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One of the fundamental prerequisites for effective collaborations between interactive

partners is the mutual sharing of the attentional focus on the same perceptual events.

This is referred to as joint attention. In psychological, cognitive, and social sciences, its

defining elements have been widely pinpointed. Also the field of human-robot interaction

has extensively exploited joint attention which has been identified as a fundamental

prerequisite for proficient human-robot collaborations. However, joint attention between

robots and human partners is often encoded in prefixed robot behaviours that do not

fully address the dynamics of interactive scenarios. We provide autonomous attentional

behaviour for robotics based on a multi-sensory perception that robustly relocates

the focus of attention on the same targets the human partner attends. Further, we

investigated how such joint attention between a human and a robot partner improvedwith

a new biologically-inspiredmemory-based attention component. We assessed themodel

with the humanoid robot iCub involved in performing a joint task with a human partner in a

real-world unstructured scenario. The model showed a robust performance on capturing

the stimulation, making a localisation decision in the right time frame, and then executing

the right action. We then compared the attention performance of the robot against the

human performance when stimulated from the same source across different modalities

(audio-visual and audio only). The comparison showed that the model is behaving with

temporal dynamics compatible with those of humans. This provides an effective solution

for memory-based joint attention in real-world unstructured environments. Further, we

analyzed the localisation performances (reaction time and accuracy), the results showed

that the robot performed better in an audio-visual condition than an audio only condition.

The performance of the robot in the audio-visual condition was relatively comparable

with the behaviour of the human participants whereas it was less efficient in audio-only

localisation. After a detailed analysis of the internal components of the architecture, we

conclude that the differences in performance are due to egonoise which significantly

affects the audio-only localisation performance.

Keywords: joint attention, multisensory integration, memory, decision-making, computational neuroscience,
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1. INTRODUCTION

Robots approach a stage of technological advancement at which
they will become a frequent partner in our daily lives. At this stage
they regularly interact and engage in collaborative tasks with us.
Humans and robots have to coordinate their actions in a shared
environment in order to efficiently collaborate in these diverse
scenarios. While humans are good at coordinating perception

and action planning with their movements to achieve a common
goal, such complex coordination is still an open challenge in
robotics. When we collaborate with another human partner we
recruit typical perceptual and action coordination skills. One of

the most important coordination skills we use is joint attention
as a fundamental mechanism to coordinate our actions (Schnier
et al., 2011).

Joint attention can be defined as a shared attentional focus on

the same perceptual events between multiple individuals (Reddy,
2005). It is used to coordinate between each of the agents toward
a common object or event. Thus joint attention occurs as an
emergent condition when a salient event captures the attention of
both partners without a priori negotiation of the attentive target.
For example, when two people are discussing a painting they
are jointly seeing, the shared perception of the same painting
allows them to exchange information about the same object.
Joint attention is a natural phenomenon that we experience every
day and can be triggered by different means: environmental-
based (e.g., the appearance of a visual-auditory salient object in
the environment) and social-based (e.g., eye-gazing, pointing,
or other verbal or non-verbal indications) events (Mundy and
Acra, 2006). Mastering correct joint attention with a partner
is an important skill that facilitates collaborative interactions.
It allows us to share our focus with another partner, enabling
us to reason on a common basis. However joint attention not
only must be correctly shared between interactants, but the
timing of the focus shift also has to be comparable between
the human and robot. Jointly shifting attention to the correct
location is not necessarily useful if the timing fails to match
human timing, as the interaction will fall out-of-sync. Joint
attention has been studied extensively in humans, for its role in
the development of children (Moore et al., 2014), in language
acquisition (Tomasello and Farrar, 1986) and also as a way to
identify autism (Bruinsma et al., 2004). Most of the studies on
joint attention have been carried out in controlled environments,
due to its complex nature and the diversity of scenarios under
which it can occur. Current studies in joint attention between
a human and an artificial system have mostly focused either on
the human or the artificial agent performance. The assessment
of combined performance (including mutual influence) across
all the agents involved in the task is not common. A thorough
assessment of both human attention and the attention of artificial
agents would be relevant to the research community. In fact,
research evidence shows frequently that both agents influence
each other in joint collaborative tasks (Vannucci et al., 2017).

In cognitive architectures that take into account joint
attention processes in order to create rich collaborative
behaviours, other functionalities such as working memory might
participate in attentional refocusing. Such components provide

correct and accurate attention-timing and more importantly
promote the intelligent behaviour of an attentive capable robotic
agent. The influence that workingmemory has on the attentional
mechanism is relevant (Mayer et al., 2007; Shipstead et al.,
2014; Oberauer, 2019) but is rarely addressed in cognitive
architectures for collaborative robots. Workingmemory has been
defined as short-term memory used in order to proactively
reinterpret the information in order to better operate in the
environment (Miyake and Shah, 1999; Oberauer, 2019). Different
computational models of attention for artificial agents have been
proposed (Nagai et al., 2003; Triesch et al., 2006; Ognibene and
Demiris, 2013) to respond to visual (Itti and Koch, 2001) and
auditory stimuli (Treisman, 1996). However, these models do not
fully consider the potential role of working memory related to
the process of attentional focus redeployment. Some attention
systems have been designed and evaluated to specifically address
the context of collaboration between the human and the
physically present robot partner (Admoni and Scassellati, 2017)
but the potential role of memory remains only partially explored.
In this work, we intend to endow the robot with the ability
to rely on working memory, to reinterpret the information
acquired in previous instances and states in order to better attend
to the environment. Different possible computational models
of working memory have been provided in different cognitive
studies (Repovš and Baddeley, 2006) and in robotics applications
(Phillips and Noelle, 2005). Inspired by these previous works,we
provided the robot with a simple implementation of working
memory that improves the attentive performance of the cognitive
architecture for the humanoid robot iCub (Metta et al., 2008).
The implementation engage the working memory component in
a bio inspired decision making process.

Thus, we propose and evaluate the performance of a
computational cognitive architecture for memory-based multi-
sensory joint attention. Our goal with this study is to validate
emergent joint attention guided by our cognitive framework.
The architecture includes a multi-sensory attentional model,
a working memory, a decision-making element, and an
action executor (motor controller) to solve audio-visual stimuli
localisation with human-like performance. We implemented a
bio-inspired decision-making strategy (Murphy et al., 2016) for
multi-sensory integration that will take into consideration both
cognitive models of attention and the processing of working
memory. We aimed at studying how the cognitive architecture
responds in collaborative tasks between the iCub robot (Metta
et al., 2008) and a human partner. We address the concept
of joint attention emerging from a biologically-inspired multi-
sensory selective attentional process defined as the selection
of the relevant stimulus while ignoring irrelevant stimuli in
the current environmental state (Nothdurft, 1991). With the
goal of endowing an artificial agent with the ability to attend
salient objects as humans do (accurate in location estimation and
with optimal timing), we can promote emergent memory-based
joint attention in collaborative scenarios. To evaluate the joint
attention performance during unconstrained interaction and to
exploit mutual influence between the parts, we compared human
performance with the robot performance in a task in which both
agents are exposed to the same salient audio or audio-visual
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stimuli. In particular, we focused on decision making as our main
contribution, and we then addressed perceptual performance
(localisation accuracy and reaction time) during the task. Our
main testing and performance analysis is structured around three
main hypotheses: H1-Memory-based Decision Making Process:
The memory-based cognitive architecture is able to attend to
multi-sensory stimulation and correctly take a decision based
on the localisation process; H2-audio-visual vs. Audio only: The
stimulus localisation accuracy and reaction time of the robot in
audio visual task is better than in audio only tasks; H3-Robot
Performance: The performance (accuracy and reaction time) of
the robot will be as good as the performance of the human
participants in localising the stimulus.

In section 2, we give a high-level description of the cognitive
architecture and we describe the details of all the different
components developed for each cognitive architecture layer
(section 2.1). Then, section 2.2 describes the experimental design
that tests the performance of the cognitive architecture. In section
3, we describe the results of the experimental session, and in
section 4 we discuss the main results, drawing at the same
time, some conclusions on the performance of the proposed
cognitive architecture.

