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Abstract
Introduction: Americans	with	diabetes	are	clinically	vulnerable	to	worse	COVID-	19	
outcomes; thus, insight into how to prevent infection is imperative. Using longitudinal, 
prospective	data	from	the	real-	world	iNPHORM	study,	we	identify	the	intrinsic	and	
extrinsic	risk	factors	of	confirmed	or	probable	COVID-	19	in	people	with	type	1	or	2	
diabetes.
Methods: The	iNPHORM	study	recruited	1206	Americans	(18–	90 years)	with	insulin-		
and/or	secretagogue-	treated	type	1	or	2	diabetes	from	a	probability-	based	internet	
panel.	Online	questionnaires	(screener,	baseline	and	12	monthly	follow-	ups)	assessed	
COVID-	19	incidence	and	various	plausible	intrinsic	and	extrinsic	factors.	Multivariable	
Cox	regression	was	used	to	model	the	rate	of	COVID-	19	(confirmed	or	probable).	Risk	
factors	were	selected	using	a	repeated	backwards-	selection	‘voting’	procedure.
Results: A	sub-	sample	of	817	 iNPHORM	participants	 (type	1	diabetes:	16.9%;	age:	
52.1	 [SD:	14.2]	years;	 female:	50.2%)	was	analysed	between	May	2020	and	March	
2021.	 During	 this	 period,	 13.7%	 reported	 confirmed	 or	 probable	 COVID-	19.	 Age,	
body	mass	index,	number	of	chronic	comorbidities,	most	recent	A1C,	past	severe	hy-
poglycaemia, and employment status were selected in our final model. Body mass 
index	≥30 kg/m2 versus <30 kg/m2	(HR	1.63	[1.05;	2.52]95%	CI),	and	increased	number	
of	comorbidities	 (HR	1.16	[1.05;	1.27]95%	CI)	 independently	predicted	COVID-	19	 in-
cidence.	Marginally	significant	effects	were	observed	for	overall	A1C	(p =	 .06)	and	
employment	status	(p =	.07).
Conclusions: This	 is	 the	 first	US-	based	 epidemiologic	 investigation	 to	 characterize	
community-	based	COVID-	19	susceptibility	in	diabetes.	Our	results	reveal	specific	and	
promising	avenues	to	prevent	COVID-	19	in	this	at-	risk	population.	ClinicalTrials.gov	
Identifier:	NCT04219514.
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1  |  INTRODUC TION

Despite	extensive	vaccine	rollouts,	the	United	States	(US)	continues	
to	report	the	highest	numbers	of	confirmed	COVID-	19	diagnoses	and	
fatalities in the world.1 Type 1 and 2 diabetes ranks as the second 
most common underlying health condition among US cases,2 contrib-
uting to an elevated risk of severe outcomes.3 Even for the majority 
reporting	very	mild	infection,	diabetes	has	shown	to	exacerbate	post	
COVID-	19	syndrome	(i.e.	 ‘long	COVID’),4	exposing	an	already	high-	
risk population to further medical, social, and economic challenges.4

Insight	into	the	factors	altering	COVID-	19	susceptibility	in	diabe-
tes is needed to understand viral transmission and control over time— 
especially	as	the	virus	becomes	increasingly	endemic.	Hospital-	based	
studies have done well to quantify the burden and predictors of severe 
COVID-	19	 morbidity	 and	 mortality	 in	 patients	 experiencing	 hyper-
glycaemia,5 helping usher improved antiviral and treatment proto-
cols. However, what remains unknown is the overall epidemiology of 
COVID-	19	in	the	US	public	with	diabetes,	and	strategies	to	prevent	it.

Here,	we	 analyse	 longitudinal,	 prospective	data	 from	 the	 real-	
world	iNPHORM	(Investigating	Novel	Predictions	of	Hypoglycemia	
Occurrence	 using	 Real-	world	Models)	 study	 to	 ascertain	 the	 real-	
world,	 time-	varying	 distribution	 and	 determinants	 of	 confirmed	
or	probable	COVID-	19	 in	people	with	diabetes.	The	results	of	 this	
study will be instructive for future clinical and public health strat-
egies	aimed	at	mitigating	COVID-	19	 risk	 in	one	of	America's	most	
prevalent and vulnerable disease populations.3

2  |  MATERIAL S AND METHODS

2.1  |  Study design

The	 current	 evaluation	 describes	 a	 sub-	analysis	 of	 the	 larger	 iN-
PHORM	panel	survey:	a	1-	year	prospective	investigation	of	real-	world	
hypoglycaemia risk stratification in the US.6	Longitudinal	self-	assessed	
data	were	examined	 to	determine	 the	 incidence	proportion	and	 re-
lated	intrinsic	and	extrinsic	factors	of	infection	with	the	SARS-	CoV-	2	
virus	leading	to	COVID-	19	between	May	2020	and	March	2021.

2.2  |  Participants and data collection

Individuals	 18–	90 years	 old,	 living	 in	 the	US	 (≥1	 year),	with	 a	 self-	
reported	 diagnosis	 of	 insulin	 and/or	 secretagogue-	treated	 type	
1	 or	 2	 diabetes	 (≥1	 year)	 were	 eligible	 to	 enrol	 in	 the	 iNPHORM	
study;	 those	 involved	 in	a	 concurrent	 intervention	or	pregnant	 (at	
screener	or	within	year	prior)	were	ineligible.	Recruitment	occurred	
across	two	sub-	panels	(A	and	B)	conveniently	sampled	from	a	rep-
resentative	(geodemographic,	attitudinal,	behavioural),	probability-	
based	 internet	panel	of	Americans	with	diabetes	 (type	1	diabetes:	
N ≈ 10,000;	 type	 2	 diabetes:	N ≈ 58,000).	 Enrolees	 were	 managed	
and	hosted	by	Ipsos	Interactive	Services	(IIS),	a	global	leader	in	real-	
world,	patient-	centred	survey	conduct.

