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Abstract
Introduction: Americans with diabetes are clinically vulnerable to worse COVID-19 
outcomes; thus, insight into how to prevent infection is imperative. Using longitudinal, 
prospective data from the real-world iNPHORM study, we identify the intrinsic and 
extrinsic risk factors of confirmed or probable COVID-19 in people with type 1 or 2 
diabetes.
Methods: The iNPHORM study recruited 1206 Americans (18–90 years) with insulin- 
and/or secretagogue-treated type 1 or 2 diabetes from a probability-based internet 
panel. Online questionnaires (screener, baseline and 12 monthly follow-ups) assessed 
COVID-19 incidence and various plausible intrinsic and extrinsic factors. Multivariable 
Cox regression was used to model the rate of COVID-19 (confirmed or probable). Risk 
factors were selected using a repeated backwards-selection ‘voting’ procedure.
Results: A sub-sample of 817 iNPHORM participants (type 1 diabetes: 16.9%; age: 
52.1 [SD: 14.2] years; female: 50.2%) was analysed between May 2020 and March 
2021. During this period, 13.7% reported confirmed or probable COVID-19. Age, 
body mass index, number of chronic comorbidities, most recent A1C, past severe hy-
poglycaemia, and employment status were selected in our final model. Body mass 
index ≥30 kg/m2 versus <30 kg/m2 (HR 1.63 [1.05; 2.52]95% CI), and increased number 
of comorbidities (HR 1.16 [1.05; 1.27]95% CI) independently predicted COVID-19 in-
cidence. Marginally significant effects were observed for overall A1C (p =  .06) and 
employment status (p = .07).
Conclusions: This is the first US-based epidemiologic investigation to characterize 
community-based COVID-19 susceptibility in diabetes. Our results reveal specific and 
promising avenues to prevent COVID-19 in this at-risk population. ClinicalTrials.gov 
Identifier: NCT04219514.
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1  |  INTRODUC TION

Despite extensive vaccine rollouts, the United States (US) continues 
to report the highest numbers of confirmed COVID-19 diagnoses and 
fatalities in the world.1 Type 1 and 2 diabetes ranks as the second 
most common underlying health condition among US cases,2 contrib-
uting to an elevated risk of severe outcomes.3 Even for the majority 
reporting very mild infection, diabetes has shown to exacerbate post 
COVID-19 syndrome (i.e. ‘long COVID’),4 exposing an already high-
risk population to further medical, social, and economic challenges.4

Insight into the factors altering COVID-19 susceptibility in diabe-
tes is needed to understand viral transmission and control over time—
especially as the virus becomes increasingly endemic. Hospital-based 
studies have done well to quantify the burden and predictors of severe 
COVID-19 morbidity and mortality in patients experiencing hyper-
glycaemia,5 helping usher improved antiviral and treatment proto-
cols. However, what remains unknown is the overall epidemiology of 
COVID-19 in the US public with diabetes, and strategies to prevent it.

Here, we analyse longitudinal, prospective data from the real-
world iNPHORM (Investigating Novel Predictions of Hypoglycemia 
Occurrence using Real-world Models) study to ascertain the real-
world, time-varying distribution and determinants of confirmed 
or probable COVID-19 in people with diabetes. The results of this 
study will be instructive for future clinical and public health strat-
egies aimed at mitigating COVID-19 risk in one of America's most 
prevalent and vulnerable disease populations.3

2  |  MATERIAL S AND METHODS

2.1  |  Study design

The current evaluation describes a sub-analysis of the larger iN-
PHORM panel survey: a 1-year prospective investigation of real-world 
hypoglycaemia risk stratification in the US.6 Longitudinal self-assessed 
data were examined to determine the incidence proportion and re-
lated intrinsic and extrinsic factors of infection with the SARS-CoV-2 
virus leading to COVID-19 between May 2020 and March 2021.

2.2  |  Participants and data collection

Individuals 18–90 years old, living in the US (≥1  year), with a self-
reported diagnosis of insulin and/or secretagogue-treated type 
1 or 2 diabetes (≥1  year) were eligible to enrol in the iNPHORM 
study; those involved in a concurrent intervention or pregnant (at 
screener or within year prior) were ineligible. Recruitment occurred 
across two sub-panels (A and B) conveniently sampled from a rep-
resentative (geodemographic, attitudinal, behavioural), probability-
based internet panel of Americans with diabetes (type 1 diabetes: 
N ≈ 10,000; type 2 diabetes: N ≈ 58,000). Enrolees were managed 
and hosted by Ipsos Interactive Services (IIS), a global leader in real-
world, patient-centred survey conduct.