2. MATERIALS AND METHODS

2.1. The Cognitive Architecture
We designed the cognitive architecture (see Figure 1) with three
main goals in mind. The first goal was to build a multi-modal
(audio-visual) attention computational system to facilitate joint
attention between a robot and a human during an interactive
task. The second goal was to address the accuracy-time trade-
off in decision making inspired by human behaviour. The third
goal was to improve the attention, decision-making, and action
execution cycle by including a working memory component.
The first goal relates to the audio-visual perception component
while, the second goal concerns the decision making process.
Finally, the third one addresses the role of workingmemory in the
decision making process The cognitive architecture is composed
of four main building blocks. In this section, we will explain
in details the four blocks (Audio-Visual Perception, Decision
Making, Working Memory, and Action Execution). The details
will include the biological inspiration, the overall process, and the
connections between the different blocks.

The perception block uses early features from both of the
sensory inputs (the audio and the vision) to trigger the start of the
decisionmaking process. The decisionmaking processmodulates
perception to meet the task requirements and further sends
commands to the motor control for action execution. Finally, the
memory governs the entire process and is shared between all of
the units. We will also explain the technical implementation for
each component of the cognitive architecture after mentioned
the overall functionalities of the component. Figure 2 outlines
the structure and connections of our model’s modules. Starting
with the middleware, a software infrastructure that supports the
integration of different cognitive modules, we used YARP Metta
et al. (2010) (Yet Another Robot Platform) as our base. It is
a multi-language middleware designed for robotic platforms.

It is based on building multiple programs that run together
in parallel and connect with peer-to-peer communication. We
implemented our YARP modules using the C++ and python
programming languages.

2.1.1. Audio-Visual Perception
To facilitate attending to auditory stimulus, we built the audio
attention component based on an existing bio-inspired Bayesian
audio localisation model (Kothig et al., 2019). The auditory
attention component redirects the attention of the robot toward
salient auditory signals. The system is based on the biological
basis of how humans perform sound localisation. Humans use
different cues to localise sound sources: the interaural time
difference (ITD) and interaural level difference (ILD). Both
are differently recruited by the auditory system to derive the
direction of sound arrival. In our implementation we focused
on the ITD cue as the principal computational method since
there is a robust literature that uses ITD for sound localisation
in artificial systems (Argentieri et al., 2015). The general idea
behind ITD is to infer the direction of a sound from the
difference in time of arrival (TOA) between the two ears.
Different approaches have been proposed in robotics to compute
the TOA, the most common one is based on correlation
metrics (Hosangadi, 2019). This approach performs well but
is sensitive to noise and reverberation, which is problematic,
especially in presence of ego noise produced by robots. Other
biological systems in nature use ITD cues to localise sound
by employing either banks of coincidence detectors connected
by delay lines, as in the avian brainstem (Jeffress, 1948), or
more complex phase-tuned mechanisms as in the mammalian
brainstem (Grothe et al., 2010). The audio localisation model
used in this research modelled the spectral decomposition of
the human basilar membrane with a Gammatone filterbank and
model delay-tuned units in the auditory pathway as banks of
narrow-band delay-and-sum beamformers. To further deal with
the spatial ambiguities associated with interaural cues (Blauert,
1997), the model uses a Bayesian regression model that infers
the location of the sound source using the previous results of
the spatial localisation values. As a result the location is reliably
estimated in robot’s allocentric coordinate frame as a probability
distribution of sound source locations across azimuthal angles.
This probability distribution is used to create an allocentric
saliency map of the sound locations.

Another important aspect of attention is selective visual
attention which allows an agent to focus on salient points
in a visual scene. It acts as a filter, discarding non-essential
information and retaining only important information for
further higher cognitive processing. Itti and Koch (Itti and
Koch, 2001) proposed a computational model of selective visual
attention based on Treisman’s (Treisman and Gelade, 1980)
Feature Integration model of human visual attention. This model
uses bottom-up flows of information, which are combined into
a unified saliency map (Itti and Koch, 2001). In the Feature
Integration model (Treisman and Gelade, 1980; Ruesch et al.,
2008), the bottom-up information is processed to extract visual
features such as edges, intensity, motion, and chrominance. High
saliency within one of these low-visual feature maps allows the
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FIGURE 1 | Over all cognitive architecture with all the main layers.

model to orient the focus of an agent toward salient points such as
colourful objects, geometric forms, or moving objects. Following
this idea, in this work, we used the PROVISION attention model

developed for the iCub robotic platform (Rea et al., 2014).
PROVISION is an implementation of the attention model of Itti
and Koch for the robot iCub (Itti and Koch, 2001). It provides
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FIGURE 2 | Detailed representation of the system implementation architecture.

a modular tool for bottom-up attention, PROVISION integrates
the different visual features with a weighted linear combination,
enabling the ability to tune the importance of a particular visual

stimuli, for example, forcing the attention toward a bright object
by putting more weight on the intensity value. For the audio
visual model, we had to implement an integration algorithm
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where both visual attention and audio attention are aligned and
have the same representation. This integration is designed to be
processed in the integration and high level processing component
of the audio-visual perception block. In this component of the
architecture the auditory attention is integrated together with the
visual attention system. We remapped the allocentric auditory
map into a visual egocentric saliency map. Themap is then added
as a feature to the linear combination of the attention system
(already developed in the visual attention PROVISION model
Rea et al., 2014). The sound then reinforces the visual saliency
map at the corresponding azimuthal location only if the source of
sound is located within the field of view. The aim of this process
is to provide a unified multi-sensory saliency map which enables
identification of salient points from both auditory and visual
signals. After sensory integration, the output of the integration
process is a saliency integrated map. Next, the saliency selection
process happens, in which the system selects the point the model
needs to attend to. As found in other attention models (Ognibene
and Baldassare, 2015; Baldassarre et al., 2019), we moved from
the cyclical selective attention systems which are typically used
in robots to a temporally asynchronous method for selective
attention.We therefore implemented the temporal asynchronous
attention at salient changes in the landscape of the perceptual
sensors. This allows the system to resemble the asynchronous
attentional redeployment of humans. This selection is performed
on the integrated scene and based on a time variant threshold
which is defined based on a confidence-urgency trade off from the
decision making block. When the selection process is finished,
the selected point is then processed by the decisionmaking block.
This is where the Audio-Visual Perception block is connected to
the decision making block. It is also connected to the working
memory, in order to update the perceptual states in the memory
for a better memory based decision making process. In this
process a confidence-urgency trade off is performed based on
the state time and the stimulation states. More details concerning
the decision making block will be discussed in the following part
(Decision Making).

Another added component in the audio-visual perception is
the integration of prior knowledge for audio perception. The
prior knowledge is the spatial locations of possible stimulation
sources. This knowledge influences the perceptual abilities of the
robot. This process is inspired by biological evidence about the
importance of the prior knowledge in decreasing cognitive load,
improving learning abilities, and improving perception (Cook,
2006; De Lange et al., 2018).

In Figure 2, the PROVISION model is highlighted with a
yellow background colour and the audio Bayesian model is
highlighted in a green background colour. The following part
of this section is explaining in details the implementation of the
added components to the audio-visual perception block which
was mentioned above in brief.

2.1.1.1. Trigger, and Prior Knowledge Integration
In order to overcome false positives coming from ambient sound
in the environment, we integrated a power detection algorithm
along with our sound localisation system as a relevant attentive
mechanism in human audition (Rohl and Uppenkamp, 2012).

We aimed to test the reliability of the sound power as an early
informative feature. We added the calculations of the sound
power in an early stage (audio prepossessing module) of the
audio input. Using a fixed threshold on the total power for both
audio channels, the system can determine whether the audio
signal is high enough to be considered a valid sound or is just
ambient noise. The threshold is autonomously extracted from
the environment. The instantaneous sound power is used as
an input to the trigger block. The trigger module receives the
audio power processed by the audio prepossessingmodule. Based
on a defined threshold for the instantaneous power, the trigger
outputs signal to a higher level audio perception module (Prior
Knowledge integration & saliency transformation) and also to
the decision making block. Additionally, it updates the working
memory which will be explained in a separate section.