Sub-	panels	 A	 and	 B	 completed	 an	 online	 baseline	 question-
naire	 and	 up	 to	 12	 waves	 of	 follow-	up	 (monthly	 questionnaires)	
that	 were	 emailed	 automatically	 by	 IIS;	 the	 follow-	up	 schedule	
between	 panels	 was	 offset	 by	 2 months	 (Sub-	panel	 A:	 February	
2020	 to	 January	 2021;	 Sub-	panel	 B:	 April	 2020	 to	March	 2021).	
Participants	were	given	7 days	to	complete	each	follow-	up	question-
naire	using	various	internet-	equipped	devices	(e.g.	computers,	tab-
lets	and	smartphones).	All	responses	were	synchronously	stored	on	
the IIS platform. Reminders and token incentives were distributed 
prospectively.

iNPHORM	 questionnaires	 (screener,	 baseline	 and	 follow-	ups)	
were produced in English and pretested/piloted before fielding. 
Questionnaires	 captured	 self-	assessed	 data	 on	 non-	clinical	 and	
clinical,	intrinsic	and	extrinsic	variables.	In	response	to	the	escalat-
ing	severity	of	the	pandemic,	follow-	ups	were	emended	to	include	
a	 COVID-	19	 sub-	questionnaire	 starting	 in	 May	 2020	 (Sub-	panel	
A:	 Wave	 3;	 Sub-	panel	 B:	 Wave	 1).	 Further	 details	 on	 iNPHORM	
(ClinicalTrials.gov	Identifier:	NCT04219514)	procedures	and	instru-
ments are available elsewhere.6

2.3  |  COVID- 19 status

Structured items were disseminated to classify respondents as 
confirmed	 or	 probable	 COVID-	19	 cases	 based	 on	 guidelines	 from	
the	 Centers	 for	 Disease	 Control	 and	 Prevention	 (April	 2020).7 
Confirmed cases were those who reported having been medically 
diagnosed	with	COVID-	19	by	either	ribonucleic	acid	or	viral	antigen	
assay.	Probable	cases	were	those	who	did	not	have	a	formal	medical	
diagnosis	but	who	reported	(1)	symptoms	typical	of	COVID-	19	(e.g.	
a cough, difficulty breathing, fever [over 100 degrees Fahrenheit], 
sore	throat,	headache,	tiredness,	or	muscle	aches	and	pains)	and	(2)	
≥1	form	of	epidemiological	exposure	(close	contact	with	confirmed/
suspected	 case	or	 international	 travel).	At	 each	 follow-	up,	 partici-
pants	were	asked	to	report	on	their	COVID-	19	status	since	their	last	
completed questionnaire.

2.4  |  Potential risk factors

A	broad	range	of	plausible	intrinsic	and	extrinsic	COVID-	19	risk	fac-
tors were determined in consultation with the literature and dia-
betes	experts.	 Information	pertaining	 to	 these	variables,	 including	
time-	varying	 characteristics,	 were	 collated	 between	 the	 screener,	
baseline	and	follow-	up	questionnaires	(Table	S1).	In	this	analysis,	the	
following factors were evaluated:

2.4.1  |  Intrinsic	variables

Age	 (18–	29,	 30–	49,	 and ≥ 50 years);	 sex	 assigned	 at	 birth;	 diabe-
tes	 type;	 duration	 of	 diabetes;	 most	 recent	 A1C	 (≤53.0 mmol/L	
[≤7%],	 54–	64 mmol/L	 [7.1%–	8%],	 65–	75 mmol/L	 [8.1%–	9%],	 and	
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≥76 mmol/L	 [≥9.1%]);	 body	mass	 index	 (BMI)	 (≥30	 vs.	<30 kg/m2);	
type	 of	 chronic	 comorbidity	 (bone	 disorder;	 cancer	 or	 human	 im-
munodeficiency virus; cardiovascular disease, stroke, hypertension; 
chronic kidney disease; gastrointestinal disease or chronic liver 
failure; mental health or eating disorder; neurological disorder or 
physical	impairment;	and	respiratory	condition);	number	of	chronic	
comorbidities; number of diabetes complications; and past severe 
hypoglycaemia.

2.4.2  |  Extrinsic	variables

Geographic region; rurality; employment; highest level of education; 
health literacy; income and number of household members; health 
insurance;	marital	 status;	 living	 arrangement;	 race	 (proxy	 for	 sys-
temic	marginalization);	use	of	 insulin	and/or	secretagogues;	use	of	
continuous glucose monitoring; frequency of healthcare visits for 
diabetes; and physical distancing.

2.5  |  Statistical analysis

We	analysed	May	2020	responders	(Sub-	panel	A:	Wave	3	and	Sub-	
panel	B:	Wave	1)	who,	 at	 that	 time,	 reported	no	 current	 or	 pre-
vious	COVID-	19	 (confirmed	 or	 probable);	 and	who	 completed	 at	
least one subsequent monthly questionnaire. Thus, in this study, 
follow-	up	 spanned	 9	months	 for	 Sub-	panel	A	 and	 11 months	 for	
Sub-	panel	B.

