
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Disrupted grey matter network morphology in pediatric posttraumatic stress
disorder

Running Niua,1, Du Leia,b,1, Fuqin Chenc, Ying Chena, Xueling Suoa, Lingjiang Lid, Su Luia,
Xiaoqi Huanga, John A. Sweeneya,e, Qiyong Gonga,f,⁎

aHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
bDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
c Department of Medical Information Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, Sichuan, China
dMental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
e Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
fDepartment of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China

A R T I C L E I N F O

Keywords:
Pediatric PTSD
Topological organization
Graph theory
Brain network
MRI
Psychoradiology

A B S T R A C T

Introduction: Disrupted topological organization of brain functional networks has been widely observed in
posttraumatic stress disorder (PTSD). However, the topological organization of the brain grey matter (GM)
network has not yet been investigated in pediatric PTSD who was more vulnerable to develop PTSD when
exposed to stress.
Materials and methods: Twenty two pediatric PTSD patients and 22 matched trauma-exposed controls who
survived a massive earthquake (8.0 magnitude on Richter scale) in Sichuan Province of western China in 2008
underwent structural brain imaging with MRI 8–15months after the earthquake. Brain networks were con-
structed based on the morphological similarity of GM across regions, and analyzed using graph theory ap-
proaches. Nonparametric permutation testing was performed to assess group differences in each topological
metric.
Results: Compared with controls, brain networks of PTSD patients were characterized by decreased character-
istic path length (P=0.0060) and increased clustering coefficient (P=0.0227), global efficiency (P=0.0085)
and local efficiency (P= 0.0024). Locally, patients with PTSD exhibited increased centrality in nodes of the
default-mode (DMN), central executive (CEN) and salience networks (SN), involving medial prefrontal (mPFC),
parietal, anterior cingulate (ACC), occipital and olfactory cortex and hippocampus.
Conclusions: Our analyses of topological brain networks in children with PTSD indicate a significantly more
segregated and integrated organization. The associations and disassociations between these grey matter findings
and white matter (WM) and functional changes previously reported in this sample may be important for diag-
nostic purposes and understanding the brain maturational effects of pediatric PTSD.

1. Introduction

Post-traumatic stress disorder (PTSD) can develop following ex-
posure to extremely traumatic life events such as violence, combat, life-
threatening accidents or natural disasters. PTSD is the only psychiatric
disorder with known cause, and is characterized by a constellation of
symptoms including re-experience, avoidance, and hyperarousal
(Association, A.P., 2013). Its lifetime prevalence is 6.8% of general
adult populations (Kessler et al., 2005) and 5% in adolescents
(Merikangas et al., 2010), and it occurs in 24% of individuals after

particularly serious stressors such as occur in earthquake survivors (Dai
et al., 2016). The comorbidities of PTSD can include substance abuse,
mood and anxiety disorders, impulsive or dangerous behavior and self-
harm. PTSD is also associated with considerable medical comorbidities,
including chronic pain and inflammation, cardiometabolic disorders
and heightened risk of dementia. In children, the functional disability of
PTSD can persist for years into adulthood, with long-term influence on
social and brain development (Lamberg, 2001).

Both functional and structural brain alterations in PTSD have been
reported (Chen et al., 2013; Li et al., 2016; Lui et al., 2009; Cisler et al.,
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2016a), but their neurobiology and pathogenesis remain unclear
(Liberzon and Abelson, 2016). In recent years, studying the brain
connectome using graph theory approaches has emerged as an im-
portant strategy for detecting alterations of brain networks in neu-
ropsychiatric disorders (Sporns et al., 2005). The primate brain has
been shown to be topologically organized in a small-world network
which has higher segregation and integration functions than a random
and regular network (He et al., 2007; Salvador et al., 2005; Stam,
2004). Disruption of this topological organization has been associated
with epilepsy (Bernhardt et al., 2016; Bernhardt et al., 2015; Sethi
et al., 2016), Alzheimer's disease (He et al., 2008; Stam et al., 2009;
Tijms et al., 2013a), schizophrenia (Alexander-Bloch et al., 2013a; Li
et al., 2012; van den Heuvel et al., 2010), and major depression (Zhang
et al., 2011; Wang et al., 2016; Guo et al., 2012). Compared with
healthy and trauma-exposed populations, patients with PTSD exhibited
altered brain network organizations in previous resting state fMRI
studies (Spielberg et al., 2015; Kennis et al., 2016; Cisler et al., 2016b).
Our study of adult PTSD patients showed that functional networks de-
monstrated a shift toward “small-worldization” indicated by higher
both segregation and integration (Lei et al., 2015a). A previous study of
PTSD using diffusion-tensor imaging (DTI) showed that WM networks
shifts toward “randomization” of network organization with only
higher integration (Long et al., 2013).