Sub-panels A and B completed an online baseline question-
naire and up to 12 waves of follow-up (monthly questionnaires) 
that were emailed automatically by IIS; the follow-up schedule 
between panels was offset by 2 months (Sub-panel A: February 
2020 to January 2021; Sub-panel B: April 2020 to March 2021). 
Participants were given 7 days to complete each follow-up question-
naire using various internet-equipped devices (e.g. computers, tab-
lets and smartphones). All responses were synchronously stored on 
the IIS platform. Reminders and token incentives were distributed 
prospectively.

iNPHORM questionnaires (screener, baseline and follow-ups) 
were produced in English and pretested/piloted before fielding. 
Questionnaires captured self-assessed data on non-clinical and 
clinical, intrinsic and extrinsic variables. In response to the escalat-
ing severity of the pandemic, follow-ups were emended to include 
a COVID-19 sub-questionnaire starting in May 2020 (Sub-panel 
A: Wave 3; Sub-panel B: Wave 1). Further details on iNPHORM 
(ClinicalTrials.gov Identifier: NCT04219514) procedures and instru-
ments are available elsewhere.6

2.3  |  COVID-19 status

Structured items were disseminated to classify respondents as 
confirmed or probable COVID-19 cases based on guidelines from 
the Centers for Disease Control and Prevention (April 2020).7 
Confirmed cases were those who reported having been medically 
diagnosed with COVID-19 by either ribonucleic acid or viral antigen 
assay. Probable cases were those who did not have a formal medical 
diagnosis but who reported (1) symptoms typical of COVID-19 (e.g. 
a cough, difficulty breathing, fever [over 100 degrees Fahrenheit], 
sore throat, headache, tiredness, or muscle aches and pains) and (2) 
≥1 form of epidemiological exposure (close contact with confirmed/
suspected case or international travel). At each follow-up, partici-
pants were asked to report on their COVID-19 status since their last 
completed questionnaire.

2.4  |  Potential risk factors

A broad range of plausible intrinsic and extrinsic COVID-19 risk fac-
tors were determined in consultation with the literature and dia-
betes experts. Information pertaining to these variables, including 
time-varying characteristics, were collated between the screener, 
baseline and follow-up questionnaires (Table S1). In this analysis, the 
following factors were evaluated:

2.4.1  |  Intrinsic variables

Age (18–29, 30–49, and ≥ 50 years); sex assigned at birth; diabe-
tes type; duration of diabetes; most recent A1C (≤53.0 mmol/L 
[≤7%], 54–64 mmol/L [7.1%–8%], 65–75 mmol/L [8.1%–9%], and 
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≥76 mmol/L [≥9.1%]); body mass index (BMI) (≥30 vs. <30 kg/m2); 
type of chronic comorbidity (bone disorder; cancer or human im-
munodeficiency virus; cardiovascular disease, stroke, hypertension; 
chronic kidney disease; gastrointestinal disease or chronic liver 
failure; mental health or eating disorder; neurological disorder or 
physical impairment; and respiratory condition); number of chronic 
comorbidities; number of diabetes complications; and past severe 
hypoglycaemia.

2.4.2  |  Extrinsic variables

Geographic region; rurality; employment; highest level of education; 
health literacy; income and number of household members; health 
insurance; marital status; living arrangement; race (proxy for sys-
temic marginalization); use of insulin and/or secretagogues; use of 
continuous glucose monitoring; frequency of healthcare visits for 
diabetes; and physical distancing.

2.5  |  Statistical analysis

We analysed May 2020 responders (Sub-panel A: Wave 3 and Sub-
panel B: Wave 1) who, at that time, reported no current or pre-
vious COVID-19 (confirmed or probable); and who completed at 
least one subsequent monthly questionnaire. Thus, in this study, 
follow-up spanned 9 months for Sub-panel A and 11 months for 
Sub-panel B.

Sample characteristics, based on May 2020 responses, were 
summarized as frequencies and percentages for categorical vari-
ables, and as means and standard deviations (SD) or medians and 
interquartile ranges (IQR) for continuous variables. Incidence pro-
portions were calculated for first reported COVID-19 cases occur-
ring between May 2020 and March 2021.