Sample characteristics, based on May 2020 responses, were 
summarized	 as	 frequencies	 and	 percentages	 for	 categorical	 vari-
ables,	 and	 as	means	 and	 standard	deviations	 (SD)	or	medians	 and	
interquartile	 ranges	 (IQR)	 for	 continuous	 variables.	 Incidence	pro-
portions	were	calculated	for	first	reported	COVID-	19	cases	occur-
ring between May 2020 and March 2021.

Multivariable	 Cox	 proportional	 hazards	 regression,	 accounting	
for	time-	varying	risk	factors,	was	used	to	model	the	hazard	rate	of	
confirmed	or	probable	COVID-	19.	A	cause-	specific	hazard	function	
adjusted	for	the	competing	effect	of	COVID-	19	vaccination.8 Ten im-
puted datasets were generated using multiple imputation by chained 
equations.9–	11	Missing	time-	varying	risk	factor	data	were	imputed	as	
separate	terms	for	each	follow-	up.

Salient	factors	were	determined	using	a	model	‘voting’	procedure	
(Figure 1).12	 Repeated	 backwards-	selection	 models	 of	 200	 boot-
strapped	samples	were	computed	to	identify	factors	that	minimized	
the	Akaike	Information	Criterion	(AIC).13 This process was replicated 
for	each	multiply	imputed	dataset	(m =	10),	resulting	in	2000	boot-
strapped	 samples.	 Factors	 identified	 by	 ≥50%	 of	 the	multiply	 im-
puted,	bootstrapped	backwards-	selection	models	were	retained	in	
our	final	analysis.	Coefficients	were	combined	using	Rubin's	rules	to	
correct for uncertainty due to missingness.14	Two-	sided	significance	
tests	(α =	 .05)	were	conducted	using	the	median	p-	value	of	coeffi-
cients estimated for each multiply imputed dataset.15	Analyses	were	
performed in Stata 1511 and R 4.1.16

2.6  |  Ethical considerations

Ethics	approval	was	obtained	 from	Western	University's	Research	
Ethics	 Board	 (#112986,	 December	 9,	 2020)	 prior	 to	 recruitment	
and	updated	upon	addition	of	the	COVID-	19	sub-	questionnaire.	iN-
PHORM	was	registered	with	www.Clini calTr ials.gov	(NCT04219514,	
January	7,	2020).17 Ipsos Interactive Services encrypted participant 
data	 to	ensure	confidentiality.	Only	de-	identified	data	were	 trans-
ferred	 to	 the	 Western	 University	 research	 team.	 All	 participants	
provided informed consent before enrolment; they could withdraw 
at any time.

3  |  RESULTS

Among	 1206	 iNPHORM	 participants,	 817	 (mean	 age:	 52.1	 [SD:	
14.2]	 years;	 female:	 50.2%)	 completed	 the	May	 2020	 question-
naire	 (with	no	reported	current	or	previous	COVID-	19)	and	sub-
mitted	 at	 least	 one	 follow-	up	 thereafter.	 As	 of	May	 2020,	 138	
(16.89%)	reported	a	diagnosis	of	type	1	diabetes,	and	the	overall	
median	diabetes	duration	was	12	(IQR:	15)	years	(type	1	diabetes:	
26	[IQR:	20]	years;	type	2	diabetes:	11	[IQR:	13]	years)	(Table 1).	
All	 type	1	diabetes	participants	 reported	 taking	 insulin	 (without	
secretagogues);	 among	 participants	 with	 type	 2	 diabetes,	 248	
(36.5%)	 reported	 taking	 insulin	 (without	 secretagogues),	 223	
(32.8%)	secretagogues	 (without	 insulin),	155	 (22.8%)	a	combina-
tion	 of	 insulin	 and	 secretagogues	 and	 53	 (7.8%)	 neither	 insulin	
nor	 secretagogues.	Ninety-	three	percent	of	 follow-	up	question-
naires	 were	 completed,	 and	 753	 (92%)	 participants	 remained	
uncensored	prior	 to	 study	 completion.	By	 the	end	of	 follow-	up,	
n =	137	(16.8%)	received	one	or	more	doses	of	COVID-	19	vaccine	
(Table	S2).

3.1  |  Incidence proportions of confirmed or 
probable diagnosis of COVID- 19

From	May	 2020	 to	March	 2021,	 112	 of	 817	 (13.7%)	 participants	
reported	 confirmed	 (54	 [6.6%])	 or	probable	 (58	 [7.1%])	COVID-	19.	
Among	 individuals	 with	 type	 1	 diabetes	 (n =	 138),	 there	 were	 8	
(5.8%)	confirmed	and	10	(7.3%)	probable	cases.	Among	those	with	
type	2	diabetes	 (n =	679),	 there	were	46	(6.8%)	confirmed	and	48	
(7.1%)	probable	cases.	The	Kaplan–	Meier	survival	curve	in	Figure	S1 
displays	the	probability	of	remaining	COVID-	19	free	over	the	course	
of	follow-	up.

3.2  |  Risk factors of COVID- 19 incidence

Age,	BMI,	number	of	chronic	comorbidities,	most	recent	A1C,	pre-
vious severe hypoglycaemia and employment status were iden-
tified	 in	 ≥50%	 of	 backwards-	selected	 models	 and	 retained	 for	
analysis	(Table 2).	Table 3	summarizes	the	estimated	cause-	specific	

http://www.clinicaltrials.gov
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hazard	 ratios	 of	 our	 final	multivariable	model.	 Estimated	 cause-	
specific	 hazard	 ratios	 for	 COVID-	19	 vaccination	 are	 reported	 in	
Table S3.