Compared to studies of resting state fMRI and diffusion tensor
imaging, there are few studies using grey matter to examine brain
structural networks in patients with PTSD. As with fMRI and DTI data,
grey matter structural MRI can also be used to delineate whole-brain
connectivity patterns by calculating interregional morphological asso-
ciations (He et al., 2007; Alexander-Bloch et al., 2013b) based on the
structural covariance of grey matter volume and cortical thickness. This
approach has been used to examine connectome organization in healthy
individuals (He et al., 2007; Fan et al., 2011; Chen et al., 2008) and in
patients with psychiatric disorders (He et al., 2008; Bassett et al., 2008;
Singh et al., 2013). Only two studies have investigated GM network
organizations of PTSD, both with adult participants. These studies de-
monstrated a loss of small world organization and characteristics of
higher segregation and integration with a shorter path length and
higher clustering (Mueller et al., 2015; Qi et al., 2017).

A new method proposed by Tijms and colleagues has been devel-
oped to statistically describe grey matter networks in individual sub-
jects using T1-weighted MRI scans (Tijms et al., 2012). In this method,
networks are constructed with nodes representing small brain regions
whose connections are computed by evaluating intracortical similarities
in grey matter morphology. This method has been successfully applied
to study Alzheimer's disease (Tijms et al., 2013a; Tijms et al., 2016;
Tijms et al., 2013b; Tijms et al., 2014) and individuals at risk for
schizophrenia (Tijms et al., 2015). Batalle and colleagues (Batalle et al.,
2013) extended this method to allow normalization of grey matter
networks so that each person has the same network size (90 nodes).
This method has advantages for comparative analyses such as in pa-
tient-control comparisons. No studies have applied this approach in
PTSD.

Children are thought to be more vulnerable to developing PTSD
following trauma than adults (Fletcher, 1996). To our knowledge, only
two studies from our group investigated brain topological organization
in pediatric PTSD. These studies demonstrated disruption of brain
functional and WM networks using resting-state MRI (rs-MRI) and dif-
fusion-tensor imaging (DTI) (Suo et al., 2017; Suo et al., 2015). The
segregation function was increased in functional networks and de-
creased in WM networks, while the integration function of WM net-
works was decreased. Whether there are changes in the GM networks in
children with PTSD and how such alterations may related to symptom
severity and these previous findings using other imaging modalities is
unknown.

The purpose of this study was to investigate the topological orga-
nization of brain GM networks in children who experienced a single

traumatic event. We recruited 22 children with PTSD and 22 trauma-
exposed healthy control subjects followed 1 year after the 8.0 magni-
tude Wenchuan earthquake in south-west China. After constructing
individual morphological cortical networks, graph-based models were
employed to characterize grey matter topology for each study partici-
pant. Given previous evidence of higher segregation function in resting-
state fMRI networks and lower integration function of WM networks in
pediatric PTSD, we hypothesized that (i) similar disruptions would also
characterize the present grey matter networks in our pediatric sample.
We also hypothesized (ii) lower nodal betweeness, degree and effi-
ciency in our grey matter networks based on previous findings of two
adult PTSD studies of grey matter networks (Mueller et al., 2015; Qi
et al., 2017). Finally, (iii) we predicted relationships of network dis-
ruption with clinical severity and age.

2. Materials and methods

2.1. Participants

The participants who survived a massive earthquake (8.0 magnitude
on Richter scale) in Sichuan Province of western China in 2008 were
recruited in the town of Hanwang and nearby areas of Beichuan
County, which are about 80 km and 113 km from the epicenter re-
spectively. This study was approved by the local research ethics com-
mittee. Each child's guardian provided written informed consent and
children provided assent prior to participation.

A large-scale PTSD survey was conducted by Y.C., S.L and X.H.
among 4200 survivors 8–15months after the earthquake. From that
sample we selected participants who (i) physically experienced the
earthquake, (ii) personally witnessed death, serious injury or the col-
lapse of buildings, (iii)had no diagnosis of PTSD prior to the earth-
quake, (iv) were younger than 18 years of age, and (v) had an in-
telligence quotient> 80.

The parent form of the PTSD Checklist (PCL) was used to screen
potential subjects (Weathers et al., 1994) and the Clinician Adminis-
tered PTSD Scale (CAPS) was completed when PCL scores were ≥35
(Blake et al., 1995). The subjects were considered eligible for inclusion
in the PTSD group who had a CAPS score of 50 points or greater. Those
with PCL scores < 30 were considered study eligible as non-PTSD
controls who also experienced the stress of the earthquake (Jin et al.,
2014). This yielded a total of 161 potential PTSD patients and 99 non-
PTSD controls. In these subjects, the presence/absence of PTSD and
psychiatric comorbidities were confirmed by an experienced psychia-
trist (L.L.) using the Structured Clinical Interview for DSM-IV (SCID;
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(First et al., 1997)). Both the children and their parents were inter-
viewed and the information from parents was combined by the psy-
chiatrist to support diagnosis.