Moving to the prior knowledge integration and saliency
transformation module, we define two aspects of prior
information for the audio stimulation. The first aspect is the
possible locations of the stimulation. As the current audio system
only considers the azimuth angle, this information is in a form of
two lists. The first list is of angles describing where in azimuthal
space the audio stimulation might be occurring and the second
list is the spatial resolution of the angles, which reflects the size
of the stimulation source. Thus for each stimulation source
in the scene, we express the location in azimuthal allocentric
angles from the robot’s head axis as (X degrees ± resolution).
These angles and their resolutions are the only locations that
are considered from the allocentric probability map and the
rest are ignored. The allocentric probability map is the output
of the audio localisation model, which is a set of 360 values
that represent the probability of the sound source’s location at
any arrival angle around the robot. These probabilistic values
correspond to the 360 degrees centralised around the head axis.
After considering the prior defined locations only, the resulting
map is normalised to keep the Bayesian representation in the
form of a probability distribution. By integrating this prior
knowledge, we force the model to only focus on pre-biased
defined locations. The second prior for the audio stimulation is
the stimulation audio power. It is used to identify the threshold
level of the sensitivity of the trigger. The trigger gives a high
output if the audio power exceeded the threshold, which is the
defined stimulation power level. Conversely, the trigger gives
a low output if the audio power is less than this threshold.
This signal is used to activate the transmission of the Bayesian
map after adding the priors to the next stages. Otherwise,
the transmitted map is a zero map. The trigger supports the
prior knowledge module with the trigger signal to activate and
deactivate the map transmission.

The next process is saliency transformation. The input of
this process is the resultant Bayesian map after adding both
priors (the stimulation activation level and the sources angles).
The whole map is then multiplied by a total audio power
and a scale factor. The audio power multiplication gives more
importance to high stimulation than low stimulation (both
are above the threshold level) and the scale factor transforms
from Bayesian values (0–1) to the values of the monocular
image (0–255).
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2.1.1.2. Audio Egocentric
The input of this module is an allocentric audiomap, created after
biasing the possible locations of audio sources. The allocentric
map is 360 values for the 360 degrees of the azimuth plane.
On the other hand, the visual attention system is egocentric
with a retinotopic reference. The camera moves as well as the
head of the robot, and based on these movements the robot
sees different parts in the space. The aim of this module is to
align the allocentric output of the spatial auditory system with
the egocentric spatial vision. To integrate the audio to the visual
attention system we had to perform this alignment. To achieve
this task, the module needs to know the current state of the
locations of both the head and camera in the azimuth direction.
The process of extracting the egocentric map is based on the
current locations on the camera and head in azimuthal direction
and the camera parameters. The camera parameters specify the
width of the area of vision, while the location states of the camera
and the head specify the middle value in the area of vision range.
Knowing the middle angular value and the angular width of
the sound source, the module computes the starting and ending
degree angles which then are extracted from the allocentric map.
This is the first stage of the audio egocentric module which has an
output of a subset from the allocentric saliency map of the audio.
The second stage involves scaling these values vertically and
horizontally to be in equal size with the frame size of the visual
image. The horizontal scaling assumes that the audio source is
from the horizontal level in the scene as we only consider the
azimuth plane in the audio localisation module. The output of
the scaling stage is now ready to be integrated as a feature in the
PROVISION attention system with a defined weight in the linear
combination part.

2.1.1.3. Attention Manager
The attention manager is a central control module. It is
responsible for analysing the combined scene from the output
of the linear combination block of attention. The analysis is
basically computing a confidence level. We propose a novel
approach of recognising the unique target point of the scene
to avoid continuous movement between different points. It is a
measurement of the confidence level of uniqueness for the most
salient point of the scene. We called this measure gamma value
(Ŵ). The gamma value (Ŵ) represents how much the most salient
point differs from the average salience across the scene. If the
(Ŵ) value exceeds a threshold, then this point is identified as
unique point of attentional interest. We call it a “hot point.” Ŵ is
computed by calculating how far is the saliency of the maximum
point from the triple of the standard deviation:

Ŵ = max_value−mean_value− 3σ (1)

Where σ is the standard deviation of the combined saliency
image. The Ŵ value gives information about the confidence level
of uniqueness. Higher values are more likely to be a unique
target whereas low values mean that in the scene there are
multiple salient points with similar level of saliency. When a
unique target is recognised [(Ŵ) value is greater than the current
confidence threshold], it sends the selected point to the next

connected elements in the architecture which is the decision
making controller in the decision making block.

Additionally, the attention manager block receives
manipulation commands for the threshold value from the
decision-making layer. The threshold here represents the level
of the confidence in which action is required. Therefore, the
attention manager here can be presented as a trigger that
acquires an action execution process for that current scene
from the decision making block. Also, the module is able
to fully control the process of suspending and resuming the
attention process as well as the linear combination parameters.
To summarise this part, the attention manager presents the main
control unit of attention. It has the ability to change the attention
parameter. It receives commands from other parts in the system,
and finally it communicates with the other parts of the system
and sends combined information about the current scene.

2.1.2. Decision Making
From research theories elaborated on in the previous decade,
visual processing in humans and animals triggers a decision-
making mechanism in the form of a higher-level process, relying
on the extraction of low-level features and properties from visual
input (Vanrullen and Thorpe, 2001). This process is meant to
evaluate the perceptual output properties and their relevance to
the current goal and expectations.

Decision-making processes inspired by time-invariant
models have been adopted for decades by the computational
neuroscience community (Ratcliff and Smith, 2004). These
models are based on a decision-making signal, which is triggered
by a fixed threshold. The process integrates confidence over time
and once the confidence reaches the fixed threshold, the decision
is made and the signal is executed. Recent studies, Murphy et al.
(2016), Ditterich (2006), Churchland et al. (2008), and Saaty
(2007) have shown that the time dependency of the decision
making process and the urgency of signals are invoked by
humans. These findings show that humans may make decisions
with different levels of confidence based on urgency. The more
urgent the decision, the less confidence may be accepted. This
urgency-based process allows humans to adopt time-variant
pressure to execute actions (execution pressure) as a time-variant
variable. The first study also showed the existence of neural gain
modulation for urgency generation in humans, which implies
the existence of a modulation signals. These signals are initiated
to express urgency and modulate the confidence level.

Inspired by the biological evidence of the time-variant
decision making processes, we propose a model for the multi-
sensory decision-making process that recruits a time-variant
decision-making signal. The model performs four main tasks.
The first one is tracking the changes in the working memory
to detect the state change of the stimulation. The second task
is threshold manipulation based on the urgency. This second
process is the main element which addresses the time-variant
feature of the decision making block. The third task is analysing
the relevance of the received spatial location within a predefined
task by the experimenter. The experimenter should define the
relevant working area and the required information to perform
the projection. The last task is sending the action execution
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signal to the action execution block based on the required
actions which are also defined by the experimenter. These tasks
are defined within three parallel processes. The first process
aims to respond to the signal coming from the audio visual
perception block that shows the presence of the stimulation
and that the urgency of taking a decision should start. The
second process is to predict the spatial location of the source
of the stimulation from the 2D response of the audio visual
perception. Finally, the third one is evaluating the relevance of
this stimulation based on its 3D location. The first process works
as the urgency trigger which starts a modulation signal for the
threshold value of the confidence level for the localisation task.
Once the confidence exceeds the threshold, and based on the
defined task, the evaluation of the signal starts. If it is relevant
to the task then the action is executed.

2.1.2.1. Decision Making Controller
The decision-making controller block is the module responsible
to control the flow of decisions, manipulate the threshold
of the confidence level in the attention manager, analyse the
salient perception output based on the context and finally send
the request to the action execution system. The control flow
consists of two parallel processes. Each process has events that
trigger behaviours. The aims of the first process is receiving
the salient hot point from the attention manager, analysing
the relevance of this point based on the task information, and
finally sending action execution commands if it fulfills the
action requirements. The second process is responsible for the
control flow and manipulation of the threshold. The following
part will explain the events and the behaviours for both of
the processes.

In the first process, we have three events that set and reset
behaviours. The first event is a trigger event from the audio
stimulation. This event sets the decreasing threshold behaviour
which sends commands to the attention manager to subtract a
defined decreasing rate from the current threshold value. This
signal is an urgency signal to the perception block. The second
event is the action execution. If the action is executed, the action
state in the working memory is set and the decreasing threshold
behaviour is reset. The final event is the off trigger of the
stimulation. This event sends a resetting signal to the attention
manager to reset the threshold and to the action execution block
to return the robot to the home position. The resetting signals
have two different delays. The threshold reset signal is sent after
0.5 s after the off trigger of the stimulation. The home reset
signal is sent after 4 s from the off trigger of the stimulation.
These delays are chosen to maintain the stability of the system.
The setting and resetting flags for the action, thresholds, and the
stimulation are saved and recalled in the working memory which
will be explained in the next section.