Reported	COVID-	19	 incidence	 between	May	2020	 and	March	
2021 statistically significantly increased with presence of obesity 
(BMI≥30 kg/m2 vs. <30 kg/m2)	 (HR	1.63	 [1.05;	2.52]95%	CI, p =	 .02)	
and	 number	 of	 chronic	 comorbidities	 (HR	 1.16	 [1.05;	 1.27]95%	 CI, 
p =	 .002).	A	marginally	statistically	significant	effect	was	observed	
for	overall	A1C	(p =	.06).	Specifically,	rates	of	COVID-	19	were	higher	
for	A1C	values	≤53.0 mmol/L	(≤7%)	versus	54–	64 mmol/L	(7.1%–	8%)	
(HR	 0.61	 [0.38;	 1.00]95%	 CI)	 or	 65–	75 mmol/L	 (8%–	9.1%)	 (HR	 0.65	
[0.34; 1.26]95%	CI),	but	lower	when	compared	to	values	≥76 mmol/L	
(≥9.1%)	(HR	1.27	[0.70;	2.29]95%	CI).	Overall,	employment	status	also	
marginally	significantly	affected	COVID-	19	incidence	(p =	.07):	part-	
time	workers	were	more	 likely	 to	 report	COVID-	19	 than	 full-	time	
workers	(HR	1.39	[0.71;	2.70]95%	CI),	but	 less	 likely	than	those	who	
were	unemployed,	retired	or	students	(HR	0.68	[0.43;	1.08]95%	CI).

Negative,	non-	significant	associations	were	detected	for	previ-
ous	severe	hypoglycaemia	(HR	0.82	[0.41;	1.65]95%	CI)	and	pairwise	
comparisons	 of	 individuals	 ≥50	 versus	 18–	29 years	 old	 (HR	 0.54	
[0.25;	1.17]95%	CI).

4  |  DISCUSSION

Americans	with	type	1	and	2	diabetes	with	COVID-	19	exhibit	higher	
rates of morbidity,3 mortality,3	and	long	COVID	than	people	without	
diabetes.4	COVID-	19	prevention	strategies	optimally	tailored	to	this	
clinically vulnerable population are imperative. Nevertheless, while 
research	 on	 hospital-	based	 severe	 outcomes	 and	 treatment	 ad-
vances,5	virtually	no	diabetes-	specific	studies	exist	on	how	to	thwart	
infection in the first place.18

This primary epidemiologic investigation is the first to com-
prehensively	 quantify	 the	 real-	world,	 time-	varying	 predictors	 of	
COVID-	19	 in	 the	 general	 US	 population	with	 diabetes.	 Between	
May	 2020	 and	 March	 2021,	 112	 of	 817	 (13.7%)	 participants	 in	
our study reported either a confirmed or probable diagnosis of 
COVID-	19.	In	total,	six	risk	factors	were	selected	in	our	final	model:	
age,	obesity	(BMI ≥ 30 kg/m2),	increased	number	of	chronic	comor-
bidities,	most	recent	A1C,	previous	severe	hypoglycaemia,	and	em-
ployment status. Only obesity and comorbidity achieved statistical 
significance.

Saliently,	 COVID-	19	 rates	 were	 63%	 higher	 in	 respondents	
with	 a	 BMI	 ≥30 kg/m2 versus <30 kg/m2	 (p =	 .02).	 Obesity	 has	

F I G U R E  1 Model	‘voting’	procedure	used	to	determine	salient	factors
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TA B L E  1 Intrinsic	and	extrinsic	sample	characteristics

Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Intrinsic factors

Age,	n	(%)

18–	29 years 41	(5.02) 21	(15.22) 20	(2.95)

30–	49 years 296	(36.23) 64	(46.38) 232	(34.17)

50 years	and	older 480	(58.75) 53	(38.41) 427	(62.89)

Sex	assigned	at	birth,	n	(%)

Male 407	(49.82) 50	(36.23) 357	(52.58)

Female 410	(50.18) 88	(63.77) 322	(47.42)

Diabetes type, n	(%)

Type 1 138	(16.89) 138	(100) 0

Type 2 679	(83.11) 0 679	(100)

Duration	of	diabetes	(years),	median	(IQR) 12	(6	to	21) 26	(15	to	35) 11	(5	to	18)

Most	recent	A1C	value,	n	(%)

Less	than	or	equal	to	53 mmol/L	(7%) 302	(36.96) 50	(36.23) 252	(37.11)

54–	64 mmol/L	(7.1–	8%) 279	(34.15) 49	(35.51) 230	(33.87)

65–	75 mmol/L	(8.1–	9%) 129	(15.79) 19	(13.77) 110	(16.20)

Greater	than	or	equal	to	76 mmol/L	(9.1%) 73	(8.94) 18	(13.04) 55	(8.10)

Missing/unknown 34	(4.16) 2	(1.45) 32	(4.71)

BMI, n	(%)

BMI	less	than	30 kg/m2 371	(45.41) 107	(77.54) 264	(38.88)

BMI	greater	than	or	equal	to	30 kg/m2 440	(53.86) 31	(22.46) 409	(60.24)

Missing/unknown 6	(0.73) 0 6	(0.88)