Exclusion criteria were: (i) history of depression, bipolar or psy-
chotic disorder, or neurologic disorder (n= 42), (ii) contraindication to
MR imaging (n=30), (iii) treatment with psychiatric medications
within two months before recruitment for MRI scanning (n= 24), (iv)
unavailability of key data (n= 12); (v) left handedness (n= 10); (vi)
CAPS score> 35 but< 50 (n=8) (Jin et al., 2014), and (vii) history of
brain injury (n=7). Six patients and 4 controls were excluded because
of excessive head motion during 3D T1 MRI scanning.

With these exclusions to obtain a relatively homogeneous sample,
we recruited 22 drug-free first-episode patients with PTSD and a de-
mographically matched group of 22 trauma exposed subjects who did
not develop PTSD for the present study. The two groups had similar
demographic characteristics, lifestyles, and earthquake experiences
(Table 1). Selecting healthy individuals who also experienced the
earthquake as a comparison group was done to control for stress ex-
posure. Thus, our study was designed to identify factors associated with
PTSD independent of stress exposure effects.
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2.2. Data acquisition and preprocessing

Participants underwent T1 structural imaging with a 3.0-T MR
imaging system (Excite; GE Healthcare, Milwaukee, Wis) using an
eight-channel phased-array head coil. The head was stabilized with
cushions and ear plugs. Images were acquired using a spoiled gradient
recalled sequence with repetition time (TR)=8.5ms, echo time
(TE)= 3.4ms, flip angle (FA)= 12°, 156 axial slices with slice thick-
ness= 1mm, field of view (FOV)=24×24 cm2 and data ma-
trix= 256×256.

Structural images were preprocessed using Statistical Parametric
Mapping (SPM) software (http://www.fil.ion.ucl.ac.uk/spm/software/
SPM8/). Briefly, individual structural images were first segmented into
GM, WM and cerebrospinal fluid (CSF) using the unified segmentation
model (Ashburner and Friston, 2005). We visually confirmed all auto-
matic segmentations. Then, images were spatially normalized to Mon-
treal Neurological Institute (MNI) coordinate space. Considering the
difference of brain features between adults and children, the default
tissue probability maps of SPM were replaced by a specific template
created using all 44 participants in our study. Finally, the grey matter
data were resampled to 2mm3 voxels and spatially smoothed (Gaussian
kernel with a full width at half maximum of 6mm).

2.3. Extraction of brain networks

First, single-subject grey matter networks were obtained based on
intracortical similarity using a completely automated and data-driven
method that has been previously described (Tijms et al., 2012). Briefly,
the method started with defining the network's nodes as small regions
of interest corresponding to 3× 3×3 voxel cubes of grey matter.
These cubes kept the 3D structure of the cortex intact, thereby using
spatial information from the MRI scan in addition to the grey matter
values of voxels in the cubes. Compared with cortical volume and
cortical thickness measures, the cubes contained both the local thick-
ness measures and information about the folding structure of cortex.
Then the structural similarity between 2 cubes was quantified by a
correlation coefficient. As two similar cubes could be located at an
angle from each other, their similarity value could decrease. Therefore,
the maximum correlation value over different rotations of the seed cube
was identified to estimate cube similarity. Next, unweighted and un-
directed graphs were constructed by binarizing the previous similarity
matrices, after determining a threshold for each individual graph with a
permutation based method to ensure a similar chance of identifying 5%
(SD=0.002) spurious correlations for all individuals (Weese et al.,

1999). Only positive similarity values survived this threshold in the
present study.

Similarity based grey matter networks defined in this way have
different sizes. As network properties can vary with network size (van
Wijk et al., 2010), it is critical to normalize the grey matter networks to
have the same number of nodes and node size across participants. To
achieve this, we followed the methodology proposed by Batalle et al.
(Batalle et al., 2013) to normalize single subject grey matter networks
based on the unified Automated Anatomical Labeling (AAL) parcella-
tion template available in SPM software corresponding to the 90 nodes
of the AAL atlas.

To perform the normalization, a node of the AAL was defined as the
AAL region to which most voxels of each cube belonged. Each pair of
nodes was considered to be connected with a weight corresponding to
the ratio of actual significant correlations divided by the total possible
connections between nodes. The weight obtained is bounded between 0
and 1. Self-connections were excluded. This procedure resulted in a
90× 90 weighted normalized network for each subject. Note that in the
present study, we use the term “connection” to refer to brain network
edges indicating statistically similar grey matter morphology of two
cubes, which can exist in the absence of axonal connectivity.