Multivariable Cox proportional hazards regression, accounting 
for time-varying risk factors, was used to model the hazard rate of 
confirmed or probable COVID-19. A cause-specific hazard function 
adjusted for the competing effect of COVID-19 vaccination.8 Ten im-
puted datasets were generated using multiple imputation by chained 
equations.9–11 Missing time-varying risk factor data were imputed as 
separate terms for each follow-up.

Salient factors were determined using a model ‘voting’ procedure 
(Figure  1).12 Repeated backwards-selection models of 200 boot-
strapped samples were computed to identify factors that minimized 
the Akaike Information Criterion (AIC).13 This process was replicated 
for each multiply imputed dataset (m = 10), resulting in 2000 boot-
strapped samples. Factors identified by ≥50% of the multiply im-
puted, bootstrapped backwards-selection models were retained in 
our final analysis. Coefficients were combined using Rubin's rules to 
correct for uncertainty due to missingness.14 Two-sided significance 
tests (α =  .05) were conducted using the median p-value of coeffi-
cients estimated for each multiply imputed dataset.15 Analyses were 
performed in Stata 1511 and R 4.1.16

2.6  |  Ethical considerations

Ethics approval was obtained from Western University's Research 
Ethics Board (#112986, December 9, 2020) prior to recruitment 
and updated upon addition of the COVID-19 sub-questionnaire. iN-
PHORM was registered with www.Clini​calTr​ials.gov (NCT04219514, 
January 7, 2020).17 Ipsos Interactive Services encrypted participant 
data to ensure confidentiality. Only de-identified data were trans-
ferred to the Western University research team. All participants 
provided informed consent before enrolment; they could withdraw 
at any time.

3  |  RESULTS

Among 1206 iNPHORM participants, 817 (mean age: 52.1 [SD: 
14.2] years; female: 50.2%) completed the May 2020 question-
naire (with no reported current or previous COVID-19) and sub-
mitted at least one follow-up thereafter. As of May 2020, 138 
(16.89%) reported a diagnosis of type 1 diabetes, and the overall 
median diabetes duration was 12 (IQR: 15) years (type 1 diabetes: 
26 [IQR: 20] years; type 2 diabetes: 11 [IQR: 13] years) (Table 1). 
All type 1 diabetes participants reported taking insulin (without 
secretagogues); among participants with type 2 diabetes, 248 
(36.5%) reported taking insulin (without secretagogues), 223 
(32.8%) secretagogues (without insulin), 155 (22.8%) a combina-
tion of insulin and secretagogues and 53 (7.8%) neither insulin 
nor secretagogues. Ninety-three percent of follow-up question-
naires were completed, and 753 (92%) participants remained 
uncensored prior to study completion. By the end of follow-up, 
n = 137 (16.8%) received one or more doses of COVID-19 vaccine 
(Table S2).

3.1  |  Incidence proportions of confirmed or 
probable diagnosis of COVID-19

From May 2020 to March 2021, 112 of 817 (13.7%) participants 
reported confirmed (54 [6.6%]) or probable (58 [7.1%]) COVID-19. 
Among individuals with type 1 diabetes (n  =  138), there were 8 
(5.8%) confirmed and 10 (7.3%) probable cases. Among those with 
type 2 diabetes (n = 679), there were 46 (6.8%) confirmed and 48 
(7.1%) probable cases. The Kaplan–Meier survival curve in Figure S1 
displays the probability of remaining COVID-19 free over the course 
of follow-up.

3.2  |  Risk factors of COVID-19 incidence

Age, BMI, number of chronic comorbidities, most recent A1C, pre-
vious severe hypoglycaemia and employment status were iden-
tified in ≥50% of backwards-selected models and retained for 
analysis (Table 2). Table 3 summarizes the estimated cause-specific 

http://www.clinicaltrials.gov
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hazard ratios of our final multivariable model. Estimated cause-
specific hazard ratios for COVID-19 vaccination are reported in 
Table S3.

Reported COVID-19 incidence between May 2020 and March 
2021 statistically significantly increased with presence of obesity 
(BMI≥30 kg/m2 vs. <30 kg/m2) (HR 1.63 [1.05; 2.52]95% CI, p =  .02) 
and number of chronic comorbidities (HR 1.16 [1.05; 1.27]95% CI, 
p =  .002). A marginally statistically significant effect was observed 
for overall A1C (p = .06). Specifically, rates of COVID-19 were higher 
for A1C values ≤53.0 mmol/L (≤7%) versus 54–64 mmol/L (7.1%–8%) 
(HR 0.61 [0.38; 1.00]95% CI) or 65–75 mmol/L (8%–9.1%) (HR 0.65 
[0.34; 1.26]95% CI), but lower when compared to values ≥76 mmol/L 
(≥9.1%) (HR 1.27 [0.70; 2.29]95% CI). Overall, employment status also 
marginally significantly affected COVID-19 incidence (p = .07): part-
time workers were more likely to report COVID-19 than full-time 
workers (HR 1.39 [0.71; 2.70]95% CI), but less likely than those who 
were unemployed, retired or students (HR 0.68 [0.43; 1.08]95% CI).