In the second process, there is only one event, which is
receiving a salient hot point under the condition of the idle
state. This event starts the evaluation of this point in the task
context. The evaluation is the relevance of the 3D projection of
this point to the predefined working area in the environment.
Knowing the 2D coordinates of the hot point received from the
attention manager and the equation of the plane of the working

area, we calculate the 3D location in the environment. Based on
the defined task, the decision is made whether to do the action or
not, and which action to do based on the projected 3D location
of the hot point. If the action is done then the action execution
event is triggered.

As explained here the processes are parallel. However, they are
interconnected, and both are dependent on each other. So the
second process is only running when the robot is in the idle mode
and the mode of the robot is controlled by the second process.
And in the first process, there is a behaviour that is triggered
by the second process which is action execution when the mode
is changed by the second process. Following the assumption of
ignoring the vertical component in the audio stimulation, we
implement a function to force the vertical component of the 2D
hot point to meet the location of the stimulation sources. This
is done by estimating the vertical component given the current
head altitude angle and the vertical field of vision. The robot
identifies the stimulation source by calculating the distances
between the projected 3D location and all the stimulation source.
The source corresponding to the minimum distance is the
winning location. Finally, the decision-making block sends an
action execution command with information about the localised
stimulation source to execute an action.

There is stored information related to the task and
environment. This means that in this block, the task is defined
with its requirement. The task is a defined action under a
certain stimulation condition. The task related information is
information about the stimulation conditions, the starting level
of confidence of the stimulation, the modulation rate which
defines the urgency-accuracy trade off, and finally the required
action when the conditions are applied. On the other hand, the
environment related information in the action execution layer
is a higher level information. It includes the locations of the
relevant stimulation sources, the working plane, and the action
execution parameters. This information helps the robot to project
the action from the 2D egocentric frame of the vision to the 3D
world and execute it in a proper way. More information related
to this section will be explained in the experimental setup section
of the paper.

2.1.3. Working Memory
The concept of working memory has emerged in psychology
literature as a broad set of mechanisms that explain this
accumulation of perceptual information over time. Psychology
researchers have shown the relationship between attention
and working memory (Schweizer and Moosbrugger, 2004;
Phillips and Noelle, 2005). They have shown the irreplaceable
role of working memory in solving cognitive problems by
maintaining some essential information for certain tasks that
involve monitoring the environment. Based on this information,
we added a working memory element in our model to endow
the robot with this ability. The working memory in our
model maintains essential environmental and internal states
for understanding the current scenario and for executing the
correct action in the defined task. In our working memory
model there are two main memory components. The first one
is the stimulation states and the second one is the actions
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states. The stimulation states define whether the stimulation
is currently on or off and track it, whereas the actions
states define whether the robot is executing the action or has
finished the execution or still hasn’t executed it for the current
active stimulation.

As shown in the Figure 2 the working memory block is
bidirectionally connected to both the decision making and
perception components. In our implementation, we developed
a state working memory. It stores the states of the stimulation,
action, and confidence level to enable better interaction with
the environment. The stimulation states define whether the
stimulation is currently on or off and track it (for both vision
and audio). The audio stimulation state is set based on the
audio trigger, while the visual stimulation state is defined by
the gamma value of the scene. If the gamma value exceeds
the threshold, there is a visual stimulation. The attention
manager block is responsible for maintaining the stimulation
state. Whereas the actions states define whether the robot is
executing the action or has finished the execution or still hasn’t
executed it for the current active stimulation. The decision
making controller maintains the state of the action execution
as well as the confidence threshold. The attention manager
and the decision making blocks are recalling these states in
their processes. The working memory block ensures a stable
robotic behaviour for attention, decision making, and action
execution cycle.

Another aspect of the working memory system is the
habituation process. It is a perceptual stage necessary for the
humanoid robot iCub to memorise the specific conditions
of the environment, as well as details about the human
partner. Habituation is a well-studied process in psychology
and neuroscience. It is the simplest form of learning (Rankin
et al., 2009). It is defined as the process of learning how to
filter out irrelevant stimulation and focus only on the important
stimulation. (Groves and Thompson, 1970; Wagner, 1979). It is
an important biological process for an effective learning. In this
work we implement a simple form of habituation which allows
the robot to learn the baseline sensorial characteristics of the
environment and of the human partner in order to properly
compensate during the task.

From the implementation point of view, the cognitive
architecture comprises of a habituation signal that is sent to
the decision-making block. This signal changes the current
task to calculate some parameters from the scene in a defined
time period. This signal also informs the process that the
stimulation will be presented, and it is required to see the
effect of this stimulation and memorise it. When this signal is
received, the decision-making block starts to analyse the scene
and records the changes. More specifically the Ŵ value changes.
After the defined time period for the habituation process, the
initial threshold of the confidence is set by the maximum Ŵ

value during the habituation process, minus a fixed value as
a sensitivity zone. The initial threshold value is one of the
relevant details in the human robot collaboration with the
human partner. In particular, this threshold changes based on
the visual environment, which includes the presence of the
human subject.

2.1.4. Action Execution
The action execution block receives commands from the decision
making block and then executes these commands by performing
whole-body motor execution of a required action. The action is
previously learned by the robot. The motor action execution is
expecting an allocentric location in the working environment. By
providing a reasonable assumption about the task, its context,
and working area, we were able to define the attentive plane in
a geometrical representation. Applying projection on this plane
we estimate the allocentric representation of the required point.
Based on the task, we assess the spatial relevance of this point and
check if this point relies on the predefined working area of the
current task. The implemented module for the action execution
is called attention action linker.

2.1.4.1. Attention Action Linker
The attention action linker interprets the decision and executes
the motor commands. The decision-making layer gives the
command to the action execution layer with the result of the
decision task. The linker also controls the motor action by
enabling or by disabling it. The actions are predefined in the
current task. In corresponding to the stimulation source there
are two actions, the gaze action, and the point action. This part
of the architecture is more task oriented. In this module, the
response actions of the robot are defined based on the stimulus
location. Themain goal of putting this module in the architecture
is to enable taking actions after finishing the perception process
and making an attentional decision. In the Experimental part we
will talk about the Implemented actions for the defined task in
the experiment.

2.1.5. Incremental Approach
To sum up, our main contribution is the integration of:
perceptual processes, working memory and its rule in attention,
time-variant decision making, and finally the action execution
into a complete cognitive architecture. Delving deeper into the
details, the audio-visual perception has four main contributions.
The first one is adding new modules on the top of the audio
Bayesian localisation model to create an audio salient based
allocentric attention representation. Secondly, the multi-sensory
integration, by embedding the audio saliency map as another
feature map in the linear combination of the PROVISION
model. The third contribution, is the implementation of the
asynchronous selection of the saliency. The last contribution in
the perception block is the integration of the prior knowledge
into the audio attention component to improve the localisation
abilities of the robot.

For the decision making block, our contribution relies on
the computational implementation of the time-variant threshold
manipulation which addresses the confidence-urgency trade off
in perceptual decisions. Our final contribution is the integration
of working memory in the cognitive architecture, which is
inspired by human cognition.

2.2. The Experimental Setup
We test our hypothesis by performing a joint human-robot
attentional task in an unstructured environment. The rationale
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behind the design of this experiment is the facilitation of the
decision making process evaluation, the performance of the
system in different stimulation modes (audio-visual vs. audio
only), and finally, the comparison between human and robot
performances. Figure 3 shows the experimental setup. The robot
is facing the human participant. In between, there is a table
that has the stimulation board and a keyboard in front of
the human participant. The stimulation board is approximately
centralised between the robot and the human with 57 centimeters
distance to both. The height of the chair where the participant
sits is configured so that the human is on the same level as
the robot. This height places the stimulation board within an
optimal location for the field of vision for both the robot and
the participant.

2.2.1. Participants
We conducted the experiment with 21 healthy participants
(female: 14, male: 9) aged between 26 and 43 years old, with
an average age equal to 30.5 ± 4. All participants voluntarily
participated and signed an ethical and information consent
approved by an ethical committee at San Martino Hospital in
Genoa, Italy. All the participants work within the institution with
no direct involvement to the research.