Bone disorder, n	(%) 369	(45.17) 45	(32.61) 324	(47.72)

Missing/unknown 6	(0.73) 1	(0.72) 5	(0.74)

Cancer/HIV,	n	(%) 62	(7.59) 5	(3.62) 57	(8.39)

Missing/unknown 1	(0.12) 0 1	(0.15)

Cardiovascular disease/stroke/hypertension, n	(%) 503	(61.57) 58	(42.03) 445	(65.54)

Missing/unknown 2	(0.24) 0 2	(0.29)

Chronic kidney disease, n	(%) 84	(10.28) 11	(7.97) 73	(10.75)

Missing/unknown 11	(1.35) 0 11	(1.62)

Gastrointestinal disease/chronic liver failure, n	(%) 138	(16.89) 22	(15.94) 116	(17.08)

Missing/unknown 0 0 0

Mental health/eating disorder, n	(%) 280	(34.27) 46	(33.33) 234	(34.46)

Missing/unknown 5	(0.61) 0 5	(0.74)

Neurological disorder/physical impairment, n	(%) 226	(27.66) 34	(24.64) 192	(28.28)

Missing/unknown 2	(0.24) 0 2	(0.29)

Respiratory condition, n	(%) 150	(18.36) 21	(15.22) 129	(19.00)

Missing/unknown 7	(0.86) 1	(0.72) 6	(0.88)

Number of comorbiditiesa, n	(%)

0 138	(16.89) 38	(27.54) 100	(14.73)

1 144	(17.63) 28	(20.29) 116	(17.08)

2 154	(18.85) 22	(15.94) 132	(19.44)

3 113	(13.83) 18	(13.04) 95	(13.99)

4 103	(12.61) 13	(9.42) 90	(13.25)

5 or greater 117	(14.32) 13	(9.42) 104	(15.32)

(Continues)
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Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Missing/unknown 48	(5.88) 6	(4.35) 42	(6.19)

Diabetes complicationb, n	(%) 497	(60.83) 95	(68.84) 402	(59.20)

One or more severe hypoglycaemia events, n	(%) 253	(30.97) 59	(42.75) 194	(28.57)

Missing/unknown 3	(0.37) 0 3	(0.44)

Extrinsic	factors

Region, n	(%)

Northeast 156	(19.09) 40	(28.99) 116	(17.08)

Midwest 194	(23.75) 33	(23.91) 161	(23.71)

West 142	(17.38) 46	(33.33) 249	(36.67)

South 295	(36.11) 18	(13.04) 124	(18.26)

Missing/unknown 30	(3.67) 1	(0.72) 29	(4.27)

Rurality, n	(%)

Urban 230	(28.15) 26	(18.84) 204	(30.04)

Suburban 386	(47.25) 85	(61.59) 301	(44.33)

Rural 201	(24.60) 27	(19.57) 174	(25.63)

Employment, n	(%)

Full time 345	(42.23) 65	(47.10) 280	(41.24)

Part	time 66	(8.08) 16	(11.59) 50	(7.36)

Unemployed, student, or retired 406	(49.69) 57	(41.30) 349	(51.40)

Highest level of education, n	(%)

High	school,	some	high	school,	or	Grade	8 140	(17.14) 26	(18.84) 114	(16.79)

College degree or some college 530	(64.87) 86	(62.32) 444	(65.39)

Degree beyond first college degree 147	(17.99) 26	(18.84) 121	(17.82)

Health literacyc, n	(%)

Health literate 703	(86.05) 126	(91.30) 577	(84.98)

Somewhat health literate 73	(8.94) 8	(5.80) 65	(9.57)

Not health literate 41	(5.02) 4	(2.90) 37	(5.45)

Income per household member, n	(%)

<$15,000 167	(20.44) 36	(26.09) 131	(19.29)

$15,000	to	$29,999 269	(32.93) 27	(19.57) 242	(35.64)

$30,000	to	$44,999 187	(22.89) 34	(24.64) 153	(22.53)

$45,000	to	$59,999 91	(11.14) 14	(10.14) 77	(11.34)

$60,000	to	$74,999 46	(5.63) 7	(5.07) 39	(5.74)

$75,000	to	$89,999 18	(2.20) 6	(4.35) 12	(1.77)

≥$90,000 31	(3.79) 9	(6.52) 22	(3.24)

Missing/unknown 8	(0.98) 5	(3.62) 3	(0.44)

Number	of	household	members,	median	(IQR) 2	(2	to	3) 2	(2	to	3) 2	(2	to	3)

Health insurance, n	(%)

Private	insurance	plan 346	(42.35) 76	(55.07) 270	(39.76)

Government-	assistance	plan 268	(32.80) 36	(26.09) 232	(34.17)

Multiple insurance plans and other insurance plans 189	(23.13) 22	(15.94) 167	(24.59)

Out-	of-	pocket	(i.e.	no	insurance	coverage) 14	(1.71) 4	(2.90) 10	(1.47)

Marital status, n	(%)

Never married 176	(21.54) 38	(27.54) 138	(20.32)

Partnered 501	(61.32) 79	(57.25) 422	(62.15)