Negative, non-significant associations were detected for previ-
ous severe hypoglycaemia (HR 0.82 [0.41; 1.65]95% CI) and pairwise 
comparisons of individuals ≥50 versus 18–29 years old (HR 0.54 
[0.25; 1.17]95% CI).

4  |  DISCUSSION

Americans with type 1 and 2 diabetes with COVID-19 exhibit higher 
rates of morbidity,3 mortality,3 and long COVID than people without 
diabetes.4 COVID-19 prevention strategies optimally tailored to this 
clinically vulnerable population are imperative. Nevertheless, while 
research on hospital-based severe outcomes and treatment ad-
vances,5 virtually no diabetes-specific studies exist on how to thwart 
infection in the first place.18

This primary epidemiologic investigation is the first to com-
prehensively quantify the real-world, time-varying predictors of 
COVID-19 in the general US population with diabetes. Between 
May 2020 and March 2021, 112 of 817 (13.7%) participants in 
our study reported either a confirmed or probable diagnosis of 
COVID-19. In total, six risk factors were selected in our final model: 
age, obesity (BMI ≥ 30 kg/m2), increased number of chronic comor-
bidities, most recent A1C, previous severe hypoglycaemia, and em-
ployment status. Only obesity and comorbidity achieved statistical 
significance.

Saliently, COVID-19 rates were 63% higher in respondents 
with a BMI ≥30 kg/m2 versus <30 kg/m2 (p =  .02). Obesity has 

F I G U R E  1 Model ‘voting’ procedure used to determine salient factors
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TA B L E  1 Intrinsic and extrinsic sample characteristics

Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Intrinsic factors

Age, n (%)

18–29 years 41 (5.02) 21 (15.22) 20 (2.95)

30–49 years 296 (36.23) 64 (46.38) 232 (34.17)

50 years and older 480 (58.75) 53 (38.41) 427 (62.89)

Sex assigned at birth, n (%)

Male 407 (49.82) 50 (36.23) 357 (52.58)

Female 410 (50.18) 88 (63.77) 322 (47.42)

Diabetes type, n (%)

Type 1 138 (16.89) 138 (100) 0

Type 2 679 (83.11) 0 679 (100)

Duration of diabetes (years), median (IQR) 12 (6 to 21) 26 (15 to 35) 11 (5 to 18)

Most recent A1C value, n (%)

Less than or equal to 53 mmol/L (7%) 302 (36.96) 50 (36.23) 252 (37.11)

54–64 mmol/L (7.1–8%) 279 (34.15) 49 (35.51) 230 (33.87)

65–75 mmol/L (8.1–9%) 129 (15.79) 19 (13.77) 110 (16.20)

Greater than or equal to 76 mmol/L (9.1%) 73 (8.94) 18 (13.04) 55 (8.10)

Missing/unknown 34 (4.16) 2 (1.45) 32 (4.71)

BMI, n (%)

BMI less than 30 kg/m2 371 (45.41) 107 (77.54) 264 (38.88)

BMI greater than or equal to 30 kg/m2 440 (53.86) 31 (22.46) 409 (60.24)

Missing/unknown 6 (0.73) 0 6 (0.88)

Bone disorder, n (%) 369 (45.17) 45 (32.61) 324 (47.72)

Missing/unknown 6 (0.73) 1 (0.72) 5 (0.74)

Cancer/HIV, n (%) 62 (7.59) 5 (3.62) 57 (8.39)

Missing/unknown 1 (0.12) 0 1 (0.15)

Cardiovascular disease/stroke/hypertension, n (%) 503 (61.57) 58 (42.03) 445 (65.54)

Missing/unknown 2 (0.24) 0 2 (0.29)

Chronic kidney disease, n (%) 84 (10.28) 11 (7.97) 73 (10.75)

Missing/unknown 11 (1.35) 0 11 (1.62)

Gastrointestinal disease/chronic liver failure, n (%) 138 (16.89) 22 (15.94) 116 (17.08)

