net
architecture is used to
label pixels of an image,
widely used for image
segmentation

U-Net

Recurrent neural
networks

GRU Uses temporal dynamic
behavior of data with
recursive operations. It is
efficient to carry the
useful information over a
long time using GRU and
LSTM mechanisms.
Transformers also process
the temporal input data
using attention
mechanism, which allows
it to handle very large
temporal data.

LSTM
Transformers

(Continued )

Table 3 (Continued )

Machine learning model Principle

Generative models Auto-
encoders,
GANs

Generative models are based
on approach to learn the
distribution of given
dataset, which can be
used to reduce the
dimension of datasets
(eg, auto-encoders) or to
generate new dataset
(GANs)

GRU5 gated recurrent units; LSTM 5 long short-term memory; GANs 5
generative adversarial networks.
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The most recent study30 to develop an ML model to apply
to electronic healthcare records compared only different
logistic regression models. The healthcare records used were
derived from the Indiana Network for Patient Care. The best
model, the UNAFIED model, used 10 variables and had a
C-statistic of 0.8061 following validation phase. The model
was implemented prospectively as part of a 6-week pilot study
on the Eskenazi Health Information Systems. However, the
prospective patients identified did not undergo further moni-
toring, screening, or intervention to confirm if they had AF.

Our group recently helped to develop and optimize
another ML algorithm to identify individuals at highest risk
of AF. The algorithm was trained by using a dataset from a
large United Kingdom primary care database called UK
Clinical Practice Research Datalink.31 It was created using
time-varying neural networks and the published AF risk
score models, Framingham, ARIC, and CHARGE-AF. Base-
line ML models were compared initially, which included
neural networks, lasso regression, random forest, and support
vector machine. Time-varying covariates were then consid-
ered and added. The AUROC was 0.827 and the NNS was
9. We then evaluated and validated this ML algorithm on
the separate DISCOVER database retrospectively.32 The
DISCOVER database contains primary care data from over
2.5 million people living in northwest London. The AUROC
increased to 0.87 and the NNS remained at 9. We also
evaluated and validated the ML algorithm on our secondary
care database retrospectively.33 The sensitivity was 0.5 and
the specificity was 0.95 with an NNS of 5. It showed an addi-
tional 5444 individuals who had AF that were not identified
by algorithm based on their primary care data alone. Howev-
er, as with the other ML algorithms, this has not yet been
tested prospectively.
Machine learning to improve automated AF
diagnosis
There are a wide range of rhythm monitoring modalities
including ECGs used for AF detection. Another application
of ML in AF screening is to improve the accuracy of
automated AF diagnosis using different rhythm monitoring



Figure 1 Summary of machine learning (ML) for atrial fibrillation (AF) screening. There are 2main categories: AF risk prediction and automatedAF diagnosis.
AF risk prediction involves the application of ML to electronic health records, normal sinus rhythm ambulatory electrocardiograms (ECGs), and normal sinus
rhythm 12-lead ECGs to identify the target group for further screening. For automated AF diagnosis, ML is applied to different rhythm monitoring modalities to
increase efficiency and the speed of AF diagnosis. BCG5 ballistocardiography; EHR5 electronic health records; NSR5 normal sinus rhythm; PPG5 photo-
plethysmography.
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modalities, which could have the potential to increase the
numbers of individuals screened and allow quicker popula-
tion or mass screening. It could mean that a physician is no
longer required to interpret the result of the rhythm
monitoring modality. The use of ML with different rhythm
monitoring modalities is discussed below and is summarized
in Supplemental Tables 3–6.
Machine learning to improve automated AF diagnosis using
12-lead ECGs
Supplemental Table 3 shows different studies that have
developed ML models to detect AF from a 12-lead ECG.
The models typically used are neural networks, as these allow
unknown features of the ECG to be used in the decision
process to determine if the ECG demonstrates AF. There
was only 1 study that used a vector machine instead. Neural
networks do not necessarily require the ECG data to have
undergone feature extraction and selection.