TA B L E  1 (Continued)
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been identified as the most prevalent and predictive comorbidity 
of	severe	outcomes	among	hospitalized	COVID-	19	cases	with	di-
abetes.18 We now provide new evidence that it may also augment 
SARS-	CoV-	2	initiation.19	In	people	with	obesity,	low-	level	chronic	
inflammation can aggravate viral susceptibility by reducing mac-
rophage activation, proinflammatory cytokine production, and 
B-		and	T-	cell	responses.20	Adipose	tissue	can	also	act	as	a	major	
source	 of	 inflammatory	molecules,	 including	 interleukin-	6	 (IL-	6),	
a	 gene	 implicated	 in	 the	 expression	 of	 angiotensin	 converting	
enzyme	 2	 (ACE2)	 and	 SARS-	CoV-	2.19 With >85%	 of	 Americans	
with diabetes diagnosed as overweight/obese, our analysis signals 
a key opportunity for effective pandemic surveillance and risk 
mitigation.21

But even more generally, we found that chronic diabetes comor-
bidity,	 irrespective	 of	 obesity,	 can	 promote	COVID-	19,	 suggesting	
the	need	 for	 a	 broad	 scope	prevention	plan.	 In	 the	US,	 over	80%	
of people with diabetes have at least one other underlying health 
condition.22	Results	of	our	time-	varying	analysis	revealed	a	16%	in-
creased	rate	of	COVID-	19	for	each	additional	comorbidity	reported	
(p =	.002).	This	finding	expands	on	previous	hospital-	based	analyses	
reporting	worse	COVID-	19	outcomes	in	people	with	diabetes	and	co-
existing	conditions	versus	diabetes	alone.18 Increased inflammation, 
immunosuppression	 and	 cardio-	renal	 impairments	 may	 underpin	
the	predictive	role	of	comorbidity	on	SARS-	CoV-	2	susceptibility.23 
Pathophysiologic	research	has	also	uncovered	distinct	mechanisms	
for	ACE2	expression	in	people	with	coexisting	conditions	that	may	

Characteristic (as reported May 2020)
All participants
(n = 817)

T1DM
(n = 138)

T2DM
(n = 679)

Divorced, separated, widowed 139	(17.01) 21	(15.22) 118	(17.38)

Missing/unknown 1	(0.12) 0 1	(0.15)

Living arrangement, n	(%)

Lives with others 653	(79.93) 116	(84.06) 537	(79.09)

Lives alone 164	(20.07) 22	(15.94) 142	(20.91)

Race, n	(%)

White 648	(79.31) 124	(89.86) 524	(77.17)

Non-	white	or	multiracial 169	(20.69) 14	(10.14) 155	(22.83)

Medication regimen, n	(%)

Neither insulin nor secretagogues 53	(6.49) 0 53	(7.81)

Insulin alone 386	(47.25) 138	(100) 248	(36.52)

Secretagogues alone 223	(27.29) 0 223	(32.84)

Insulin and secretagogues 155	(18.97) 0 155	(22.83)

Continuous glucose monitor use, n	(%)

No 647	(79.19) 69	(50.00) 578	(85.13)

Yes 166	(20.32) 68	(49.28) 98	(14.43)

Missing/unknown 4	(0.49) 1	(0.72) 3	(0.44)

Number of healthcare visits for diabetes, n	(%)

0 474	(58.02) 88	(63.77) 386	(56.85)

1 265	(32.44) 39	(28.26) 226	(33.28)

2 42	(5.14) 7	(5.07) 35	(5.15)

3 16	(1.96) 1	(0.72) 15	(2.21)

4 or more 17	(2.08) 2	(1.45) 15	(2.21)

Missing/unknown 3	(0.37) 1	(0.72) 2	(0.29)

Practices	physical	distancing,	n	(%)

Always	or	often 711	(87.03) 118	(85.51) 593	(87.33)

Sometime, rarely, or never 105	(12.85) 20	(14.49) 85	(12.52)

Missing/unknown 1	(0.12) 0 1	(0.15)

aComorbidities included bone, joint, or muscle problems; cancer; cardiovascular disease; chronic kidney disease; chronic liver failure; eating disorders; 
gastrointestinal	disease;	HIV/AIDS;	hypertension;	mental	health	conditions;	neurological	disorders;	and	stroke.
bDiabetes complications included amputation, ketoacidosis, foot damage, gastroparesis, hyperosmolar, nephropathy, neuropathy, and retinopathy.
cHealth	literacy	was	assessed	by	asking	how	often	the	respondent	requires	help	reading	health-	related	materials.	Respondents	were	considered	
health literate if they reported they never or rarely require help. Respondents were considered somewhat health literate if they reported they 
sometimes require help. Respondents were considered not health literate if they reported they always or often require help.

TA B L E  1 (Continued)
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modulate	SARS-	CoV-	2	entry	into	lung	cells.	In	particular,	comorbid	
diabetes	has	been	shown	to	propagate	IL-	6	and	INS	gene	expression,	
leading	to	increased	ACE2	via	NAD-	dependent	histone	deacetylase	
Sirtuin.24

