
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

© The Rockefeller University Press  $30.00
The Journal of Cell Biology, Vol. 180, No. 2, January 28, 2008 305–314
http://www.jcb.org/cgi/doi/

JCB 305 
10.1083/jcb.200705126

 Correspondence to A. Franchitto: annapaola.franchitto@iss.it 

 Abbreviations used in this paper: ATR, ataxia telangiectasia and Rad3 related; 
LCL, lymphoblastoid cell line; WS, Werner syndrome. 

  The online version of this paper contains supplemental material.  

    Introduction 
 Werner syndrome (WS) is a human autosomal recessive disorder. 

Affected individuals prematurely exhibit many age-related 

pathologies as well as a high predisposition for cancer develop-

ment ( Martin and Oshima, 2000 ;  Oshima, 2000 ). The gene mutated 

in WS,  WRN , encodes a nuclear protein that is a member of the 

RecQ family of DNA helicases and possesses two enzymatic 

activities: an ATP-dependent 3 �  – 5 �  DNA unwinding activity 

( Gray et al., 1997 ;  Suzuki et al., 1997 ) and a 3 �  – 5 �  exonuclease 

activity residing in the amino-terminal region ( Huang et al., 1998 ). 

Cultured cells derived from WS patients show a wide genomic 

instability manifested as spontaneous chromosomal abnormali-

ties and large deletions in many genes ( Salk, 1985 ;  Gebhart et al., 

1988 ;  Fukuchi et al., 1989 ), which may represent an important 

determinant of the increased risk of cancer ( Goto et al., 1996 ; 

 Moser et al., 2000 ;  van Brabant et al., 2000 ). RecQ helicase family 

members are implicated in several biochemical processes such 

as DNA replication, recombination, and repair but the precise 

molecular function of WRN is not well elucidated. Also, the 

functional signifi cance of each WRN biochemical activity and 

whether loss of one or both leads to WS pathogenesis is not fully 

understood. In vitro studies have shown that forked duplexes re-

sembling DNA structures arising during replication, recombination, 

and repair are resolved by the coordinated action of WRN activ-

ities ( Shen and Loeb, 2000 ;  Opresko et al., 2004 ). Interestingly, 

recombination requires both WRN activities, whereas single 

helicase or exonuclease activity is suffi cient to protect cells against 

toxic insults ( Swanson et al., 2004 ). Other studies indicated that 

WRN helicase activity has a role in the prevention of telomere 

dysfunction ( Bai and Murnane, 2003 ;  Cheng et al., 2004 ). 

 Mounting evidence strongly supports the idea that WRN 

may play a critical role in the rescue of stalled replication forks. 

First, S phase prolongation is observed in WS cells together 

with extreme sensitivity to drugs that block replication fork 

progression ( Poot et al., 1999, 2001 ;  Pichierri et al., 2000a , b ). 

Second, WRN shows a great substrate preference toward com-

plex DNA secondary structures, which represent a roadblock 

for DNA replication ( Shen and Loeb, 2000 ;  Brosh et al., 2002 ). 

Third, WRN is required for fruitful recovery from replication 

fork arrest ( Pichierri et al., 2001 ;  Sakamoto et al., 2001 ;  Baynton 

et al., 2003 ). Furthermore, WRN has been recently found to inter-

act or colocalize with proteins involved either in the intra-S 

or replication checkpoint and is targeted by the replication 

checkpoint kinase ataxia telangiectasia and Rad3 related (ATR; 

 Baynton et al., 2003 ;  Pichierri et al., 2003 ;  Cheng et al., 2004 ; 

 Franchitto and Pichierri, 2004 ). 

 Fragile sites are replication-delayed genomic regions 

particularly sensitive to partial inhibition of DNA synthesis by 

aphidicolin ( Glover et al., 1984 ). Previous studies proposed 

that the stalling of replication forks may correlate with DNA 
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 In this study, we found that WRN was implicated in the re-

sponse to the partial inhibition of DNA synthesis induced by low 

doses of aphidicolin. Using cells from WS patients or fi broblasts 

in which endogenous WRN was down-regulated by RNA inter-

ference, we have shown that the loss of functional WRN leads to 

common fragile site instability with or without aphidicolin treat-

ment. WRN helicase rather than exonuclease activity seems to 

play the main role in stabilizing fragile sites. Furthermore, we 

suggest that WRN and ATR act in a common pathway preventing 

accumulation of DNA gaps and breaks at common fragile sites. 

 Results 
 WRN accumulates into nuclear foci after 
aphidicolin-induced replication delay 
 It has been demonstrated that WRN is mainly located in the nu-

cleoli and relocalizes to nuclear foci after DNA damage or rep-

lication fork arrest ( Sakamoto et al., 2001 ;  Baynton et al., 2003 ; 

 Pichierri et al., 2003 ;  Otterlei et al., 2006 ). This subnuclear re-

distribution seems to be a general behavior of WRN in response 

to DNA damage or replication arrest. Thus, we wanted to verify 

whether WRN was relocalized into nuclear foci in response to 

partial inhibition of DNA replication. 