Missing/unknown 0 0 0

Mental health/eating disorder, n (%) 280 (34.27) 46 (33.33) 234 (34.46)

Missing/unknown 5 (0.61) 0 5 (0.74)

Neurological disorder/physical impairment, n (%) 226 (27.66) 34 (24.64) 192 (28.28)

Missing/unknown 2 (0.24) 0 2 (0.29)

Respiratory condition, n (%) 150 (18.36) 21 (15.22) 129 (19.00)

Missing/unknown 7 (0.86) 1 (0.72) 6 (0.88)

Number of comorbiditiesa, n (%)

0 138 (16.89) 38 (27.54) 100 (14.73)

1 144 (17.63) 28 (20.29) 116 (17.08)

2 154 (18.85) 22 (15.94) 132 (19.44)

3 113 (13.83) 18 (13.04) 95 (13.99)

4 103 (12.61) 13 (9.42) 90 (13.25)

5 or greater 117 (14.32) 13 (9.42) 104 (15.32)

(Continues)
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Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Missing/unknown 48 (5.88) 6 (4.35) 42 (6.19)

Diabetes complicationb, n (%) 497 (60.83) 95 (68.84) 402 (59.20)

One or more severe hypoglycaemia events, n (%) 253 (30.97) 59 (42.75) 194 (28.57)

Missing/unknown 3 (0.37) 0 3 (0.44)

Extrinsic factors

Region, n (%)

Northeast 156 (19.09) 40 (28.99) 116 (17.08)

Midwest 194 (23.75) 33 (23.91) 161 (23.71)

West 142 (17.38) 46 (33.33) 249 (36.67)

South 295 (36.11) 18 (13.04) 124 (18.26)

Missing/unknown 30 (3.67) 1 (0.72) 29 (4.27)

Rurality, n (%)

Urban 230 (28.15) 26 (18.84) 204 (30.04)

Suburban 386 (47.25) 85 (61.59) 301 (44.33)

Rural 201 (24.60) 27 (19.57) 174 (25.63)

Employment, n (%)

Full time 345 (42.23) 65 (47.10) 280 (41.24)

Part time 66 (8.08) 16 (11.59) 50 (7.36)

Unemployed, student, or retired 406 (49.69) 57 (41.30) 349 (51.40)

Highest level of education, n (%)

High school, some high school, or Grade 8 140 (17.14) 26 (18.84) 114 (16.79)

College degree or some college 530 (64.87) 86 (62.32) 444 (65.39)

Degree beyond first college degree 147 (17.99) 26 (18.84) 121 (17.82)

Health literacyc, n (%)

Health literate 703 (86.05) 126 (91.30) 577 (84.98)

Somewhat health literate 73 (8.94) 8 (5.80) 65 (9.57)

Not health literate 41 (5.02) 4 (2.90) 37 (5.45)

Income per household member, n (%)

<$15,000 167 (20.44) 36 (26.09) 131 (19.29)

$15,000 to $29,999 269 (32.93) 27 (19.57) 242 (35.64)

$30,000 to $44,999 187 (22.89) 34 (24.64) 153 (22.53)

$45,000 to $59,999 91 (11.14) 14 (10.14) 77 (11.34)

$60,000 to $74,999 46 (5.63) 7 (5.07) 39 (5.74)

$75,000 to $89,999 18 (2.20) 6 (4.35) 12 (1.77)

≥$90,000 31 (3.79) 9 (6.52) 22 (3.24)

Missing/unknown 8 (0.98) 5 (3.62) 3 (0.44)

Number of household members, median (IQR) 2 (2 to 3) 2 (2 to 3) 2 (2 to 3)

Health insurance, n (%)

Private insurance plan 346 (42.35) 76 (55.07) 270 (39.76)

Government-assistance plan 268 (32.80) 36 (26.09) 232 (34.17)

Multiple insurance plans and other insurance plans 189 (23.13) 22 (15.94) 167 (24.59)

Out-of-pocket (i.e. no insurance coverage) 14 (1.71) 4 (2.90) 10 (1.47)

Marital status, n (%)

Never married 176 (21.54) 38 (27.54) 138 (20.32)

Partnered 501 (61.32) 79 (57.25) 422 (62.15)