The	 role	 of	 glycaemia	 on	 COVID-	19	 susceptibility	 has	 been	
widely	debated.	In	our	study,	haemoglobin	A1C—	a	well-	established	
marker of glycaemic control— was identified as a marginally signifi-
cant	risk	factor	of	COVID-	19	(p =	.06).	Participants	with	A1C	values	
≥76 mmol/L	(≥9.1%)	reported	27%	higher	COVID-	19	rates	than	those	
with	 values	 ≤53.0 mmol/L	 (≤7%).	 Thus,	 in	 addition	 to	 worsening	
COVID-	19	severity	and	fatality,	elevated	plasma	glucose	levels	may	
also	trigger	SARS-	CoV-	2	binding	and	viral	replication.5,25 However, 
we	 observed	 a	 35%–	39%	 lower	 rate	 of	 COVID-	19	 in	 people	with	
A1Cs	 of	 54–	75 mmol/L	 (7.1–	9.1%)	 versus	 ≤53.0 mmol/L	 (≤7%).	 It	
is plausible this effect is mediated by increased hypoglycaemia in 
people	with	tightly	controlled	diabetes	(A1C	≤53.0 mmol/L	[≤7%]).26 
Recent	data	out	of	Scotland	demonstrated	greater	COVID-	19	mor-
bidity	and	mortality	 risk	 in	people	exposed	 to	 frequent	 low	blood	
glucose.27	As	hypoglycaemia	 is	 known	 to	 induce	 inflammation,	 in-
cluding	IL-	6	expression,	and	decrease	immune	responsiveness,	it	 is	
not	surprising	that	it	may	also	exacerbate	biologic	predisposition	to	
infection.25	Amid	challenges	to	sustain	routine	diabetes	care	during	
the pandemic,28	it	is	essential	that	efforts	to	optimize	glucose	man-
agement not wane.

Interestingly,	 most	 socio-	demographic	 factors	 (e.g.	 race)	
were not retained in our final model— perhaps due to insufficient 
power,	or	proximate	clinical	variables	nullifying	upstream	effects.	
Employment status emerged as the only marginally significant 
extrinsic	 risk	 factor	 in	 our	 study	 (p =	 .07).	 Relative	 to	 full-	time	
workers,	COVID-	19	rates	were	39%	higher	 in	part-	time	workers,	

TA B L E  2 Potential	risk	factors	for	contracting	COVID-	19	
considered	in	the	backwards-	selection	model

Proportion of 
backward- selected 
models that retained 
potential risk factor (%)

Intrinsic factors

Age 60.15

Sex	assigned	at	birth 47.15

Diabetes type 28.25

Most	recent	A1C 75.25

BMI 74.05

Bone disorder 25.35

Cancer/HIV 43.85

Cardiovascular disease/stroke/
hypertension

22.95

Chronic kidney disease 32.50

Gastrointestinal disease/chronic liver 
failure

24.55

Mental health/eating disorder 21.20

Neurological disorder/physical 
impairment

30.10

Respiratory condition 24.65

Number of comorbidities 61.35

Diabetes complication 46.30

One or more severe hypoglycaemia 
events in the past year

51.00

Extrinsic	factors

Region 32.80

Rurality 36.45

Employment 69.65

Education 48.70

Health literacy 48.45

Income per household member 13.85

Number of household members 31.60

Health insurance 27.70

Marital status 41.85

Living arrangement 33.40

Race 22.10

Medication regimen 34.45

CGM use 36.30

Number of healthcare visits for 
diabetes

40.00

Practices	physical	distancing 28.10

Note:	Shaded	potential	risk	factors	were	selected	by	≥50%	of	
backwards-	selected	models	and	included	in	the	final	model.	Diabetes	
duration	was	dropped	due	to	its	collinearity	with	Age.

TA B L E  3 Risk	factors	for	acquiring	COVID-	19

Hazard ratio (95% 
CI) p- Value

Age

18	to	29 years Reference .33

30	to	49 years 0.57	(0.27	to	1.21)

50 years	and	older 0.54	(0.25	to	1.17)

Employment

Full time Reference .07

Part	time 1.39	(0.71	to	2.70)

Unemployed, student or 
retired

0.68	(0.43	to	1.08)

BMI greater than or equal to 
30 kg/m2

1.63	(1.05	to	2.52) .02

Most	recent	A1C	value,	n	(%)

Less than or equal to 
53 mmol/L	(7%)

Reference .06

54	to	64 mmol/L	(7.1–	8%) 0.61	(0.38	to	1.00)

65	to	75 mmol/L	(8.1–	9%) 0.65	(0.34	to	1.26)

Greater than or equal to 
76 mmol/L	(9.1%)

1.27	(0.70	to	2.29)

Number of comorbidities 1.16	(1.05	to	1.27) .002

One or more severe 
hypoglycaemia events in the 
past year

0.82	(0.41	to	1.65) .57
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yet	32%	lower	in	unemployed	participants,	retirees	and	students.	
Employment-	related	 environmental	 and	 behavioural	 dynamics	
could	 conceivably	 influence	 the	 probability	 of	 SARS-	CoV-	2	 con-
tact.24	 For	 example,	 part-	time	work	 (often	 on-	site	 and	 involving	
close	 physical	 proximity),29	 in	 contrast	 to	 at-	home	 (un)employ-
ment,	may	not	only	exacerbate	environmental	exposure,	but	also	
inhibit optimal prevention behaviour.29 Clinical and public health 
strategies should account for the possible interplay between em-
ployment	status	and	risk	for	COVID-	19.24

Several additional variables were included in the analysis 
but failed to reach statistical significance. This could be due to a 
lack of association between these variables and susceptibility to 
COVID-	19,	or	because	our	analysis	was	inadequately	powered	to	
identify	these	associations	due	to	its	smaller	sample	size.	Despite	a	
strong	magnitude	of	effect	(HR	0.82	[0.41	to	1.65]95%	CI),	previous	
severe hypoglycaemia events were not found to independently 
predict	COVID-	19	 rates,	 possibly	 due	 to	 the	 collinear	 effects	 of	
glycaemic	 control.	 Additionally,	 like	 previous	 population-	based	
studies,	COVID-	19	rates	did	not	differ	by	diabetes	type.5	Age	was,	
overall, statistically insignificant; though, pairwise comparisons 
suggested	a ~ 50%	lower	rate	of	COVID-	19	in	older	(≥50 years)	ver-
sus	younger	(18–	29 years)	participants,	echoing	previous	hospital-	
based data.27

Targeted	COVID-	19	vaccine	and	prevention	strategies	are	cru-
cial to protecting people with diabetes from potentially devasting 
outcomes. Our study identifies diabetes groups at highest risk of 
COVID-	19	 contraction,	 providing	 an	 evidence-	based	 roadmap	 for	
effective and efficient risk management and outbreak control.