 Wild-type fi broblasts were exposed to 0.4  � M aphidicolin 

and fi xed at different time points ( Fig. 1 ). Before fi xation, cells 

were detergent-extracted to visualize only the chromatin-associated 

breaks and chromosomal rearrangements occurring at common 

fragile sites ( Arlt et al., 2003 ;  Schwartz et al., 2006 ). Although 

extensive knowledge of the molecular determinants underlying 

common fragile site instability is still missing, computational 

analysis performed on a subset of these genomic sequences has 

suggested that common fragile sites could be regions enriched 

in clusters of highly fl exible ataxia telangiectasia sequences 

( Mishmar et al., 1998 ;  Zlotorynski et al., 2003 ). These se-

quences show in silico the propensity to form stable secondary 

DNA structures that perturb replication, contributing to genome 

fragility. Very little is known about the molecular mecha-

nisms involved in their stability but it is thought that ATR and 

other proteins working in the response to replication stress 

are implicated ( Casper et al., 2002 ;  Arlt et al., 2004 ;  Howlett 

et al., 2005 ;  Musio et al., 2005 ). More recently, it has been pro-

posed that homologous recombination and, to a lesser extent, 

nonhomologous end joining are required for fragile site sta-

bility after aphidicolin-induced replication slowdown ( Schwartz 

et al., 2005 ). 

 These fi ndings led to the conclusion that chromosomal 

breakage occurring at fragile sites is the end result of in correct 

recovery from replication fork stalling at these loci. Taking into 

account the fact that fork stalling is a very frequent and dangerous 

event that occurs naturally during normal DNA replication, com-

mon fragile sites may represent a useful means to study mecha-

nisms underlying replication fork recovery in vivo. 

 Figure 1.    WRN forms foci in response to aphidi -
colin-induced replication slowdown.  (A) Colocal-
ization of WRN-positive nuclei with S phase cells. 
Wild-type fi broblasts were treated with 0.4  � M 
aphidicolin for 24 h, pulse-labeled with 3  � g/ml 
BrdU for 30 min before fi xation, and double immuno-
stained with  � -WRN and  � -BrdU as described in 
Immunofl uorescence. Bars, 5  � m. (B) Percentage 
of cells showing WRN foci in response to 0.4  � M 
aphidicolin (Aph) treatment (left) and percentage 
of BrdU-positive nuclei (right). Incorporation of 
BrdU was evaluated by immunofl uorescence using 
specifi c antibodies. Data are presented as means 
from three independent experiments. Error bars 
represent standard error.   
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 Cells lacking functional WRN show 
increased sensitivity to aphidicolin 
 To test the hypothesis that WRN plays a role in the maintenance 

of fragile site stability, we fi rst investigated the sensitivity of 

WS cells to aphidicolin-induced replication slowdown. We ex-

posed wild-type and WS fi broblasts to different concentrations 

of the drug and, 24 h later, metaphase chromosomes were col-

lected and scored for total gaps and breaks ( Fig. 2, A and B;  and 

Fig. S1, A and B, available at http://www.jcb.org/cgi/content/

full/jcb.200705126/DC1). A dose-dependent induction of chromo-

some gaps and breaks was observed in both cell lines, with WS 

WRN, the fraction that is thought to be localized at stalled replica-

tion forks. Aphidicolin-induced replication slowdown resulted in 

a marked relocalization of WRN into diffuse subnuclear foci 

( Fig. 1 A ) and the percentage of cells with WRN foci increased 

in a time-dependent manner, reaching  � 80% at 24 h ( Fig. 1 B ). 

Interestingly, the percentage of nuclei with diffuse WRN foci 

matched the percentage of cells in S phase as demonstrated by 

BrdU incorporation ( Fig. 1, A and B ), which suggests that relocal-

ization is linked to replication inhibition induced by aphidicolin. 

Altogether, our results indicate that WRN is implicated in the 

response to replication slowdown induced by aphidicolin. 

 Figure 2.    WRN defi ciency leads to increased spontaneous and aphidicolin-induced DNA chromosomal aberrations.  (A) Mean overall chromosome gaps 
and breaks per cell in wild-type (wt) and WS cells. Cells were treated with different doses of aphidicolin (Aph) 24 h before harvest. Data are presented 
as means of three independent experiments. Asterisks indicate that the result is statistically signifi cant compared with the wild type; P  <  0.05 by  t  test. 
(B) Representative Giemsa-stained metaphase of WS fi broblasts treated with 0.2  � M aphidicolin. Arrows indicate chromosomal aberrations. (C) Western blot-
ting probed with  � -WRN showing the reduction in the WRN protein level in wild-type fi broblasts transfected with control siRNA or siRNAs directed against 
WRN and harvested 48 or 72 h after interference. Tubulin was used as loading control. (D) Mean overall chromosome gaps and breaks per cell in wild-type 
fi broblasts (mock), fi broblasts transfected with control siRNA, or fi broblasts in which WRN was abrogated by RNAi (WRN RNAi). Cells were treated with 
different doses of aphidicolin 24 h before being harvested. Data are presented as means of three independent experiments. Asterisks indicate that the result 
is statistically signifi cant compared with the wild type; P  <  0.05 by  t  test. Error bars represent standard error. (E) Representative Giemsa-stained metaphase 
of fi broblasts in which WRN was abrogated by RNAi and treated with 0.4  � M aphidicolin. Arrows indicate chromosomal aberrations. Bars, 2.5  � m.   
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fi broblasts showing an approximately sixfold increase in chromo-

somal damage in comparison to their wild-type counterparts. 