2.4. Network properties

GRETNA (www.nitrc.org/projects/gretna/) in Matlab was used to
calculate network properties as in previous brain network studies
(Wang et al., 2015). A wide range of sparsity (S) thresholds was applied
to all the correlation matrices. The upper and lower limit of S values
used was determined ensuring that the thresholded networks were es-
timable for the small-worldness scalar and that the small-world index
was larger than 1.0. With these limits, our threshold range was
0.10 < S < 0.34 with an interval of 0.01. The area under the curve
(AUC) reflecting measures across the sparsity parameter S was calcu-
lated for each network metric, providing a summarized scalar for the
topological characterization of brain networks to avoid using an arbi-
trary single threshold selection. This approach has been shown to be
sensitive for detecting topological alterations of brain networks (Zhang
et al., 2011; Achard and Bullmore, 2007; He et al., 2009).

Both global and nodal network properties were calculated at each
sparsity threshold. Several global metrics were examined in the present
study. Small-world parameters (Watts and Strogatz, 1998) included the
clustering coefficient Cp, characteristic path length Lp, normalized
clustering coefficient γ, normalized characteristic path length λ, and
small worldness σ. Normalization was achieved by comparison with a
matched random network generated by rearranging the edges while
keeping the degree distribution intact (Maslov and Sneppen, 2002).
Network efficiency parameters (Achard and Bullmore, 2007) included
local efficiency Eloc and global efficiency Eglob. The following three
nodal centrality metrics were examined: the nodal degree, efficiency,
and betweenness centrality.

2.5. Statistical analysis

Nonparametric permutation testing was performed to assess group
differences in the AUC of each metric (small-world, network efficiency,
and nodal centrality measures). Briefly, between-group differences
were first calculated using the mean of each network metric across S
values. To correct for multiple comparisons, all of the values were
randomly reallocated into two groups and mean differences were re-
calculated between the two randomized groups for each network me-
tric. This randomization procedure was repeated 10,000 times, and the
95th percentiles of each distribution were used as the critical values for
significance testing. The nodal centralities were compared using the
Benjamini-Hochberg false discovery rate to maintain a corrected sig-
nificance threshold of P < 0.05 (Benjamini and Hochberg, 1995).

Region pairs with between-group differences of nodal

Table 1
Demographic data and clinical characteristics of study participantsa.

PTSD Non-PTSD P value

Sample size 22 22 NA
Age (years)b 13.32 ± 1.73 13.00 ± 1.45 0.325c

Gender (M/F) 7/15 9/13 0.531d

Handedness (R/L) 22/0 22/0 NA
Years of educationb 8.27 ± 1.83 8.00 ± 2.20 0.307c

Time since trauma (months)b 12.64 ± 1.56 13.23 ± 1.45 0.194c

GM volume (cm3) 817.35 ± 60.77 823.08 ± 59.51 0.746 c

PCL score 56.00 ± 3.92 23.27 ± 1.86 NA
CAPS score 66.05 ± 6.48 NA NA

Abbreviation: PTSD, posttraumatic stress disorder; PCL, PTSD checklist; CAPS,
Clinician-administered PTSD scale.

a Data are presented as means ± standard deviations. No significant dif-
ferences were identified between the pediatric PTSD and the trauma controls in
age, gender, years of education, time since trauma and GM volume.

b Age, years of education and time since trauma were defined at the time of
MRI scanning.

c P value was obtained by two-tailed two-sample t test, P < 0.05.
d P value was obtained by two-tailed Pearson χ2 test, P < 0.05.

R. Niu et al. NeuroImage: Clinical 18 (2018) 943–951

945

http://www.fil.ion.ucl.ac.uk/spm/software/SPM8
http://www.fil.ion.ucl.ac.uk/spm/software/SPM8
http://www.nitrc.org/projects/gretna


characteristics in patients with PTSD were assessed with NBS and
computed using the NBS toolbox for Matlab (www.nitrc.org/projects/
nbs/). First, we chose the nodes that exhibited between group differ-
ences in at least one of the three nodal centralities (nodal degree, ef-
ficiency, and betweenness) and then created a connection matrix for
each participant. Second, each connection in the connection matrix was
separately tested for significance (here: P < 0.001 uncorrected con-
nection-level) and then the resulting networks built by suprathreshold
connections were again tested for significance (here: P < 0.05 FWE-
corrected network-level). Details of this approach are described else-
where (Zalesky et al., 2010).

Partial correlations using age, gender and intracranial volume as
covariates were performed to verify the relationships between these
metrics and the CAPS scores in the PTSD group. Statistical analysis was
performed with SPSS software (http://www.spss.com), version 22.0.
Age by group interaction effects were evaluated using two-way
ANOVAs after dividing the age distribution into younger and older
groups approximating pre and post adolescence (10–12 and
13–16 years).