TA B L E  1 (Continued)
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been identified as the most prevalent and predictive comorbidity 
of severe outcomes among hospitalized COVID-19 cases with di-
abetes.18 We now provide new evidence that it may also augment 
SARS-CoV-2 initiation.19 In people with obesity, low-level chronic 
inflammation can aggravate viral susceptibility by reducing mac-
rophage activation, proinflammatory cytokine production, and 
B- and T-cell responses.20 Adipose tissue can also act as a major 
source of inflammatory molecules, including interleukin-6 (IL-6), 
a gene implicated in the expression of angiotensin converting 
enzyme 2 (ACE2) and SARS-CoV-2.19 With >85% of Americans 
with diabetes diagnosed as overweight/obese, our analysis signals 
a key opportunity for effective pandemic surveillance and risk 
mitigation.21

But even more generally, we found that chronic diabetes comor-
bidity, irrespective of obesity, can promote COVID-19, suggesting 
the need for a broad scope prevention plan. In the US, over 80% 
of people with diabetes have at least one other underlying health 
condition.22 Results of our time-varying analysis revealed a 16% in-
creased rate of COVID-19 for each additional comorbidity reported 
(p = .002). This finding expands on previous hospital-based analyses 
reporting worse COVID-19 outcomes in people with diabetes and co-
existing conditions versus diabetes alone.18 Increased inflammation, 
immunosuppression and cardio-renal impairments may underpin 
the predictive role of comorbidity on SARS-CoV-2 susceptibility.23 
Pathophysiologic research has also uncovered distinct mechanisms 
for ACE2 expression in people with coexisting conditions that may 

Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Divorced, separated, widowed 139 (17.01) 21 (15.22) 118 (17.38)

Missing/unknown 1 (0.12) 0 1 (0.15)

Living arrangement, n (%)

Lives with others 653 (79.93) 116 (84.06) 537 (79.09)

Lives alone 164 (20.07) 22 (15.94) 142 (20.91)

Race, n (%)

White 648 (79.31) 124 (89.86) 524 (77.17)

Non-white or multiracial 169 (20.69) 14 (10.14) 155 (22.83)

Medication regimen, n (%)

Neither insulin nor secretagogues 53 (6.49) 0 53 (7.81)

Insulin alone 386 (47.25) 138 (100) 248 (36.52)

Secretagogues alone 223 (27.29) 0 223 (32.84)

Insulin and secretagogues 155 (18.97) 0 155 (22.83)

Continuous glucose monitor use, n (%)

No 647 (79.19) 69 (50.00) 578 (85.13)

Yes 166 (20.32) 68 (49.28) 98 (14.43)

Missing/unknown 4 (0.49) 1 (0.72) 3 (0.44)

Number of healthcare visits for diabetes, n (%)

0 474 (58.02) 88 (63.77) 386 (56.85)

1 265 (32.44) 39 (28.26) 226 (33.28)

2 42 (5.14) 7 (5.07) 35 (5.15)

3 16 (1.96) 1 (0.72) 15 (2.21)

4 or more 17 (2.08) 2 (1.45) 15 (2.21)

Missing/unknown 3 (0.37) 1 (0.72) 2 (0.29)

Practices physical distancing, n (%)

Always or often 711 (87.03) 118 (85.51) 593 (87.33)

Sometime, rarely, or never 105 (12.85) 20 (14.49) 85 (12.52)

Missing/unknown 1 (0.12) 0 1 (0.15)

aComorbidities included bone, joint, or muscle problems; cancer; cardiovascular disease; chronic kidney disease; chronic liver failure; eating disorders; 
gastrointestinal disease; HIV/AIDS; hypertension; mental health conditions; neurological disorders; and stroke.
bDiabetes complications included amputation, ketoacidosis, foot damage, gastroparesis, hyperosmolar, nephropathy, neuropathy, and retinopathy.
cHealth literacy was assessed by asking how often the respondent requires help reading health-related materials. Respondents were considered 
health literate if they reported they never or rarely require help. Respondents were considered somewhat health literate if they reported they 
sometimes require help. Respondents were considered not health literate if they reported they always or often require help.

TA B L E  1 (Continued)
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modulate SARS-CoV-2 entry into lung cells. In particular, comorbid 
diabetes has been shown to propagate IL-6 and INS gene expression, 
leading to increased ACE2 via NAD-dependent histone deacetylase 
Sirtuin.24