 Because there might be a compensation for WRN defi -

ciency in cells derived from WS patients, we explored the effect 

of aphidicolin treatment in cells in which endogenous WRN 

was knocked down. Human wild-type fi broblasts were trans-

fected with control siRNA and siRNAs directed against WRN 

and the reduction of WRN protein level was verifi ed by Western 

blotting ( Fig. 2 C ). Depletion of WRN resulted in an enhance-

ment of aphidicolin-induced chromosomal instability similar 

to that observed in WS cells ( Fig. 2, D and E ). Interestingly, the 

abrogation of functional WRN increased spontaneous DNA gaps 

and breaks ( Fig. 2 D ). Moreover, a higher chromosomal sensi-

tivity to aphidicolin was observed in a lymphoblastoid cell line 

(LCL) derived from a WS patient (Fig. S2 A, available at http://

www.jcb.org/cgi/content/full/jcb.200705126/DC1). 

 Altogether, these results reveal that WS cells are extremely 

sensitive to aphidicolin treatment and that the loss of WRN is 

responsible for chromosome instability. 

 WRN-defi cient cells have enhanced 
instability at common fragile sites 
 To determine whether the increase in chromosomal gaps and 

breaks after aphidicolin exposure observed in WS cells takes 

place at specifi c DNA regions, we examined by FISH the induc-

tion of the most frequently expressed common fragile sites, 

FRA3B, FRA7H, and FRA16D, in wild-type and WS fi bro-

blasts (Fig. S3, A and B, available at http://www.jcb.org/cgi/

content/full/jcb.200705126/DC1). At both doses of aphidicolin, 

WS cells showed a higher number of gaps and breaks occurring 

at fragile sites in comparison with control cells ( Fig. 3 A ). Fragile 

site induction in WS cells increased in a dose-dependent manner 

and was about six times higher than in wild-type cells. The FRA3B 

site seems to be particularly sensitive, possibly because of the 

elevated percentage of hyperdamaged metaphases that were not 

included in the count (Fig. S4 A). 

 To confi rm these observations, we repeated the experi-

ment in wild-type fi broblasts in which endogenous WRN was 

down-regulated. Cells transfected with WRN siRNA displayed 

enhanced expression of fragile sites after aphidicolin exposure 

( Fig. 3 B ). Interestingly, a higher level of fragile site induction 

was observed even in the absence of aphidicolin treatment. 

We established that although aphidicolin-induced total gaps 

and breaks per cell were more elevated in WS cells than in 

wild-type cells, the percentage of total breaks attributable to 

FRA7H and FRA16D was similar with or without the addition 

of the drug ( Table I ). Fragile site expression was also analyzed 

in LCLs and the results were consistent with those obtained 

in fibroblasts (Fig. S2 B). Altogether, these findings provide 

 Figure 3.    Enhanced common fragile site expression in WRN-defi cient cells.  
(A) Frequency of fragile site FRA3B, FRA7H, and FRA16D expression in 
wild-type (wt) and WS cells. Cells were treated with two doses of aphidi-
colin (Aph) and harvested 24 h later. Frequency of fragile site induction is 
presented as the percentage of chromosome 3, 7, or 16 homologues with 
gaps and breaks at FRA3B, FRA7H, and FRA16D, respectively. Data are 
presented as means of three independent experiments. (B) Frequency of 
fragile site FRA3B, FRA7H, and FRA16D expression in wild-type fi broblasts 
(Mock), fi broblasts transfected with control siRNA, or fi broblasts in which 

WRN was abrogated by RNAi (WRN RNAi). In treated samples, differ-
ent doses of aphidicolin were added 48 h after interference and left until 
harvesting 24 h later. The frequency of fragile site induction is presented 
as the percentage of chromosome 3, 7, or 16 homologues with gaps and 
breaks at FRA3B, FRA7H, and FRA16D, respectively. Data are presented 
as means of three independent experiments. Asterisks indicate that the 
result is statistically signifi cant compared with the wild type; P  <  0.05 by 
 t  test. Error bars represent standard error.   
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genes by RNAi in wild-type fi broblasts, we verifi ed that the re-

duction in the corresponding protein levels ( Fig. 5 A ) was not 

detrimental to cell growth at least within the period of the assay 

(not depicted). We then treated cells with 0.05 or 0.4  � M aphidi-

colin for 24 h and harvested them for chromosome preparations. 

Metaphases were examined for total gaps and breaks and then 

for the expression of FRA7H and FRA16D. Aphidicolin in-

creased the levels of gaps and breaks in cells defi cient of WRN 

or ATR compared with the control cells ( Fig. 5 B ). However, the 

concomitant depletion of WRN and ATR did not result in more 

chromosome damage than single defi ciencies and fragile site 

induction was similar in cells in which both WRN and ATR were 

down-regulated by RNAi either under unstressed conditions or 

after aphidicolin application ( Fig. 5, B and C ). 