3. Results

3.1. Alterations of global brain network properties

Normalized GM graphs for each participant had a higher average
clustering coefficient (γ > 1) and similar characteristic path length
(λ≈ 1) to random reference networks, indicating that networks from
each participant had a small world topology (γ/λ > 1) (Fig.1). How-
ever, this topology was altered in PTSD. The graphs from PTSD patients
were characterized by a decreased characteristic path length
(P= 0.006) and increased clustering coefficient (P= 0.023) in com-
parison to graphs from non-PTSD earthquake survivors. Furthermore,
normalized characteristic path length was significantly higher in PTSD
(P= 0.044), while no significant differences were identified in nor-
malized clustering coefficients (P=0.10) or in the small worldness
index (P= 0.06). Both global efficiency (P= 0.008) and local effi-
ciency (P= 0.002) were significantly increased in the networks of pa-
tients with PTSD compared with those of trauma-exposed control sub-
jects (Fig. 2).

3.2. Alterations of nodal brain network properties

Brain regions exhibiting significant between-group differences in at
least one nodal metric were identified (false discovery rate corrected
P < 0.05). Compared to control subjects, patients with PTSD exhibited
increased nodal degree in right olfactory gyrus and right inferior par-
ietal gyrus, and increased nodal efficiency in right olfactory gyrus, right

inferior parietal gyrus, hippocampus, right superior and inferior occi-
pital gyrus, left middle occipital gyrus, right postcentral gyrus and right
caudate nucleus. The betweenness centrality was increased in the right
olfactory gyrus, bilateral medial superior frontal gyri, bilateral angular
gyri, left anterior cingulate gyrus, right postcentral gyrus, left gyrus
rectus, and bilateral occipital gyri (Table 2).

Using age, gender and intracranial volume as covariates in partial
correlation analysis, we did not detect significant correlations between
the CAPS scores and network parameters that differed between groups.
Increased local efficiency relative to controls was greater in 13–16 year
old than 10–12 year old PTSD patients (F (1, 40)= 5.93, df= 1, 43,
P= 0.019, Fig.3).

3.3. PTSD-related alterations in network connectivity

A network with 10 nodes and 18 edges was identified that was
significantly altered in PTSD using NBS (Fig. 4). The nodes included
regions in DMN (mPFC, hippocampus, left angular gyrus), CEN (right
inferior parietal cortex), visual areas (superior and middle occipital
gyrus) and right olfactory cortex. Significantly altered edges were ob-
served involving each of these regions. All connectivity alterations
within this network were increased in the PTSD group (corrected for
multiple comparison).

4. Discussion

The present study, to the best of our knowledge, demonstrated for
the first time that there are significant alterations in topological prop-
erties of GM networks in pediatric PTSD. This was achieved using a
recently developed method to describe patterns of intracortical simi-
larities using structural MRI data. We found that pediatric PTSD pa-
tients showed a more segregated and integrated organization reflected
in an increased clustering coefficient and decreased characteristic path
length relative to non-PTSD trauma exposed controls that had similar
stressful experiences during the earthquake. Altered nodal centrality
was found in specific regions known to be components of three neo-
cortical networks: DMN, SN and CEN.

Previous studies have indicated that exposure to intensive traumatic
stress changes the molecular organization of stress-response systems
and leads to abnormal cellular events such as synaptic pruning (Caldji
et al., 1998; Teicher et al., 2002). Altered synaptic pruning and other
cellular changes may contribute to our findings of altered anatomic
network organization, and to other altered global network metrics ex-
tracted reported previously in DTI and resting state fMRI studies of
adult and pediatric PTSD (Lei et al., 2015a; Suo et al., 2017; Suo et al.,
2015). Changes in cortical structure induced by alterations in the dis-
tribution and/or density of cell bodies may also contribute to neural

Fig. 1. Both the PTSD and non-PTSD groups exhibited (A) normalized clustering coefficients (Cp) larger than 1 and (B) normalized path lengths (Lp) approximately
equal to 1, indicating that both groups of stressed individuals exhibited the typical features of small-world topology.
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network disruptions (Fagel et al., 2006). Some of these changes in
morphological networks may result from heightened functional activity
and functional coactivation between regions sharing dense direct or
indirect white matter axonal connectivity (Tijms et al., 2013a; Batalle
et al., 2013). This latter possibility is supported by fMRI studies sug-
gesting increased activity and connectivity in PTSD (Koch et al., 2016).

Our findings complement those from our previous WM and func-
tional network studies on the same sample examined in the present
study (Table 3). The human brain is generally organized as complex
networks with two main organizational principles, segregation (re-
flected by clustering or local efficiency), and integration (reflected by
path length and global efficiency) (Bullmore and Sporns, 2012). Thus,
our GM similarity results fit with the functional network findings re-
garding brain segregation reflected by increased Cp and Eloc, in our
resting state functional MRI study, but represent opposite findings from
those observed in our topographic modeling of DTI results in terms of
segregation and integration.