4.1  |  Strengths and limitations

This	 iNPHORM	 sub-	analysis	 examines	 a	 large	 general	 cohort	
of	 American	 adults	 with	 type	 1	 or	 2	 diabetes	 recruited	 from	 a	
probability-	based,	real-	world	internet	panel	with	high	participation	
rates	and	minimal	 loss-	to-	follow-	up.	Our	primary	epidemiologic	 in-
vestigation	 contrasts	 the	 retrospective,	 hospital-	based	 research	
currently	dominating	the	diabetes	COVID-	19	evidence	base.	In	our	
study,	both	confirmed	and	probable	COVID-	19	cases	were	assessed,	
illuminating	 community-	level	 pathways	 to	 infection	 prevention	 in	
diabetes.

Epidemiologic	features	of	COVID-	19	were	quantified	in	a	broad	
sample	of	cases	and	non-	cases;	plausible	intrinsic	and	extrinsic	vari-
ables were selected a priori. Continuous and repeated monitoring 
enabled	assessment	of	time-	varying	exposures	on	SARS-	CoV-	2	 in-
cidence	leading	to	COVID-	19	between	May	2020	and	March	2021,	
and	effect	directions	yet	discerned	by	the	prevailing	literature	(e.g.	
impact	of	glycaemic	control	on	COVID-	19).

Questionnaires	and	data	collection	were	standardized	over	fol-
low-	up.	The	use	of	online	survey	modes	with	email	optimized	reach,	
accessibility, respondent honesty and representativeness of data 
capture.30	De-	identified	participant	information	was	collected	to	re-
duce social desirability bias.

Some limitations should be noted. Selection biases may have 
arisen	to	the	extent	that	study	respondents	differed	non-	randomly	
from the general US population. Coverage bias may limit study gen-
eralizability.	For	example,	in	addition	to	restrictions	on	eligible	med-
ication regimens, our sample comprised mostly white, educated, and 
insured	participants.	Over-	representation	of	 these	 subgroups	may	
have	biased	the	effect	of	certain	risk	factors,	particularly	extrinsic	
determinants, towards the null. Lastly, volunteer biases may have 
influenced	COVID-	19	characterization	in	our	study;	though,	in	what	
direction	 is	 uncertain.	 By	 extension,	 survivorship	 bias	 cannot	 be	
discounted.

We	 did	 not	 assess	 people	 without	 diabetes,	 so	 excess	 risk	 of	
COVID-	19	attributable	to	diabetes	could	not	be	calculated.	Further,	
while	we	could	estimate	the	incidence	of	COVID-	19	across	our	study	
sample,	we	could	not	distinguish	COVID-	19	cases	requiring	hospital-
ization	or	resulting	in	increased	morbidity	or	mortality.	Self-	reported	
COVID-	19	status	and	other	risk	measurements	(e.g.	A1C)	may	have	
been biased by errors in recall. Our model does not represent pos-
sible	 SARS-	CoV-	2	 reinfection	 resulting	 in	 confirmed	 or	 probable	
COVID-	19.	 Finally,	 SARS-	CoV-	2	 latency	 beyond	 the	 observation	
period and uncounted asymptomatic cases may have led to conser-
vative	risk	coefficients.	As	a	corollary	to	this,	it	is	possible	that	fac-
tors identified in our study may relate more with symptomatic illness 
resulting	 from	 SARS-	CoV-	2	 infection,	 and	 the	 possible	 increased	
likelihood	 of	 COVID-	19	 diagnosis.	 Continued	 diabetes	 research	 is	
required to monitor waning antibody levels, immune evasion, and 
future variants that can affect diabetes population susceptibility 
over time.

5  |  CONCLUSION

Leveraging	iNPHORM	data	between	May	2020	and	March	2021,	we	
present the first prospective, longitudinal epidemiologic analysis of 
community-	based	COVID-	19	incidence	and	time-	varying	risk	factors	
(intrinsic	and	extrinsic)	in	the	general	US	public	with	type	1	or	2	dia-
betes.	Our	real-	world	results	indicate	that	vaccination	rollouts	and	
other	outbreak	strategies	should	prioritize	Americans	with	diabetes	
reporting	a	BMI≥30 kg/m2,	a	concomitant	health	condition,	A1C	val-
ues	≥9.1%	and	≤7%,	or	part-	time	employment.

Persistent	 waves	 of	 infection	 and	 patterns	 of	 endemicity	
threaten	 to	 destabilize	 our	 path	 to	 pandemic	 recovery.	Measures	
to	protect	against	SARS-	CoV-	2	must	 remain	at	 the	 forefront	of	all	
healthcare	and	policy	decision-	making,	especially	among	those	most	
vulnerable to infection. Our study unveils promising signposts to 
mitigate	the	severe	effects	of	COVID-	19	in	diabetes	and	associated	
long-	term	health	burden.
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