 These data support the conclusion that WRN and ATR par-

ticipate in a common pathway safeguarding fragile site stability. 

 Discussion 
 In this paper, we describe how WRN defi ciency results in a 

great enhancement of chromosome aberrations and common 

fragile site expression after aphidicolin-induced replication slow-

down. Most importantly, we demonstrate that loss of WRN func-

tion induces accumulation of chromosome gaps and breaks that 

specifi cally localize at common fragile sites even under unper-

turbed cell growth; i.e., in the absence of treatment. Consistently, 

exposure to aphidicolin at a dose that induces common fragile 

sites determines an extensive relocalization of WRN to nuclear 

foci in replicating cells. Finally, we present evidence that indi-

cates that the helicase activity of WRN but not its exonuclease 

function is essential to prevent common fragile site expression 

and that ATR and WRN act in a common pathway to stabilize 

such genomic regions. 

 Several pieces of evidence indicate that common fragile 

sites are genomic regions where DNA replication is slowed and 

eventually stalled at poorly defi ned DNA structures ( Glover et al., 

1984, 2005 ;  Casper et al., 2002 ). The aphidicolin doses used in 

this study slow down replication but do not completely arrest 

DNA polymerases and are thought to interfere signifi cantly only 

with replication of common fragile sites ( Glover et al., 1984 ). 

Thus, our fi ndings strongly correlate WRN function with these 

naturally occurring replication fork stalling sites, which further 

supports the hypothesis that this RecQ helicase is crucial for 

genome integrity whenever replication forks stall, even during 

unperturbed cell growth. However, although WRN has been 

proposed to be involved in the rescue of stalled replication forks 

evidence that WRN infl uences the stability of common fragile 

sites both during normal DNA synthesis and in response to rep-

lication perturbation. 

 WRN helicase activity is required for fragile 
site stability 
 To determine whether one or both WRN enzymatic activities 

could affect fragile site stability, we produced WS defective cell lines 

stably expressing wild-type WRN or mutant forms of WRN af-

fecting either helicase or exonuclease activity. Missense muta-

tions have been previously introduced in WRN to inactivate the 

exonuclease or helicase activity ( Gray et al., 1997 ;  Huang et al., 

1998 ;  Cheng et al., 2004 ). Western blotting analyses showed 

that the levels of WRN protein expressed in WS cells transfected 

with wild-type  WRN  cDNA ( Fig. 4 A , WS WRN ) and WRN lack-

ing exonuclease (WRN-E84A) or helicase (WRN-K577M) activity 

were comparable to that of control cells (GM3675). Immuno-

fl uorescence staining of WRN protein revealed the proper pat-

tern of subnuclear localization, i.e., mainly in the nucleoli under 

unperturbed conditions and diffused in the nucleoplasm after 

camptothecin-induced replication stress ( Fig. 4 B ). Hypersensi-

tivity to camptothecin, a characteristic cellular phenotype of WS 

cells, was tested and, as expected ( Swanson et al., 2004 ), ex-

pression of wild-type WRN or missense mutant forms of WRN 

resulted in reduced cell death, reaching values similar to that of 

control cells ( Fig. 4 C ). 

 In comparison with wild-type cells (WS WRN ), the ex-

pression of missense mutant forms of WRN protein in WS cells 

(WRN-E84A and WRN-K577M) led to a signifi cant increase 

in chromosomal damage after aphidicolin exposure ( Fig. 4 D ). 

However, FISH analyses performed on metaphases after 24 h of 

treatment indicated that the induction of FRA3B, FRA7H, and 

FRA16D was enhanced in a statistically signifi cant manner only 

in WS and WRN-K577M cells ( Fig. 4 F ). Thus, we conclude that 

the maintenance of common fragile site stability requires a WRN 

protein with intact helicase activity. 

 WRN and ATR regulate fragile site stability 
in a common pathway 
 It has been reported that the ATR replication checkpoint is cru-

cial for the maintenance of common fragile site stability after 

replication inhibition as well as under unperturbed conditions 

( Casper et al., 2002 ). Because WRN is targeted by ATR upon 

replication stress ( Pichierri et al., 2003 ;  Otterlei et al., 2006 ), we 

investigated the link between WRN and ATR in the stabilization 

of fragile sites. After down-regulation of WRN, ATR, or both 

 Table I.    Fragile site expression in wild-type and WRN-defi cient (WRNi) cells  

Cell line Treatment Mean gaps and 
breaks per cell

Percentage of FRA7H 
loci with a break

Percentage of total 
breaks attributable to 

FRA7H

Percentage of 
FRA716D loci with a 

break

Percentage of total 
breaks attributable to 

FRA16D

  Wild type  � APH 0.5 0 0 0 0

+APH 0.6 1 3.3 1.1 3.6

  WRNi  � APH 1.3 8 12.3 7 10.7

+APH 2.2 16 14.5 13 11.8

APH, 0.05  � M aphidicolin.
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( Mohaghegh et al., 2001 ;  Crabbe et al., 2004 ;  Multani and 

Chang, 2007 ). Furthermore, WRN is required in vitro to support 

DNA polymerase  �  in duplicating substrates forming G4 DNA 

from expanded triplet repeats ( Kamath-Loeb et al., 2001 ). Thus, 

WRN may function as an accessory helicase specifi cally in-

volved in the resolution of those unusual DNA structures that 

can arise at common fragile sites as well as other genomic sites 

such as telomeres and could otherwise impede normal replication. 