Although complete mechanistic understanding of all causes of grey
matter covariance remains to be developed, synaptogenesis resulting
from synchronous firing and synaptic mutually trophic and protective
effects via influences of glutamatergic N-methyl-D-aspartate pathways
have been speculated to be the two main mechanisms (Alexander-Bloch
et al., 2013b). The parallel pattern of altered inter-regional grey matter
covariance seen in this study and our previous rs-fMRI findings from
this pediatric sample is similar to the consistent pattern associated
functional and grey matter connectivity indices in previous studies of

healthy human (Segall et al., 2012; Seeley et al., 2009). A common
interpretation is that the functional connectivity of synchronous neu-
ronal activation results in network changes in regional grey matter
covariance. Thus, our present findings add new evidence for the cor-
respondence between grey matter covariance and functional con-
nectivity by showing consistent patterns of divergence from control
participants from these two MRI modalities in our pediatric population.
While our data suggest modest relations between these brain network
changes and PTSD symptom severity, their relation to cognitive
changes is unclear and remains a question to be addressed in future
neuropsychological and task-based fMRI research.

In contrast to the similarity of GM and functional changes in net-
work typology, the relative disassociation between these changes and
those in WM were unexpected. The changes of segregation and in-
tegration in GM were opposite to those in WM. While more research is
needed in this area, we propose two potential explanations that might
account for this dissociation. First, the most obvious explanation is that
the biological meaning of brain network organization revealed by GM
and WM are fundamentally different. Previous studies have revealed
that brain regions connected via WM tracts covary strongly in grey
matter morphology (Alexander-Bloch et al., 2013b) and significant
connections by grey matter covariance were partly matched to ana-
tomic connections obtained from DTI (He et al., 2007). However, the
only study in which the authors performed a direct pair-by-pair com-
parison between WM and GM connections, done in healthy individuals,
indicated that only 35–40% of GM correlations had convergent WM

Fig. 2. Graphs showed differences in global topological properties between the PTSD and stressed non-PTSD controls. The global efficiency (Eglob) (P= 0.0085),
local efficiency (Eloc) (P=0.0024), clustering coefficient (Cp) (P= 0.0227), characteristic path length (Lp) (P=0.0060) and normalized characteristic path length
(λ) (P=0.0443) were significantly different between the two groups. No significant differences were identified in normalized clustering coefficient (γ) (P=0.0963)
and small worldness (σ) (P= 0.0515). An asterisk designates network metrics with a significant difference (P < 0.05).
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connections among region pairs with positive cortical thickness corre-
lations, while the percentage of convergent WM connections and GM
correlations was< 10% among GM regions with negative cortical
thickness correlation (Gong et al., 2012). This finding highlights a
significant dissociation of GM and WM topographic measurements,
which might be further dissociated in disease states, and thus suggests
independent mechanisms regulating these two brain parameters. Fur-
ther, as only a small percent of the 90×90 matrix of brain region
correlations can be related to WM connections observable using

currently available DTI protocols, differences in global patterns of effect
are perhaps not surprising. The different changes of brain network from
GM and WM observed in our patients emphasize the importance of
different information provided by different MRI modalities in pediatric
PTSD, and the general importance of multimodal imaging for ex-
amining the brain connectome. We note that WM and other imaging
data were not only dissociated but actually indicated opposite changes
in brain networks. While this may be due to different brain connections
being examined, divergent effects of PTSD on brain white matter is an
observation requiring replication and focused research in future re-
search. A second possible explanation for the different findings in WM
than GM and functional measures may be that decreased segregation
and integration of WM might lead to increased GM covariance as a
compensation. Li et al. observed increased cortical thickness of brain
regions and reduced volume of WM connecting those regions in adult
patients with PTSD (Li et al., 2016). One possibility for these observa-
tions, and our own, is that GM thickness may increase to compensate
for reduced WM fiber tract input by adding capacity for processing
information via enhanced local dendritic arborization in cortex. In a
previous study with this sample, we showed that the FA (fractional
anisotropy) decreased significantly in some brain regions (Lei et al.,
2015b). The reduced fiber tract projections of brain networks were
observed in parallel with reduced segregation and integration of WM
across the brain. This might occur because of the reduction in pathways
to its nearest neighbors and remote regions. Finally, such a secondary
compensatory adjustment leading to increased GM covariance might
occur in order to support function of information transfer in alternative
pathways to optimize residual functional brain capacity. These adaptive
processes are known to have increased plasticity during neurodeve-
lopment, which may account for the different and more extensive
patterns of brain alteration seen in our pediatric sample relative to prior
studies of PTSD in adults (Alexander-Bloch et al., 2013b).