2.2.2. Stimulation
We built a stimulation setup which consists of four identical
boxes. The boxes are placed horizontally on the same line. We
noted the names of the boxes with respect to the robot’s frame
of reference: (FL) for the far left box, (ML) for the middle left
box, (MR) for the middle right box, and (FR) for the far right
box. Each box can produce both audio stimuli and visual stimuli.
The visual stimuli are produced by a smart bulb. The smart
bulb emits up to 800 luminous flux. We use red colour with the
maximum luminous. The audio stimuli are produced by a three
watt Bluetooth speaker. Both the bulb and speakers are embedded
inside the box. The top layer of each box has holes where the light
and sound waves can prppagate through, but that hide the smart
bulb. The width of the box is 9 cm. The boxes are placed with
15 centimeter separation distance (center to center). Therefore,
the distance that separates the boxes is 6 cm. We placed the
stimulation boxes in this configuration with the given spacing
to make sure that all boxes are within the direct field of view
(the view with a zero yaw angle for the face) of both the robot
and the human participant. Additionally, we made the task more
challenging byminimising the distance between the boxes. As it is
proven that human perception matches sound sources and visual
sources for angles as large as 30 degrees apart (Jack and Thurlow,
1973). we selected a long distance as half of 30 degrees and a short
distance as one fourth of these 30 degrees. This drove our choice
for the configuration setup. We use a complex tone with a 1 KHz
fundamental frequency and 3 harmonics for audio stimulation.
The visual stimuli is a red light emitted from a smart bulb. The
choice of the complex frequency and the red colour is because of
their high saliency compared to other colours for the vision, and
simple tone for the audio. This was chosen to ease detection for
both the human and robot.

2.2.3. Task Description
The task for both the human and the robot is to identify the
active stimulation box and react as quickly as possible. There are
two types of activation for the stimulation boxes. The first type
is audio only stimuli and the second type is audio-visual stimuli.
Only one box can be activated at a time. The stimuli are activated
for a fixed time (10 s). The time between rounds is also fixed
at 10 s. The stimulation trials were distributed equally over the
four boxes. So, each box was turned on 25% of all trials. Also,
the stimulation types were distributed equally. 50% of the trials
were auditory-only and the other 50% are audio-visual. Each box
was activated for 8 trials, 4 of them were audio-only and the
other 4 were audio-visual. The sequence of trials and the type of
stimulation were randomised, but fixed across participants.

In the implementation section, we mentioned that the user
defines the task for the robot and gives to the system the required
information for the task and its environment. Therefore, we
defined the task on the top of the attention system. The task
is to localise the stimulation from a set of defined sources
located horizontally in front of the robot. After localising the
location, the robot should execute gaze action (to look to the
stimulation source) and point action (to point with the arms
to the stimulation source. We provided the robot with the
environment related info which are the working plane where the
stimulation sources are located, and the working area on this
plane. Additionally, we informed the robot that the stimulation
sources are in that defined area in space. Consequently any
localised stimulation within this area is considered as relevant
to the task. If the localised stimulation is outside this area,
then the robot ignores it as it is irrelevant stimulation. Extra
environment information was added to the robot here, including
the stimulation sources count and location. After localising the
3D location of stimulation, the robot should identify the source
of this stimulation from the defined set of sources. To sum up, the
task is stimulation localisation which is estimated in the decision
making layer. This task divided into 2 stages, the first stage is
localising the stimulation within the 2D frame and the second
stage is to check the relevance of this stimulation when the 2D
location is projected into the 3D world. If it is relevant, then the
robot will execute the action. The next section is describing the
defined actions for the robot and also for the human participant.

2.2.4. Human/Robot Reaction
We placed a keyboard in front of the human participant. On
this keyboard, eight buttons were highlighted in four groups.
Each group consisted of two side by side buttons. The human
participants were requested to react as fast as possible by pressing
any of the two buttons within the buttons group, which correlated
to the activated stimulation box. We decided to use two buttons
in the keyboard to increase the pressing area in order to simplify
the action and minimise the execution time. On the other hand,
we defined two actions associated with each localised stimulation
box. The first action is a pointing action using the arm, the hand,
and the fingers while the second action is a gaze action using
the head and the cameras (eyes) of the robot. For the right side
boxes the robot will point to the selected box (FR,MR) using
its right hand. Similarly, the left hand is used for the left side
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FIGURE 3 | Experiment setup showing the positioning of the robot and the participant. Also, the four stimulation boxes and their locations. Far left “FL,” Middle left

“ML,” Middle right “MR,” and Far right “FR.”

boxes (FL,ML). For the gaze action, movements in head and
the cameras are involved. The reaching action is biological and
human-like movement that recruits not only the entire upper
body of the humanoid robot iCub, but also the control of head
and gaze of the robot. The gaze action brings the fixation point
(line of sight) on the target with optimal coordination of the 6
degrees of freedom of head and eyes. The pointing with the index
finger of the most opportune hand brings the robot to assume
a new posture in less than 2 s. The coordination between head
movement and upper body movement is designed in detail and
makes the whole body movement look natural and human-like.
It is possible that the human participant‘s attention is biased by
this movement, but this is useful information in order to estimate
the human-robot mutual influence in joint tasks.

2.2.5. Measurements and Rounds
The robot and the human do the task together at the same
time. Before the first trial for each subject, we introduced the
visual stimulation for the robot and the human. The robot
performed the habituation process with the starting signal
during this stimulation introduction period. Our first aim was
comparing the performance of the robot vs. the performance of
the human participants in terms of both accuracy and reaction
time. In general, we were also interested in measuring how
much one participant influences the other in human-robot
collaboration. In order to measure accuracy and reaction time for
the human participant we recorded the pressed keys and their
correspondence to the target as well as the reaction time. For
the robot accuracy and reaction time, we recorded the action
execution commands of the robot and the internal triggering
commands of these actions as relevant information about the
timing and selected location. Additionally, we aimed to analyse
all components of the decision making processes. Thus, we

recorded the threshold profile (indicating the urgency to act)
as well as the integrated scene analysis which includes the Ŵ

value (indicating the confidence on target localisation process)
during the whole trial. The second aim was to understand the
behaviour of the human participants considering the presence
of the robot. Specifically, in this experiment we focused on
gaze behaviour. We recorded the gaze data during the whole
experiment using Tobii pro glasses. This data includes the 2D
gaze location within the field of view of the camera and the
gaze event (Fixation/Saccade). This is the main data from the
eye tracker that we focused on. For better analysis we developed
a program to ensure synchronisation between the eye tracker
time stamp and the time stamp from our system. The idea of the
program is to send a timestamp instance from our system to the
Tobii pro glasses, and in the analysis stage we map the timestamp
of the eye tracker to our system’s timestamp. The synchronisation
process ensures the transfer of the trials’ information to the gaze
data. The trials’ information mainly include the current state of
the stimulation, the active box, the starting time of the trial, and
the type of the stimulation.

3. RESULTS

We primarily focused on assessment of the performance of
the memory-based cognitive architecture for joint attention. To
perform an extensive evaluation of the system, we subdivided
the analysis into two main sections. The first section is
analysis related exclusively to the performance of the cognitive
architecture. This includes the evaluation of the whole system
dynamics which is mainly the decision making process and the
overall performance (localisation accuracy and reaction time)
by comparing it with human performance in a similar attentive
challenge. The second parts of the results is a detailed analysis
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FIGURE 4 | Confidence threshold profile across the whole trial time (20 s) for both audio-visual and audio only trials.

of the gaze patterns. Given a thorough description of how
the focus of attention was jointly redeployed, we focused our
secondary analysis on the gaze patterns of both the robot and
human participants. Such gaze behaviours are a direct result
of attentional processing but more importantly tend to cause
mutual influence between the robot and human. Humans tend
to look where their partner directs their gaze (Frischen et al.,
2007). Also, it is an important component in joint attention (Yu
and Smith, 2013). So, the actions of the robot which are the
gaze movement and pointing might influence the attention of
the human toward a specific location. On the other hand, the
gaze action of the human changes the visual features of the scene
while the head moves. Consequently, this creates changes in the
saliency map of the robot which might change its behaviour, and
this what we want to analyse.