In this context, WRN would exert a function similar to that 

of the yeast Rrm3 protein, a DNA helicase implicated in the 

maintenance of genome stability ( Ivessa et al., 2000 ;  Torres et al., 

2004b ). Even though Rrm3 has an opposite polarity compared 

with WRN, Rrm3 yeasts show some features resembling WRN 

defi ciency such as replication delay, replication fork pausing or 

collapse, accumulation of DNA breakage, and premature aging 

by either a recombinogenic or nonrecombinogenic pathway 

( Ozgenc and Loeb, 2005 ), WRN exerted its protective role on a 

specifi c subset of replicating regions. Our data suggest that 

WRN is most probably required specifi cally at slow-replicating 

sites to prevent their instability. Of particular interest are the re-

sults demonstrating that WRN helicase rather than exonuclease 

activity plays a crucial role in the maintenance of common frag-

ile site stability. Indeed, these naturally occurring slow-replicating 

zones might be the only physiological targets of the WRN care-

taker function; the secondary structures thought to accumulate 

at these sites ( Zlotorynski et al., 2003 ;  Schwartz et al., 2006 ) 

could also represent potential in vivo substrates of WRN heli-

case activity. Previous studies have suggested that WRN heli-

case activity may effi ciently resolve unusual DNA structures at 

telomeric sequences to facilitate replication fork progression 

 Figure 4.    Impaired WRN helicase activity is responsible for common fragile site instability.  (A) Western blotting analysis showing the expression of WRN 
protein in cells stably expressing wild-type WRN (WS WRN ) or missense mutant forms of WRN with impaired exonuclease (WRN-E84A) or helicase (WRN-
K577M) activity. GM3675 fi broblasts were used as a positive control. The membrane was probed with  � -WRN. Tubulin was used as a loading control. 
(B) Subnuclear localization of WRN in response to camptothecin-induced replication stress. Indirect immunofl uorescence staining was achieved using the same 
antibody as in Western blotting. (C) Sensitivity of cells to camptothecin-induced replication stress. Cell death was evaluated by the trypan blue method as 
described in Cell death evaluation. The percentage of cell death was indicated for each dose of camptothecin. (D) Mean overall chromosome gaps and 
breaks per cell in WS cells, WS cells expressing mutant forms of exonuclease (WRN-E84A) or helicase (WRN-K577M) activity, and WS cells in which 
wild-type WRN was reintroduced (WS WRN ). Cells were exposed to different doses of aphidicolin (Aph) 24 h before harvest. Data are presented as means 
of three independent experiments. (E) Representative Giemsa-stained metaphases of WS fi broblasts (a), WS cells transfected with wild-type  WRN  cDNA 
(WS WRN ; b), or WRN lacking helicase (WRN-K577M; c) or exonuclease (WRN-E84A) activity (d), or treated with 0.2  � M aphidicolin. Arrows indicate 
chromosomal aberrations. (F) Frequency of fragile site FRA3B, FRA7H, and FRA16D expression in WS, WRN-E84A, WRN-K577M, and WS WRN  cells. 
Samples were treated with different doses of aphidicolin and left until harvesting 24 h later. Frequency of fragile site induction is presented as the percent-
age of chromosome 3, 7, or 16 homologues with gaps and breaks at FRA3B, FRA7H, and FRA16D, respectively. Data are presented as means of three 
independent experiments. Asterisks indicate that the result is statistically signifi cant compared with the wild type; P  <  0.05 by  t  test. Error bars represent 
standard error. Bars, 2.5  � m.   
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in the stability of common fragile sites ( Schwartz et al., 2005 ), 

the function of WRN at these naturally occurring fork stalling sites 

could be unrelated to its proposed recombinogenic function. 

 Our results indicate that exonuclease defi ciency leads to 

a signifi cant enhancement of chromosome gaps and breaks at 

levels comparable to those observed in the absence of helicase 

activity. However, these aberrations are not localized at the three 

common fragile sites analyzed. A possible explanation for this is 

that some fragile sites may be more sensitive to the absence of the 

exonuclease activity of WRN than others. Alternatively, aphidi-

colin treatment could sensitize other fragile genomic regions 

to break in the absence of the exonuclease function of WRN. 

( Ivessa et al., 2000 ;  Torres et al., 2004a,b ;  Azvolinsky et al., 2006 ). 