The pediatric PTSD findings we observed had multiple differences
relative to those of adult PTSD studies. For instance, the small world
index sigma has been shown to be significantly lower in adult PTSD
while we observed no significant difference in our pediatric patients
(Mueller et al., 2015). Both Mueller et al. (Mueller et al., 2015) and
Long et al. (Long et al., 2013) did not detect significant changes of
whole brain clustering coefficients in adult PTSD using cortical thick-
ness and DTI data respectively. However, both our GM and functional
studies demonstrated increased clustering coefficients in pediatric PTSD
(Suo et al., 2015). Our findings therefore may need to be considered in
the context of ongoing brain development in pediatric patients upon
which effects of PTDS are superimposed.

One possibility is that the structural brain alterations seen in our
pediatric PTSD may represent consequences of disruptions in brain
maturation trajectory, with implications for the functional organization
and differentiation of complex brain systems and the higher-order
psychological processes they support (Daniels et al., 2011). By dividing
the age distribution into two stages as in prior studies as an approx-
imation for separating pre and post pubertal children (Parent et al.,
2003), we demonstrated decreased local efficiency in 13–16 year old
relative to 10–12 year old controls while the trend in PTSD patients
during these ages was in the opposite direction. Khundrakpam et al.
(Khundrakpam et al., 2013) in a study of the developmental trend of
local efficiency in childhood and adolescence showed a reduction of
local efficiency from early (5–8 year old) to late childhood (9–11 year
old). Thus our findings suggested that even in non-PTSD participants
who experienced a traumatic life stress, there may be a delay in the
typical reduction of local brain efficiency.

Neuroendocrine studies have suggested that early life stress in
children is associated with abnormal development of the hypothalamic-
pituitary-adrenal (HPA) axis (Mccrory et al., 2010). One possibility is
that over time there is sensitization of brain system to stressful situa-
tions reflected in HPA overactivation which might contribute to the
pattern of increased regional segregation and white matter changes

Table 2
Regions exhibiting altered nodal centralities in patients with PTSD versus
trauma exposed control subjects.

Brain regions P values

Nodal
degree

Nodal
efficiency

Nodal betweenness

PTSD > non-PTSD
Olfactory cortex R 0.0003 0.0034 0.0019
Medial superior frontal

gyrus L
0.4840 0.1778 0.0001

Medial superior frontal
gyrus R

0.0885 0.3283 0.0001

Anterior cingulate gyrus L 0.3471 0.3405 0.0001
Hippocampus L 0.1050 0.0029 0.3470
Hippocampus R 0.0934 0.0049 0.3455
Superior occipital gyrus R 0.0575 0.0021 0.0001
Middle occipital gyrus L 0.0218 0.0010 0.0001
Inferior occipital gyrus R 0.1183 0.0040 0.0001
Postcentral gyrus R 0.0330 0.0012 0.0001
Superior parietal gyrus L 0.4957 0.0297 0.0001
Inferior parietal gyrus R 0.0009 0.0048 0.0001
Angular gyrus L 0.2109 0.0082 0.0001
Angular gyrus R 0.1311 0.0134 0.0001
Caudate nucleus R 0.0233 0.0036 0.4981

PTSD < non-PTSD
Medial orbital superior

frontal gyrus R
0.0144 0.1880 0.0001

Gyrus rectus L 0.4696 0.3064 0.0001

Regions are listed above if there were significant between-group differences in
at least one nodal centrality parameter (shown in bold font).
The Benjamini-Hochberg false discovery rate correction was applied to each
nodal measure.
The P value thresholds for nodal degree, nodal efficiency and nodal betweeness
were 0.0009, 0.0049 and 0.0019, respectively. All P values were obtained by
using a permutation test.
All the brain regions are from AAL (automated anatomical labeling).
Abbreviation: R: right, L: left.

Fig. 3. Local efficiency in 13–16 year old and 10–12 year old PTSD patients.
Increased local efficiency relative to controls was greater in 13–16 year old than
10–12 year old PTSD patients (F (1, 40)= 5.93, df= 1, 43, P=0.019).
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observed in our studies. Further research with a longitudinal design
following pediatric PTSD patients is needed to clarify the neurobiolo-
gical substrate of this increased segregation including examination of
trophic influences, contribution of heredity, and experience-related
plasticity during brain maturation (He et al., 2007).

In addition to changes in global network characteristics, specific
nodal changes were observed in three core networks previously shown
to be altered in PTSD patients, the DMN, CEN and SN. This “triple
network model” proposed by Menon, and supported by a recent meta-
analysis of functional alterations in PTSD (Patel et al., 2012) suggests
that there are stress related alterations in all these networks. Such al-
terations may account for the broad and longstanding impact on higher
brain and cognitive function in PTSD (Menon, 2011).