3.1. The Performance Analysis
3.1.1. The Memory Based Decision Making Process
We evaluated the memory-based decision-making process to
report how the cognitive architecture makes the decision to
act, averaged across all trials. The process is based on working
memory, the confidence measure and the decision threshold
(the threshold in which if the confidence reached, the agent will
make a decision) as core factors of the decision-making process.
The cognitive system makes the decision to act in presence of
the event of crossing between the confidence measure and the
threshold curve. Therefore, we analysed the decision-making
behaviour to assess the effect of working memory as well as
the performance of the confidence measure and the decision
threshold, which are core factors of the decision-making process.

Adding working memory allowed the robot to track the
stimulation state of the trial (presence of a stimulation), and the
state of his own action (whether the action is done, or in progress,
or not yet executed). This has a clear advantage with respect
other work done in the recent past (Gonzalez-Billandon et al.,
2019). Once the robot executed an action for a certain stimulus, it
could realise that the task is done and there is no need to execute

the action again until the current stimulus stops. This represents
its internal working memory of the active motor actions. When
the stimulus stops the working memory is updated, allowing
the robot to reset and wait for another stimulus. Thanks to this
mechanism the robot was successfully able to execute the action
on the right time frame (after the stimulus turned on and before it
turned off) in 95.8% of the trials.The working memory stabilises
the action cycle and also allows the execution of the action based
on meaningful environmental and internal states. This leads
us to accept the first hypothesis, “The memory-based cognitive
architecture is able to attend to multi-sensory stimulation and
correctly make a decision based on the localisation process.”

Moving to the analysis of the confidence measure and the
threshold manipulation, Figure 4 shows the average threshold
profile with audio-only trials in blue and audio-visual trials in
orange. The initial threshold is different for each participant.
This is due to the habituation process, as the system memorises
a different initial threshold for each participant. The process
runs at the beginning of the experiment for each participant,
because this initial threshold is dependent on the visual features
of the environment including the human participant in the
field of view. Thanks to the working memory, the robot retains
important information of its task and this contextualisation
is not only related to the environment. The starting time of
the threshold modulation process is based on detecting the
existence of the stimulation. Thus, the exact starting time of
the modulation signal is different from one trial to another.
Similarly, the confidence incremental process defines the action
execution time together with the threshold decision. Therefore,
the linear decreasing rate creates a curved, averaged response.
After execution of the action, the decision making process slows
down the threshold decreasing rate and this creates the flat
part of the curve observed in Figure 5. In the audio-visual
condition, the threshold decreasing rate slows down earlier. This
is because the action is typically executed earlier due to the greater
level of confidence in target localisation. After the multi-sensory
stimulation stops (experimentally fixed in time after 10 s from
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FIGURE 5 | Gamma measure (Ŵ) and the threshold profiles in one of the trials across the whole trial time (20 s). The crossing occurs around 5 s.

the beginning of the stimulation), the threshold resets again to
the initial value. In this exact moment, in the audio-only trials,
the threshold starts from a lower value. This reflects the lower
confidence and consequently the longer response time to take a
decision to act. On the other hand, by looking at the Ŵ measure
in Figure 6, we observe that the Ŵ function in audio-visual
trials (orange curve) produces a spike almost instantaneously
after the beginning of the stimulation. This is due to the visual
saliency of the stimulation, which provides a strong, unique
visual stimulation in the field of view. In the audio-only trials the
Ŵ function shows that the confidence decreases at the beginning
as causal effect of proactive sensing (the robot tries to eliminate
the effect of the environment noise) and it starts to increase (after
approximately 6 s in average) till the stimulation ends. When
the threshold profile and the Ŵ measure cross one each other,
the cognitive system makes a decision that triggers the action of
pointing to the target stimulus.

It is also important to describe the decision-making process
in detail by presenting an example trial. Figure 5 shows a single
trial taken from one participant. Once the simulation starts,
the threshold of confidence starts to decrease in time with a
decreasing factor from the initial value (the parameter is specific
to the participant, computed during calibration, and kept in
memory by the system). The level of confidence indicated by
the Ŵ function and the threshold profile progresses in time
under their proper temporal dynamics until the Ŵ value and
the threshold cross each other. At this point, the cognitive
architecture makes a decision and acts, by consequently pointing
to the estimated source of stimulation. Once the stimulation ends
(after 10 s from its beginning) the system waits 0.5 s and then
resets the threshold to the initial value. The starting and stopping
of the trial stimulation are autonomously detected by system
based on the audio power in the audio signals received by both
the microphones as presented here in Figure 7. The reset of the
threshold profile to the original value occurs exactly 0.5 seconds
after the end of stimulation is detected.

3.1.2. The Overall Performance (Accuracy and

Reaction Time)
To assess the performance of the robot, we compared the

attention system of the robot with human performance in
response to the same multi-sensory stimulation and mutual
sensorial influence. We analysed the overall performance based

on (a) the reaction time and (b) accuracy as the primary source of

evaluation. In particular, we characterised the performance based
on the two stimulus typologies: audio-only stimulus or audio-

visual stimulus. Figure 8 shows the measure of the reaction time
and accuracy for both the robot and the human participants,
averaged across all the trials/participants. The bars in orange
indicate the performance of the robot and the blue bars indicate
the performance of the human participant. The participant
and robot‘s choice is considered wrong if the identified box
wasn’t the active box or if the action didn’t execute. Looking
into the accuracy for each of the stimulus types separately, the
robot records similar performance to the human in audio-visual
attention tasks. The robot autonomously identified the source
of the stimulation with 89% average accuracy. On the other
hand, the robot performed with 43% average accuracy in the
audio-only trials. The audio-only trials were more challenging for
humans as well. To assess performance, we performed multiple
t-tests to compare the behaviour of the human in the audio-
visual task vs. audio only task, and similarly for the robot. The
results of all the tests that demonstrated significant differences
are the following:

• Human audio-visual reaction time vs. human audio only
reaction time : t(40) =−3.7527, p < 0.01.

• Human audio-visual accuracy vs. audio only accuracy: t(40) =
2.1436, p= 0.0382.

• Robot audio-visual reaction time vs. robot audio only reaction
time: t(40) =−9.6, p < 0.01.

• Robot audio-visual accuracy vs. robot audio only accuracy:
t(40) = 12.2, p < 0.01.
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FIGURE 6 | Confidence profile (gamma measure Ŵ) across the whole trial time (20 s) for both audio-visual and audio only trials.

FIGURE 7 | Audio power profile across the whole trial time (20 s) during all the trials.

FIGURE 8 | Overall performance across the different types of stimulation for both the robot and the human participants. (A) Accuracy. (B) Reaction time.
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So there are significant differences of both reaction time and
accuracy between the audio-visual condition and audio only
condition for the human participants and also for the robot.
The differences in the case of the robot were all significant (p <

0.01). As the average accuracy value for audio-visual is higher,
and the reaction time is lower compared to the audio only task
(shown in Figure 8), we accept our second hypothesis that “The
stimulus localisation accuracy and reaction time of the robot in
the audio-visual task is better than in the audio only tasks.”

We also performed t tests to compare the performance
(reaction time and accuracy) of the robot vs. the performance of
the human in the localisation task. The statistical tests showed
significant differences between both performances as follows:

• Human audio-visual reaction time vs. Robot audio-visual
reaction: t(40) =−4.99, p < 0.01.

• Human audio-visual accuracy vs. Robot audio-visual accuracy
: t(40) = 4.06, p < 0.01.

• Human audio only reaction time vs. robot audio only reaction
time: t(40) =−9.7, p < 0.01.

• Human audio only accuracy vs. robot audio only accuracy:
t(40) = 14.9, p < 0.01.

Thus, we reject our third hypotheses The performance (accuracy
and reaction time) of the robot will be as good as the performance
of the human participants in localising the stimulus.