Similarly, it has been proposed that Rrm3p is needed mainly to 

help fork progression by removing obstacles such as proteins or 

particular DNA structures at telomeres or along other diffi cult-

to-replicate regions ( Ivessa et al., 2002 ,  2003 ;  Azvolinsky et al., 

2006 ;  Boule and Zakian, 2006 ). Interestingly, both WRN enzy-

matic activities are required for recombination-related functions, 

either after DNA damage ( Saintigny et al., 2002 ) or at telomere 

sequences in cells that are engaged in the alternative lengthening 

of telomere pathway ( Laud et al., 2005 ), whereas the helicase ac-

tivity seems to be suffi cient to prevent instability at common 

fragile sites. Thus, even though recombination has been implicated 

 Figure 5.    The   effect of ATR and WRN down-regulation on fragile site expression.  (A) Western blotting analysis of protein depletion after transfection of 
wild-type cells with no siRNA (lane 1) or siRNAs directed against ATR (lane 2), WRN (lane 3), or both (lane 4). The membrane was probed fi rst with  � -ATR 
and then stripped and reprobed with  � -WRN, showing the reduction in the corresponding protein levels in wild-type fi broblasts transfected with no siRNA 
or siRNAs directed against WRN, ATR, or both and harvested 48 h after interference. Tubulin was used as loading control. (B) Mean overall chromosome 
gaps and breaks per cell in cells interfered with control siRNA or siRNAs against ATR and/or WRN. For site fragile induction, different doses of aphidicolin 
(Aph) were added 24 h before harvest. Data are presented as means of three independent experiments. For statistical analysis, single mutants are com-
pared with the double knockdown. (C) Frequency of gaps and breaks at specifi c fragile sites FRA7H and FRA16D in the wild type and fi broblasts depleted 
of ATR and/or WRN and treated for 24 h with different doses of aphidicolin. Fragile sites were identifi ed by FISH using probes specifi c to these sites as 
described in the FISH section. Frequency of fragile site induction is presented as the percentage of chromosome 7 or 16 homologues with gaps and breaks 
at FRA7H and FRA16D, respectively. Data are presented as means of three independent experiments. For statistical analysis, single mutants are compared 
with the double knockdown. Error bars represent standard error.   
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fragile sites in Epstein-Barr virus – transformed lymphoblasts 

derived from WS patients, which are telomerase profi cient and 

thus protected from telomere erosion. 

 In summary, this study provides additional insights into the 

mechanisms underlying common fragile site stability and sug-

gests that WRN helicase activity is a key factor in the maintenance 

of integrity of these specifi c DNA regions. This supports the 

hypothesis that WRN may function in the resolution of problems 

arising in response to alterations in DNA replication and gives 

insights into the in vivo substrates of this genome caretaker protein. 

Failure to preserve fragile site stability may have a causative role 

in the chromosomal abnormalities observed in WS cells. 

 Materials and methods 
 Cell lines and culture conditions 
 Wild-type (9173675) and WS fi broblasts (AG11395) were obtained from 
Coriell Cell Repositories. The AG11395 cell line carries an Arg368 stop 
mutation that gives rise to a truncated protein. 

 Full-length cDNA encoding wild-type or missense mutant forms of 
WRN with inactive exonuclease (WRN-E84A) or helicase (WRN-K577M) 
activity (provided by J. Oshima, University of Washington, Seattle, WA) 
were subcloned into a pLXSP expression vector (provided by S. Soddu, 
Regina Elena Cancer Institute, Rome, Italy). The recombinant vectors were 
transfected into Phoenix packaging cells (provided by S. Soddu) by the 
standard Ca 2 PO 4  method and, 24 h later, WS cells (AG11395) were infected 
with retroviral supernatant. Puromycin-resistant colonies were isolated and 
Western blotting analyses were performed to assess the expression of 
WRN protein. 

 Fibroblasts were maintained in DME (Invitrogen) supplemented with 
10% FBS (Boehringer Mannheim). All cell lines were incubated at 37 ° C in 
a humidifi ed 5% CO 2  atmosphere. 

 Chemicals and treatments 
 Aphidicolin, camptothecin, and BrdU were obtained from Sigma-Aldrich. 
Aphidicolin was dissolved in DMSO as a stock solution (10 mg/ml) and 
stored at  � 20 ° C. Camptothecin was dissolved in DMSO and a stock solution 
(2.5 mM) was prepared and stored at  – 20 ° C. BrdU was dissolved in sterile 
PBS as a stock solution (3 mg/ml) and stored at  � 20 ° C. After treatments, 
cells were cultured in complete medium at 37 ° C until they were processed. 

 Immunofl uorescence 
 Cells grown on 22  �  22-mm glass coverslips were treated with aphidicolin 
and harvested at the indicated times. For WRN staining before fi xation, 
cells were subjected to in situ fractionation essentially as described previ-
ously ( Mirzoeva and Petrini, 2001 ), with the exception that the NaCl con-
centration used in the cytoskeleton buffer was 150 mM. Staining with 
rabbit polyclonals anti-WRN (1:500; Novus BioLabs) was performed for 2 h 
at RT in 1% BSA/PBS. Species-specifi c fl uorescein- or Texas red – conjugated 
secondary antibodies (Jackson ImmunoResearch Laboratories) were ap-
plied for 1 h at RT followed by counterstaining with 0.5  � g/ml DAPI in 
DABCO. Secondary antibodies were used at a 1:500 dilution. Slides were 
analyzed with a microscope (Leica) equipped with a charge-coupled de-
vice camera (Photometrics). Images were acquired as grayscale fi les using 
the Metaview software (MDS Analytical Technologies) and then processed 
using Photoshop (Adobe). For each time point, at least 200 nuclei were ex-
amined by two independent investigators and foci were scored at 100 � . 
Only nuclei showing more than fi ve bright foci were counted as positive. 
Parallel samples incubated with either the appropriate normal serum or 
only with the secondary antibody confi rmed that the observed fl uorescence 
pattern was not attributable to artifacts. 