There were high accuracy and AUC (.0.98) values for
models differentiating between AF and sinus rhythm. How-
ever, the performance of the models for AF detection reduced
when the models were also developed to differentiate other
rhythms too.
Machine learning to improve automated AF diagnosis using
photoplethysmography
There have been multiple studies that have tested ML algo-
rithms to detect AF from PPG signals. PPG involves
reading pulse pressure signals resulting from the propaga-
tion of blood pressure pulses along arterial blood vessels.34

It can be measured peripherally. Detection of irregularities
in pulse pressure signals aids in the diagnosis of AF. The
ML studies using PPG for AF diagnosis are shown in
Supplemental Table 4. The ML models used were neural
networks, logistic regression, random forests, and support
vector machines. When the models were compared, neural
networks were found to be superior. The accuracy, speci-
ficity, and sensitivity of these models were above 0.90.
The features that ML models review include pulse interval
features and pulse amplitude features, which can make dis-
tinguishing AF from ectopic beats difficult, although 1
study has used deep learning classifiers to overcome this.
PPG is more susceptible to noise and artifact than a
12-lead ECG; however, DeepBeat (another deep learning
model) has also overcome this. PPG showing AF still
needs a confirmatory ECG to confirm the AF diagnosis.
However, the use of ambulatory monitoring PPG could
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reduce the number of individuals requiring a confirmatory
ECG to diagnose AF.
Machine learning to improve automated AF diagnosis using
single-lead or ambulatory ECGs
Supplemental Table 5 lists a large number of studies
involving ML algorithms to identify AF from single-lead
or ambulatory ECGs. PhysioNet Challenge 2017, AF predic-
tion, MIT-BIH AF, and MIT-BIH Arrhythmia databases are
readily available to the public and were used by several
studies for training and testing their models. The easy acces-
sibility of a large database of single-lead ECGs has made it
possible for many ML models to be developed compared
with 12-lead ECGs. A wide range of models were used.
When measured, accuracy, sensitivity, and specificity tended
to be above 0.85. However, when F1 scores were measured,
these would vary from 0.782 to 0.92. In the last year, feature
importance interpretability and real-time detection have been
researched. Their aims have been to explore explainable arti-
ficial intelligence and improve AF diagnosis time.
Machine learning to improve automated AF diagnosis using
other diagnostic modalities
Supplemental Table 6 shows 3 studies showing ML algo-
rithms applied to other forms of monitoring for AF. One
method is ballistocardiography, which provides waves based
on ejection of blood from the heart to the great vessels. Other
methods were using arterial pulse waveforms and inertia
measurements using a gyroscope and accelerometer on a
smartphone. Different models were used for the different
methods. Again, accuracy, sensitivity, and specificity for
these models tended to be above 0.9.
Limitations of studies applying machine learning
for AF screening
One general limitation of the ML studies is the imbalance in
data between the size of the AF cohort and the non-AF
cohort, as the non-AF cohort is usually considerably larger.
However, this was not the case for the Indiana Network
owing to the population containing a higher proportion of
older patients. To deal with the imbalances in data, resam-
pling methods such as oversampling or undersampling
have been used.

A limitation regarding the development of these ML
models from electronic patient records is that the non-AF
cohort may include patients who have undiagnosed AF and
therefore are not labeled as having AF when training the
ML algorithm. It is also not clear if, in the AF cohort, there
may be patients who are also misdiagnosed with AF. A
prospective, interventional study actively diagnosing AF
patients could address this issue.

With regard to automated rhythm diagnosis, in the pres-
ence of multiple ectopic beats (premature atrial complexes
or ventricular complexes), there can be a high risk of
false-positive AF findings owing to rhythm irregularity.35

This can consequently impact accuracy of ML for
automated AF diagnosis. Memory-stored templates of
ectopic beats can help to overcome misinterpretation of
ectopic beats for AF. For PPG, tachograms, Lorenz plots,36

or Poincare plots37 can be used to aid in improving accurate
AF diagnosis.

The impact of missing data on the efficacy of an ML algo-
rithm for AF screening is also unclear. There is limited trans-
parency about how the processes of ML lead to their outputs.
Although there are inherent limitations to the accuracy of the
ML algorithms, in theory, they will most likely outperform
current practice of opportunistic screening for AF.

The ideal ML algorithm for AF risk prediction would use
electronic health records in combination with 12-lead ECGs.
However, the availability of 12-lead ECG data from elec-
tronic health records and in an appropriate form limits our
ability to develop such an algorithm.
Conclusion
There have been many developments in the use of ML to
improve AF screening. These ML algorithms have either
been used to identify the individuals at highest risk of AF
to better target the screening or to facilitate more accurate
automated AF diagnosis during the screening process.
Most ML algorithms have been developed and tested on
retrospective data, but there needs to be more work to test
them prospectively and then to assess their impact on real-
world data.
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