We did further statistical investigations using Wilcoxon
signed ranked test (Rey and Neuhäuser, 2011) to test how
different the performance of the robot was compared to the
human. We found that the accuracy drop in the audio-visual
condition is statistically less than 20% of the human accuracy.
Also, the difference in reaction time of the robot in the audio-
visual condition compared to the reaction time of the human is
less than 1 s which is 70% of the increase in human reaction time.
For the audio only condition, the difference was much bigger
than the audio-visual condition. The differences in the audio-
visual condition are comparable considering the complexity of
the system and processing speed of the machine. The audio
only condition is more complex compared to the audio-visual
condition for both the human and the robot. However, the
complexity of the audio-only localisation task does not entirely
explain the considerable gap. To understand the reasons of
this performance drop, we more thorougly investigated the
conditions of wrong actions. The results are shown in Table 1.
There are two conditions in which we consider the behaviour of
the robot to be worse. The first condition is when the action is
executed but the identification of the active box was wrong and
is annotated with (wrong identification). The second condition
occurs if the action never executed during the on time of the trial
and we annotate this behaviour as (no action). For the human,
all the wrong action trials were due to wrong identification.
For the robot, the first condition occurred most of the time
(89% of the total failures). On the other hand, there were two
causes for no action failures. The first cause is when the robot
executes an action in the off time of the stimulation due to some
confusion from visual features in the scene. More specifically, it
was observed that for some participants the robot got confused
from the hand of the participant, indicating once again how

mutual influence impacts attentive tasks. The hand worked as
visual stimulation and the robot identified the closest box to
the hand as a source of stimulation during the off time. If the
robot executed an action during the off time, the robot does
not reset the exception event before the end of stimulation of
the next trial. The consequence of this is a (no action) failure
for the trial next to the off time when the robot executed the
action. This actually happened very few times (15 times) across
all trials, which consists of 6% of the total failures. This is 60%
of the second type of robot failures (No action failure). The
remaining 40% of the no action failures are due to low confidence
level. The robot did not execute an action few times because the
confidence value (Ŵ value) never reached the threshold during
the on time of the trial. This type of failure only forms 4% of the
total failures.

Based on these analyses, the major cause of failure is wrong
identification. Therefore, it is also important to analyse in
detail the attentive process in time. More specifically, the audio
components need to be analyzed, because the difference in
performance lies in the temporal response of the attention
system. So, in the next section we analyse the temporal responses
of the audio probabilities, which are the base of the localisation
process during the audio only condition.

3.1.3. Detailed Analysis of the Audio-Only Trials

(Probability Profile)
Since the behaviour of the decisionmaking process does not show
erroneous behaviour, but instead the decision is made in the right
time frame with a reasonable level of confidence, we believe that
the reason for the worse performance in audio-only trials is to be
found in the localisation process. As shown by a more detailed
analysis for audio-only trials, the localisation process is based on
the level of confidence that each box is the target, in other words
the probability that each one of the four locations is the target.
Such probability changes over time for each potential location of
a stimulation source. In the audio-only condition, the probability
profile is extracted from the Bayesian map, which is the output of
the audio localisation system. The temporally detailed analysis of
the probability profile is carried out during the 20 s time frame
of the trials. During the first 10 s, the auditory stimulation is
generated by the target box only.

Figures 9, 10 show the probability profiles for the 4 locations
of the stimulation sources when the active box is the far left one
and the middle left one respectively. The response is averaged
across all trials. The first relevant point of these figure is that
the shape of the curves are similar for the boxes located on
the same side, independently from the location of the source of
stimulation. In other words the probability profile over time of
the far-right is similar to the one middle right and similarly the
probability profile of the far left is similar to the middle left. Such
results indicate that there are differences for time progression
of the probability profile between the left and right boxes from
the location where the robot is standing. Such difference has an
impact on the localisation of the sound target since the certainty
of sound location changes over time differently between the left
and right boxes. Similar difficulty from one side over the other
was actually reported by most of the participants. Another aspect
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TABLE 1 | Robot’s failure types percentages.

Failure Percentage from total failures (%)

Type 1 Wrong identification 89.4

Type 2
No action (Wrong action type in previous trial) 60% 6.4

No action (low confidence) 40% 4.2

FIGURE 9 | Audio probabilities profile for the trials that the far left box (FL in red colour) was activated.

FIGURE 10 | Audio probabilities profile for the trials that the middle left box (ML in green colour) was activated.

that might have an impact on the localisation of the source of
sound is that the probability profile of the sound sources from
the same side evolve similarly. This makes the discrimination
task complex for the robot, but also for the human participant.
It was challenging for them to identify which box between the
2 boxes in the same side is the stimulation source in audio-only
trials. The similarity between human robot participant in same-
side during sound discrimination suggests that the Bayesian
modelling implemented in the cognitive architecture shares some
similarities with human behaviour.

Another relevant point relates to the temporal profile of the
probabilities for the different salient locations. The probability
corresponding to the right location increases with time as long
as the stimulus is active, (in the first 10 s) which is the right and

required behaviour. However, the probabilities of corresponding
matches between the source of sound and different locations
do not always start from zero and equal values. This indicates
that before the activation of the stimulation, the localisation
system believes that one location is more likely to produce sound
than another location. Each probability goes to an initial value
that is not equal to zero and also not equal to other location’s
probabilities. Our speculation explains the presence of these two
phenomena as the result of acoustic noise in the environment.
The acoustic noise equally affects the performance of the robot
and of the human participant. It would be wise to remove
the constant acoustic noise in the environment to eliminate its
effect on the Bayesian map probabilities first, and then integrate
evidence from the actual stimulation over time.
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The final consideration regards the time the system requires
to make the right decision. From both graphs, we observe that
it takes in approximately 7.5 s for the far left box to be the box
with the highest probability and 6.5 s for the middle left box. For
the boxes located on the right side of the robot, the value for the
middle right is similar and is approximately 7 s. For the far left
box, the system struggles due to the noise, the probability for the
far left never reaches the maximum when the box was activated
within the on time frame (10 s). The decision-making process
is tuned with some parameters to react faster than the required
time. So the average reaction time of the robot for audio-only
stimulus was measured to be around 4.34 s (STD: 1 s), definitely
faster than the time necessary for the temporal probability profile
to converge on the correct stimulation. Thus, we note that the
attentive system can localise the target with a higher accuracy if
the decision making process is allowed a longer reaction time.
However given enough time, the auditory localisation process is
always correct and the probability of the correct target always
exceeds the probability of the others. For example, the audio
probability profile for the far left box is the highest after 7.5 s. For
the middle left box the audio probability profile for the middle
left target is the highest after 6.5 s. Such fine refinement is actually
doable in the cognitive architecture proposed, since by adjusting
the tuning parameter we can refine the decision-making process
and adjust the decreasing rate of the threshold.

In conclusion, we assessed that the task results are also difficult
for the human participants according to an interview in the
debriefing phase of the experiment. Another relevant observation
in regards to the numerous comments of many participants
indicates the change in the auditory landscape as the most
meaningful cue to localise the target. The suggestion convinced
us to looked in the change rate of the confidence level for the
different possible targets. In the Figures 11, 12, we show the
change rate of the confidence probabilities for the four locations
for the trial respectively when the target is FL and ML. We
noticed that the attentive system can localise the target correctly
in a shorter time if decision making process analyzes the change
rate of the confidence probability instead of the confidence
probability. For example, for the target in FL (see Figure 11) the
correct detection of the target can occur as early as approximately
3.0 s, and for the target in ML (see Figure 12) the correction
detection the target can occur as early as at approximately 2.5s.

3.2. The Behavioural Gaze Analysis of the
Human and the Robot
The behavioural analysis of the human participants gives us
a relevant insight on the mutual influence between the two
partners. The behavioural analysis relies on data from the eye
tracker. We were able to record the gaze data of the human
participants. The gaze data is the 2D location of the gaze and the
gaze event. The gaze events can be one of two types: fixation and
saccade.We aimed to count the fixation events on the stimulation
boxes and also on the robot’s face during each trial. So, we had to
define where the 2D location is projected in the 3D world. We
are interested in 5 regions (the 4 stimulation boxes, the robot’s
head, and other areas). The eye tracker gives the 2D location of

the gaze in the camera frame, which changes when the participant
moves their head with respect to the world. In order to cluster
the fixation events based on the 2D location into 6 clusters, we
had to transfer the 2D location from the camera moving frame to
a global fixed frame. We achieved this by extracting a reference
point in the scene which always exists and then we track this
point. This point works as a reference point and all interested
regions are defined with respect to this point.