 Fragile site induction and slide preparation 
 Fragile sites were induced by treating cells with different concentrations of 
aphidicolin (0.05, 0.2, and 0.4  � M). Cell cultures were incubated with 
0.2  � g/ml colcemid at 37 ° C for 3 h until harvesting. Cells for metaphase 
preparations were collected according to standard procedure. In brief, the 
cellular pellet was resuspended in prewarmed hypotonic solution (0.075 M 
KCl in distilled water) and incubated at 37 ° C for 18 min followed by multi-
ple changes of fi xative solution (3:1 methanol/acetic acid). Cell suspen-
sion was dropped onto cold, wet slides to make chromosome preparations. 

Indeed, several genomic regions that are not classifi ed as com-

mon fragile sites have the potential to undergo breakage, such as 

ataxia telangiectasia – rich palindromic regions or closely spaced 

Alu sequences that can form hairpin structures ( Freudenreich, 

2007 ). Interestingly, correct repair of double strand breaks arising at 

Alu-formed hairpins requires the nuclease activity of the MRE11 

complex ( Lobachev et al., 2002 ). Because it has been reported 

that WRN and the MRE11 complex might cooperate in response to 

DNA damage ( Cheng et al., 2004 ;  Franchitto and Pichierri, 2004 ), 

it is tempting to speculate that the nuclease activities of WRN and 

MRE11 could regulate breakage at noncommon fragile sites un-

der replication stress. 

 Furthermore, we found that WRN regulates fragile site 

stability, acting in a pathway associated with ATR-mediated 

checkpoint response. Our analysis reveals that WRN defi ciency 

recapitulates ATR defects in terms of fragile site instability ei-

ther upon aphidicolin treatment or under unperturbed conditions. 

According to the model proposed by  Casper et al. (2002) , ATR 

is activated after replication stress to block cell cycle progres-

sion to stabilize and then rescue stalled replication forks, pro-

moting the restart of DNA synthesis. Similarly, WRN appears to 

be essential for fruitful rescue from replication fork arrest ( Pichierri 

et al., 2001 ;  Sakamoto et al., 2001 ;  Baynton et al., 2003 ) and 

is targeted for phosphorylation by ATR upon replication arrest 

( Pichierri et al., 2003 ;  Otterlei et al., 2006 ). Hence, it is likely 

that WRN helicase could be required to collaborate with ATR in 

the recovery of stalled forks at fragile sites, possibly resolving 

aberrant DNA structures arising as a consequence of the charac-

teristic DNA sequence of these regions. It is noteworthy that 

ATR defi ciency affects not only the stability of stalled forks but 

also the inhibition of DNA synthesis ( Abraham, 2001 ), whereas 

loss of WRN function does not infl uence the checkpoint branch 

that triggers cell cycle progression after replication stress ( Franchitto 

and Pichierri, 2004 ). Thus, it is conceivable that the common 

function of WRN and ATR is unrelated to cell cycle arrest and 

more strictly correlated to the branch of the replication check-

point involved in the stabilization of stalled forks. 

 It has been recently shown that instability at common frag-

ile sites is a hallmark of early precancerous lesions ( Gorgoulis 

et al., 2005 ) and it is widely accepted that most gross chromo-

somal rearrangements accumulating in solid tumors originate 

from fragile sites ( Arlt et al., 2006 ). WS is a cancer-prone and 

chromosome fragility syndrome characterized by gross chromo-

somal rearrangements ( Martin and Oshima, 2000 ;  Oshima, 2000 ). 

Because instability of common fragile sites is readily detected 

in cells depleted of WRN even under normal division, it is pos-

sible that chromosomal instability observed in WS cells could 

correlate with breaks accumulating at these sites. However, a re-

cent study suggests that most of the chromosomal abnormalities 

arising in WS cells could be related to erosion of telomeric se-

quences ( Crabbe et al., 2007 ). These hypotheses are not neces-

sarily incompatible. Indeed, both the common fragile site and 

telomere stabilities that might require the helicase activity of 

WRN to clear the way for the replisome and chromosomal re-

ar rangements observed in WS are most likely derived from a 

common protective mechanism at telomeric and nontelomeric 

sequences. Consistently, we also observe instability at common 
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 All LCLs were routinely maintained in exponential growth in RPMI 
1640 medium (Invitrogen) supplemented with 12% heat-inactived fetal 
calf serum (Boehringer Mannheim) by a daily dilution to 3.5  �  10 5  cells 
per milliliter. 