The role of glycaemia on COVID-19 susceptibility has been 
widely debated. In our study, haemoglobin A1C—a well-established 
marker of glycaemic control—was identified as a marginally signifi-
cant risk factor of COVID-19 (p = .06). Participants with A1C values 
≥76 mmol/L (≥9.1%) reported 27% higher COVID-19 rates than those 
with values ≤53.0 mmol/L (≤7%). Thus, in addition to worsening 
COVID-19 severity and fatality, elevated plasma glucose levels may 
also trigger SARS-CoV-2 binding and viral replication.5,25 However, 
we observed a 35%–39% lower rate of COVID-19 in people with 
A1Cs of 54–75 mmol/L (7.1–9.1%) versus ≤53.0 mmol/L (≤7%). It 
is plausible this effect is mediated by increased hypoglycaemia in 
people with tightly controlled diabetes (A1C ≤53.0 mmol/L [≤7%]).26 
Recent data out of Scotland demonstrated greater COVID-19 mor-
bidity and mortality risk in people exposed to frequent low blood 
glucose.27 As hypoglycaemia is known to induce inflammation, in-
cluding IL-6 expression, and decrease immune responsiveness, it is 
not surprising that it may also exacerbate biologic predisposition to 
infection.25 Amid challenges to sustain routine diabetes care during 
the pandemic,28 it is essential that efforts to optimize glucose man-
agement not wane.

Interestingly, most socio-demographic factors (e.g. race) 
were not retained in our final model—perhaps due to insufficient 
power, or proximate clinical variables nullifying upstream effects. 
Employment status emerged as the only marginally significant 
extrinsic risk factor in our study (p  =  .07). Relative to full-time 
workers, COVID-19 rates were 39% higher in part-time workers, 

TA B L E  2 Potential risk factors for contracting COVID-19 
considered in the backwards-selection model

Proportion of 
backward-selected 
models that retained 
potential risk factor (%)

Intrinsic factors

Age 60.15

Sex assigned at birth 47.15

Diabetes type 28.25

Most recent A1C 75.25

BMI 74.05

Bone disorder 25.35

Cancer/HIV 43.85

Cardiovascular disease/stroke/
hypertension

22.95

Chronic kidney disease 32.50

Gastrointestinal disease/chronic liver 
failure

24.55

Mental health/eating disorder 21.20

Neurological disorder/physical 
impairment

30.10

Respiratory condition 24.65

Number of comorbidities 61.35

Diabetes complication 46.30

One or more severe hypoglycaemia 
events in the past year

51.00

Extrinsic factors

Region 32.80

Rurality 36.45

Employment 69.65

Education 48.70

Health literacy 48.45

Income per household member 13.85

Number of household members 31.60

Health insurance 27.70

Marital status 41.85

Living arrangement 33.40

Race 22.10

Medication regimen 34.45

CGM use 36.30

Number of healthcare visits for 
diabetes

40.00

Practices physical distancing 28.10

Note: Shaded potential risk factors were selected by ≥50% of 
backwards-selected models and included in the final model. Diabetes 
duration was dropped due to its collinearity with Age.

TA B L E  3 Risk factors for acquiring COVID-19

Hazard ratio (95% 
CI) p-Value

Age

18 to 29 years Reference .33

30 to 49 years 0.57 (0.27 to 1.21)

50 years and older 0.54 (0.25 to 1.17)

Employment

Full time Reference .07

Part time 1.39 (0.71 to 2.70)

Unemployed, student or 
retired

0.68 (0.43 to 1.08)

BMI greater than or equal to 
30 kg/m2

1.63 (1.05 to 2.52) .02

Most recent A1C value, n (%)

Less than or equal to 
53 mmol/L (7%)

Reference .06

54 to 64 mmol/L (7.1–8%) 0.61 (0.38 to 1.00)

65 to 75 mmol/L (8.1–9%) 0.65 (0.34 to 1.26)

Greater than or equal to 
76 mmol/L (9.1%)

1.27 (0.70 to 2.29)

Number of comorbidities 1.16 (1.05 to 1.27) .002

One or more severe 
hypoglycaemia events in the 
past year

0.82 (0.41 to 1.65) .57
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yet 32% lower in unemployed participants, retirees and students. 
Employment-related environmental and behavioural dynamics 
could conceivably influence the probability of SARS-CoV-2 con-
tact.24 For example, part-time work (often on-site and involving 
close physical proximity),29 in contrast to at-home (un)employ-
ment, may not only exacerbate environmental exposure, but also 
inhibit optimal prevention behaviour.29 Clinical and public health 
strategies should account for the possible interplay between em-
ployment status and risk for COVID-19.24