From the 21 subjects of the experiment, we could extract the
gaze data perfectly from all 12 of them. Three subjects were
moving their head very rapidly, and due to this the process
of extracting the reference was not accurate enough. The gaze
data of 5 participants weren’t accurate enough to be considered
because the eye tracker failed to calibrate their eyes. So in this
section we only consider the data of the 12 subjects for which
the calibration was accurate and the reference extraction process
was sufficient. The robot behaviour in this experiment consists
of its actions, which are the gaze movement toward the selected
box and the pointing action with the arm. Figure 13 is showing
the fixation distribution in trials. It is divided into 4 panels based
on the location of the simulation. (FL, ML, MR, and FR for top
left, top right, bottom left, and bottom right panel respectively).
The y axis shows the fixation counts. The x axis here is the five
defined regions of interest (4 stimulation boxes and the robot’s
head). We also categorise it based on the stimulation type: audio
only in blue and audio-visual in orange. Similarly, Figure 14
shows the gaze of the robot. The robot only does one fixation
event during each trial, which is the action of the task. So, the
graph also represents the action distribution of the robot. The
fixation counts on the active stimulation box is marked with a
red rectangle surrounding the bars of this location in each of the
panels for both the robot and the human participants. We divide
our findings into two parts. The first part is for audio only trials
and the second part is for audio-visual trials.

The first observed information is that in audio-visual trials
the participants do fixation events on the active stimulation box
more than other boxes in FL, ML, and MR trials. But in trials
during which FR box was active, the participants domore fixation
events on MR box on average. This drive us toward the second
observation. Looking into the robot’s gaze behaviour, we found
that in the FR trials, the robot was confused toward the MR box
and sometimes performs gaze actions toward the MR box instead
of FR. The next three observations are in the audio-only trials.
In the FL trials the robot mostly was driven toward the ML box.
This records the highest average in comparison with the other
boxes. Similarly, the participants also do more fixation events on
the ML box, even more the correct active box which is FL. The
second observation in audio only trials are in the ML trials. In
these trials both the robot and the participants do fixation events
on the correct box more than other boxes. Thirdly, in MR trials
the confusion of the robot was between the right box (MR) and
the ML box. But it is less than the confusion in FL trials. On the
other hand the participants’ gaze record the highest count on the
right box (MR) and the second highest is the ML box. Finally, it
is clearly shown that the participants also spend time looking to
robot’s head in all trials for all conditions.

Frontiers in Neurorobotics | www.frontiersin.org 17 November 2021 | Volume 15 | Article 648595

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Eldardeer et al. Memory-Based Joint Attention in HRI

FIGURE 11 | Derivative of the audio probabilities profile for the trials that the far left box (FL in red colour) was activated.

FIGURE 12 | The derivative of the audio probabilities profile for the trials that the middle left box (ML in green colour) was activated.

4. DISCUSSION

Joint attention is a fundamental component for better

collaboration in real-world scenarios, such as in industrial
environments where the robot and the human worker have

to be aware of the products being manufactured (indicated by
machinery through visual and audio features). They will be

able to coordinate their actions and activities when initiated

through their joint attention directed to the same target. The
proposed biologically inspired cognitive framework, based on
a multi-sensory attention system and supported by memory,
constitutes the computational model used to evaluate emergent
joint attention between the human participant and the artificial
agent. The study had three main hypotheses. H1-Memory-
based Decision Making process: The memory-based cognitive
architecture is able to attend to multi-sensory stimulation and
correctly make a decision based on the localisation process,
H2-Audio-visual vs. Audio-only: The stimulus localisation
accuracy and reaction time of the robot in the audio visual
condition will perform better than in the audio only condition.

H3-Robot performance: The performance of the robot will be as
good as the performance of human participants. To answer the
hypothesis we designed a multi-sensory task, and presented the
task to the human participant and the robot. The setup includes
stimulation boxes, which are a general model for real-world
applications. Thus, we were able to compare the performance of
the robot with the performance of a human participant in the
same task which is an important aspect defining the quality of
the interaction. The comparison focuses on the assessment of
both agents in terms of the execution of the same localisation
task with the same response time. The rationale behind the
co-assessment of both the participants is that we intend to assess
the performance of the robot and the human to measure how
much they can coordinate in the joint task and to also measure
the mutual influence between the robot and the participant.

The statistical analyses resulted on accepting the first two
hypotheses (H1-Memory-based decision making process: The
memory-based cognitive architecture is able to attend to multi-
sensory stimulation and correctly make a decision based on the
localisation process and H2-Audio-visual vs. Audio-only: The
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FIGURE 13 | The gaze behaviour of the human.

stimulus localisation accuracy and reaction time of the robot in
audio visual task in better than in audio only tasks). and rejecting
the last one H3-Robot performance: The performance (accuracy
and reaction time) of the robot will be as good as the performance
of the human participants in localising the stimulus.

However, further statistical analyses showed that the
performance of the robot in the audio-visual condition is
comparable, as the accuracy drop was less than 20% of the
human accuracy and the reaction time differences were less
than 1 s which is less than 170% of the human reaction time.
These values are acceptable considering the machine processing
speed of such complex computational processes. Indeed the
cognitive system is less reactive in audio-only stimulation and
only partially influenced in the different internal processes by
the presence of the human partner. Although the audio only
condition is in general a challenge for both the human and the
robot participant, the analysis showed that the main cause of the
performance drop in the audio only condition is the false audio
localisation, which is caused by the acoustic egocentric noise.

Furthermore, we performed a more detailed analysis of the
cognitive processes, and we realised that the decision-making
process is robustly designed to swiftly guide the system to
make a decision with excessively fast temporal dynamics. On

the contrary, the auditory attention system requires longer
time periods to make the Bayesian network converge, and thus
localise the auditory target. Whereas the auditory localisation
process is correct in inferring the location, also in presence
of environmental noise (typical in robotic applications), the
temporal dynamics of the system require longer periods for the
processing of the auditory stimulation. However, the specific
inefficiency is of simple resolution for two reasons that we intend
to verify in future work. First, the specific modular structure
of the developed cognitive architecture and its parametric
configuration is designed to allow for fast re-adaptation of the
decision-making process. As one possibility, by reducing the
urgency to act parameter in the decision-making process, we
can allow more time for the Bayesian network to converge, and
consequently, we can guarantee improved accuracy. However,
although the specific solution improves the accuracy it does
not guarantee a faster reaction time. Secondly, thanks to the
margin for faster response during auditory localisation, the
process allows us to provide more auditory evidence for Bayesian
integration in the same time interval. Faster processing of
auditory stimulation is expected to improve the reaction time of
the auditory localisation system and make it more similar to the
reaction time of human participants.
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FIGURE 14 | The gaze behaviour of the robot.

Undoubtedly, the temporal dynamics of how auditory
evidence is integrated is a very important aspect. We noticed in
human participants that changes in the auditory landscape are
more meaningful for target localisation than a static auditory
landscape. The same process based on changes in the Bayesian
network facilitates the process of inference over the stimuli
localisation. The importance of relative changes in the auditory
landscape, together with the importance of proactively creating
such changes in the auditory landscape (self-programmed head
movements) is a promising area of study, and we are planning to
exploit it further in future work. Nevertheless, even without these
improvements, the cognitive architecture has been demonstrated
to be effective, and it shows a natural and robust joint attentive
behaviour for Human-Robot interactive tasks. Furthermore, for a
thorough understanding of behaviour related to mutual presence
and its mutual influence, we also analysed the gaze behaviour of
the human participants. The results showed that in the conditions
in which the robot confused the location of the active box, the
human participants tended to do more fixation events on the
wrong box, suggested by the wrong behaviour of the robot.
Also, the participants spend time looking at the head of the
robot during the experiment, which shows how the human
participant and the robot mutually influence each other in similar

interactive tasks. This brings us to conclude that the behaviour
of the robot may reinforce the gaze of the human toward the
robot‘s chosen box. This is reinforced by the robot’s behaviour
which is both built on the directed gaze and the pointing
actions. In the future, we intend to investigate this aspect further
with more statistical evidence, and we intend to know whether
this hypothesis of the mutual reinforcement is confirmed and
what exactly drives it: whether the gaze or the pointing or a
combination of both have a stronger effect on the human partner.
Finally, we believe that the proposed system paves the way to
human-robot collaboration, since coordinated joint attention is
proven to facilitate coordination between the interacting parts.
Such an optimal mechanism of coordination is considered one
of the main facilitation mechanisms in multi-partner interaction
tasks. We also showed that the robot affects the gaze behaviour
of the participants. Furthermore, with this cognitive architecture,
we demonstrate the importance of implementing a complete
cognitive architecture (including working memory) in order to
attend to salient targets in the environments as humans do.
By sharing the same attentional focus redeployment mechanism
with the human partner we provide effective joint attention
that essentially emerges from environmental stimulation and
reinforces natural human-robot collaboration.
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