 Online supplemental material 
 Fig. S1 contains images of metaphase chromosomes showing chromo-
somal aberrations induced by aphidicolin in wild-type and WS fi broblasts. 
Fig. S2 shows additional data confi rming enhanced expression of fragile 
sites after aphidicolin treatment in a WS lymphoblast cell line. Fig. S3 shows 
images of metaphase chromosomes expressing fragile sites induced by 
aphidicolin in wild-type and WS fi broblasts. Fig. S4 shows the percentage 
of hyperdamaged cells in WS fi broblasts after aphidicolin treatment. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200705126/DC1. 
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The slides were air dried overnight and stored at  � 20 ° C until analysis. 
For each condition of treatment, the number of breaks and gaps was ob-
served on Giemsa-stained metaphases. 

 FISH 
 Bacterial artifi cial chromosomes (BACs) mapping to fragile or nonfragile 
site regions (provided by D. Toniolo, Dibit-HSR, Milan, Italy; and M. Rocchi, 
University of Bari, Bari, Italy) were used as probes for FISH analyses. A mix 
of the BACs 94D19, 149J4, and 48E21 were used for FRA3B, BAC36B6 
(RP-11) was used for FRA7H, and BAC264L1 (RP-11) was used for FRA16D. 
Probes were labeled with a digoxigenin-11-dUTP nick translation kit (Roche) 
according to the manufacturer ’ s instructions. FISH experiments were per-
formed according to standard protocols ( Wilke et al., 1996 ). FISH signals 
were detected by incubation with anti – digoxigenin-rhodamine Fab frag-
ments (Roche). Chromosomes were counterstained with DAPI. Hybridized 
metaphases were analyzed with an epifl uorescence microscope equipped 
with a charge-coiled device camera. Images were acquired as grayscale 
fi les using Metaview software and processed using Photoshop. For each 
time point, at least 100 chromosomes were examined by two independent 
investigators and chromosomal damage was scored at 100 � . 

 RNAi 
 WRN and ATR expression were knocked down by transfection with SMART-
pool siRNAs (Thermo Fisher Scientifi c) at the fi nal concentration of 10 nM. 
Transfection was performed using a HiPerFect reagent (QUIAGEN) according 
to the manufacturer ’ s instructions. As a control, an siRNA duplex directed 
against GFP was used. 

 Western blotting 
 Cells were washed with PBS and lysed in standard RIPA buffer (PBS, 1% 
NP-40, 0.5% sodium dehoxycholate, 0.1% SDS, 10  � g/ml aprotinin, 
10  � g/ml PMSF, 1 mM sodium orthovanadate, and 1 mM NaF). Cell ly-
sates were resolved by SDS-PAGE and transferred to nitrocellulose (PRO-
TRAN; Whatman). Incubation with antibodies was performed for 2 h at RT. 
Proteins were visualized using ECL+ according to the manufacturer ’ s in-
structions (GE Healthcare) and normalized to the tubulin level in each extract. 
Antibodies used for Western blotting were commercially obtained for WRN 
(1:4,000; Novus BioLabs), ATR (1:15,000; Bethyl Laboratories, Inc.), and 
 � -tubulin (1:15,000; Sigma-Aldrich). Horseradish peroxidase – conjugated 
goat specie-specifi c secondary antibodies (Santa Cruz Biotechnology, Inc.) 
were used at a dilution of 1:1,000. 

 Evaluation of S phase cells 
 To quantify S phase cells, normal and WS fi broblast cell lines were pulse 
labeled for 30 min with 30  � g/ml BrdU and then exposed to a high dose of 
aphidicolin (0.4  � M) and harvested after different recovery periods (10 or 
24 h). Samples were processed for immunodetection of BrdU incorporation 
essentially as described previously ( Pichierri et al., 2001 ). For each time 
point, at least 500 interphase cells were scored to evaluate the percentage 
of labeled nuclei. Only nuclei displaying more or less uniform BrdU labeling 
in the entire volume were considered to be actively replicating. 

 The percentage of cells undergoing DNA synthesis at each time point 
was calculated as a fraction of the treated cells versus untreated controls. 

 Cell death evaluation 
 Cells were plated in 6-well dishes at a concentration of 3  �  10 5  per well 
and treated with 1.5, 15, or 30  � M of camptothecin for 2 h. Cell death 
was evaluated by counting cells using the trypan blue exclusion method. 
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tion directly. The number of blue cells was scored under a phase-contrast 
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 Statistical analysis 
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and/or ATR-defi cient cells to their relevant controls. All the reported data 
are presented as means of at least three independent experiments. 

 Cell lines and culture conditions 
 A normal (SNW646) LCL was obtained from the International Registry 
of Werner syndrome (G. Martin, University of Washington). WS LCL 
(AG14426) was obtained from Coriell Cell Repositories. The AG14426 
cell line carries an Arg369 stop mutation and gives rise to a truncated protein. 
The WS1 WRN  was generated by transfection by electroporation of linearized 
pcDNA3.1 WRN  plasmid expressing wild-type  WRN  cDNA. 
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