Several additional variables were included in the analysis 
but failed to reach statistical significance. This could be due to a 
lack of association between these variables and susceptibility to 
COVID-19, or because our analysis was inadequately powered to 
identify these associations due to its smaller sample size. Despite a 
strong magnitude of effect (HR 0.82 [0.41 to 1.65]95% CI), previous 
severe hypoglycaemia events were not found to independently 
predict COVID-19 rates, possibly due to the collinear effects of 
glycaemic control. Additionally, like previous population-based 
studies, COVID-19 rates did not differ by diabetes type.5 Age was, 
overall, statistically insignificant; though, pairwise comparisons 
suggested a ~ 50% lower rate of COVID-19 in older (≥50 years) ver-
sus younger (18–29 years) participants, echoing previous hospital-
based data.27

Targeted COVID-19 vaccine and prevention strategies are cru-
cial to protecting people with diabetes from potentially devasting 
outcomes. Our study identifies diabetes groups at highest risk of 
COVID-19 contraction, providing an evidence-based roadmap for 
effective and efficient risk management and outbreak control.

4.1  |  Strengths and limitations

This iNPHORM sub-analysis examines a large general cohort 
of American adults with type 1 or 2 diabetes recruited from a 
probability-based, real-world internet panel with high participation 
rates and minimal loss-to-follow-up. Our primary epidemiologic in-
vestigation contrasts the retrospective, hospital-based research 
currently dominating the diabetes COVID-19 evidence base. In our 
study, both confirmed and probable COVID-19 cases were assessed, 
illuminating community-level pathways to infection prevention in 
diabetes.

Epidemiologic features of COVID-19 were quantified in a broad 
sample of cases and non-cases; plausible intrinsic and extrinsic vari-
ables were selected a priori. Continuous and repeated monitoring 
enabled assessment of time-varying exposures on SARS-CoV-2 in-
cidence leading to COVID-19 between May 2020 and March 2021, 
and effect directions yet discerned by the prevailing literature (e.g. 
impact of glycaemic control on COVID-19).

Questionnaires and data collection were standardized over fol-
low-up. The use of online survey modes with email optimized reach, 
accessibility, respondent honesty and representativeness of data 
capture.30 De-identified participant information was collected to re-
duce social desirability bias.

Some limitations should be noted. Selection biases may have 
arisen to the extent that study respondents differed non-randomly 
from the general US population. Coverage bias may limit study gen-
eralizability. For example, in addition to restrictions on eligible med-
ication regimens, our sample comprised mostly white, educated, and 
insured participants. Over-representation of these subgroups may 
have biased the effect of certain risk factors, particularly extrinsic 
determinants, towards the null. Lastly, volunteer biases may have 
influenced COVID-19 characterization in our study; though, in what 
direction is uncertain. By extension, survivorship bias cannot be 
discounted.

We did not assess people without diabetes, so excess risk of 
COVID-19 attributable to diabetes could not be calculated. Further, 
while we could estimate the incidence of COVID-19 across our study 
sample, we could not distinguish COVID-19 cases requiring hospital-
ization or resulting in increased morbidity or mortality. Self-reported 
COVID-19 status and other risk measurements (e.g. A1C) may have 
been biased by errors in recall. Our model does not represent pos-
sible SARS-CoV-2 reinfection resulting in confirmed or probable 
COVID-19. Finally, SARS-CoV-2 latency beyond the observation 
period and uncounted asymptomatic cases may have led to conser-
vative risk coefficients. As a corollary to this, it is possible that fac-
tors identified in our study may relate more with symptomatic illness 
resulting from SARS-CoV-2 infection, and the possible increased 
likelihood of COVID-19 diagnosis. Continued diabetes research is 
required to monitor waning antibody levels, immune evasion, and 
future variants that can affect diabetes population susceptibility 
over time.

5  |  CONCLUSION

Leveraging iNPHORM data between May 2020 and March 2021, we 
present the first prospective, longitudinal epidemiologic analysis of 
community-based COVID-19 incidence and time-varying risk factors 
(intrinsic and extrinsic) in the general US public with type 1 or 2 dia-
betes. Our real-world results indicate that vaccination rollouts and 
other outbreak strategies should prioritize Americans with diabetes 
reporting a BMI≥30 kg/m2, a concomitant health condition, A1C val-
ues ≥9.1% and ≤7%, or part-time employment.

Persistent waves of infection and patterns of endemicity 
threaten to destabilize our path to pandemic recovery. Measures 
to protect against SARS-CoV-2 must remain at the forefront of all 
healthcare and policy decision-making, especially among those most 
vulnerable to infection. Our study unveils promising signposts to 
mitigate the severe effects of COVID-19 in diabetes and associated 
long-term health burden.
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