PTSD-related alterations in nodal centralities were found in olfac-
tory and visual cortex, areas not commonly affected in adult PTSD.
Alterations in visual cortex have been reported both in our previous
WM and functional studies, and have been correlated with PTSD
symptom severity (Suo et al., 2017). We also found dysfunction of nodal
centrality in right olfactory cortex in the present study. Alterations in
these sensory systems may be related to repeated flashbacks involving
ongoing re-experiencing of images and smells as reported previously
(Dileo et al., 2008; Chao et al., 2012). As such flashbacks are one of the
most common and severe symptoms in PTSD, these findings may be of
direct clinical relevance, and are noteworthy because of their appar-
ently greater prominence in pediatric PTSD patients relative to stressed
controls.

It is important to note that both increases and decreases in network

parameters were seen in our patients, and that these changes were not
consistent across different MRI modalities. We note that our direct
comparison of findings from three network modalities in a single pa-
tient group, GM, WM and function, remains relatively novel in studies
of brain disorders. Thus, interpretation of differences seen across
modalities must be made with some caution. Dissociations between
brain topological disruptions observed in different imaging modalities
need to be better understood in terms of basic biological mechanisms
and their impact on brain maturation and organization, perhaps
through animal model studies.

The present study had several limitations. All participants were
recruited after the earthquake occurred, thus it is not clear whether
findings we report reflect consequences of PTSD or some influence of
prior risk factors for developing the illness. Second, we do not present
direct comparison of matched pediatric and adult samples. Such com-
parisons will be important in the future for understanding differences
between pediatric and adult onset PTSD. Third, our sample was not
large, thus replication and characterizing the relation of age of onset to
neuroanatomic alterations are important in future. Fourth, the single
trauma in the present study increased the sample's homogeneity, but is
restricted to only earthquake related PTSD. Caution need to be taken
when applying our findings to community population with other acute
stressors and more situations with long term elevation in life stress. The
single trauma exposure might also be one of the reasons why there was
no relation between our network measures and clinical severity in PTSD
group. Further, while longer time to our follow up scans helped dif-
ferentiate those who did and did not later develop PTSD, it may have

Fig. 4. Regions with significantly altered nodal centralities of the brain structural connectome in pediatric PTSD patients are presented in comparison with trauma
exposed non-PTSD controls (corrected P < 0.05). Increased connections in the PTSD patients were seen in a single network that had 10 nodes and 18 edges
(P= 0.001, corrected). OLF= olfactory cortex, mSFG=medial superior frontal gyrus, HIP=hippocampus, SOG= superior occipital gyrus, MOG=middle occi-
pital gyrus, PoCG=postcentral gyrus, IPG= inferior parietal gyrus, ANG= angular gyrus, CAU= caudate nucleus, L= left, R= right. The results were visualized
using the BrainNet viewer package (http://www.nitrc.org/projects/bnv).

Table 3
Brain network organization changes observed across different MRI modalities in the same population of pediatric PTSD patients versus trauma-exposed controls.

Study Modality Sample size
(PTSD/TEC)

Cp Eloc Segregation Lp Eglob Integration

Suo et al. rs-fMRI 24/24 ↑ ↑ ↑ – – –
Suo et al. DTI 24/23 – ↓ ↓ ↑ ↓ ↓
Present study T1-weighted 22/22 ↑ ↑ ↑ ↓ ↑ ↑

Brain parcellation was achieved for each modality using the AAL template (automated anatomical labeling).
The graph theory analysis for all modalities was conducted by GRETNA (www.nitrc.org/projects/gretna/) in Statistical Parametric Mapping (SPM) software (www.
fil.ion.ucl.ac.uk/spm/software/SPM8/).
Samples were identical except for modest loss of data due to movement or other artifact.
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weakened clinical correlations with MRI data as intervening supportive
and stressful events and variable expression of PTSD symptoms over the
illness course may have weakened these relations. Finally, we selected
an earthquake-exposed control group who did not develop PTSD to
differentiate PTSD and general stress effects. Whether and how both of
these groups might differ from unstressed community controls remains
to be determined to provide more comprehensive insights into how
PTSD and major life stress impact the brain connectome. In particular,
the current study adds to psychoradiology (https://radiopaedia.org/
articles/psychoradiology), an evolving subspecialty of radiology mainly
for psychiatric and psychological brain (Lui et al., 2016).

Our analyses of topological brain grey matter networks indicate a
significantly more segregated and integrated brain network organiza-
tion in children with PTSD. The association and disassociation between
the WM, GM and rs-fMRI changes seen in our multimodal studies of this
population may be important for diagnostic purposes and for under-
standing the nature of the brain organization changes in children with
PTSD. In conclusion, PTSD is a highly prevalent and poorly understood
brain disorder, and our study shows that the disorder involves complex
pathologies of neocortical network organization that may more ex-
tensively impact brain systems in pediatric populations.
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