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Simple Summary: Although ovarian cancer is one of the leading causes of deaths among female
patients with cancer, some patients live longer than others. In order to predict the outcome of
patients with ovarian cancer, we investigated the expression levels of all human genes in 51 patients
with ovarian cancer and constructed a prediction model based on artificial intelligence. The model
identified two genes—USP19 and RPL23—as the most important genes for this prediction. Cancer
recurrence occurred more frequently in the patients with lower USP19 mRNA levels and those
with higher RPL23 mRNA levels. The same pattern was observed in 208 independent patients with
ovarian cancer listed in The Cancer Genome Atlas. Therefore, we suggest USP19 and RPL23 as
candidate biomarkers for predicting the survival of patients with ovarian cancer.

Abstract: Ovarian cancer is one of the leading causes of deaths among patients with gynecological
malignancies worldwide. In order to identify prognostic markers for ovarian cancer, we performed
RNA-sequencing and analyzed the transcriptome data from 51 patients who received conventional
therapies for high-grade serous ovarian carcinoma (HGSC). Patients with early-stage (I or II) HGSC
exhibited higher immune gene expression than patients with advanced stage (III or IV) HGSC.
In order to predict the prognosis of patients with HGSC, we created machine learning-based models
and identified USP19 and RPL23 as candidate prognostic markers. Specifically, patients with lower
USP19 mRNA levels and those with higher RPL23 mRNA levels had worse prognoses. This model
was then used to analyze the data of patients with HGSC hosted on The Cancer Genome Atlas; this
analysis validated the prognostic abilities of these two genes with respect to patient survival. Taken
together, the transcriptome profiles of USP19 and RPL23 determined using a machine-learning model
could serve as prognostic markers for patients with HGSC receiving conventional therapy.

Keywords: high-grade serous carcinoma; next-generation sequencing; machine learning; prognostic
marker; ovarian cancer
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1. Introduction

The precise molecular characterization of tumors from individual patients is important
in this era of targeted therapy. Ovarian cancer is a leading cause of deaths among patients
with gynecological malignancies, with approximately 240,000 ovarian cancer diagnoses
worldwide each year [1,2]. Although new treatment modalities, such as poly(ADP-ribose)
polymerase (PARP) inhibitors, have considerably improved the progression-free survival
(PFS) of patients with BRCA-mutated ovarian cancer, the overall 5 year survival rate of
ovarian carcinomas remains below 48% [2,3]. Therefore, it is important to identify new
prognostic markers for ovarian cancer, especially for high-grade serous carcinomas (HGSCs)
that are usually diagnosed at an advanced stage and are known to be associated with a
poor prognosis [2].

With the advent of innovative next-generation sequencing technologies, tumor tran-
scriptome data of patients with HGSC [4] have been used to predict prognosis. Several
molecular subtypes of HGSC have been identified [4–8]. For example, The Cancer Genome
Atlas (TCGA) [4] identified the following four expression subtypes: (1) immunoreactive
subtype, based on chemokine expression; (2) differentiated subtype, based on ovarian tu-
mor marker expression; (3) proliferative subtype, based on proliferative marker expression;
and (4) mesenchymal subtype, based on increased stromal components. Subsequently,
Chen et al. [5] presented a consensus classifier for these subtypes. However, the clinical
relevance of these subtypes is not clear and remains controversial. Therefore, in order to
identify new clinically relevant prognostic markers for patients with advanced-stage HGSC
treated with conventional therapy, we applied a random forest model to high-throughput
RNA-sequencing transcriptome analysis and examined the usefulness of the previous
molecular subtypes.

2. Materials and Methods
2.1. Patients and Specimens

Among patients who had undergone radical hysterectomy with salpingo-oophorectomy
and platinum-based chemotherapy for ovarian carcinomas from 2005 to 2014, we inves-
tigated samples of 58 patients with HGSC for whom fresh snap-frozen tissue samples
were available in the archives of the CHA Bundang Medical Center Biobank (Seongnam,
Korea). Among the samples from these 58 patients, we excluded samples from seven
patients due the inadequate quality (RNA integrity number, RIN < 6) of RNA after ex-
traction for sequencing. The medical records of the remaining 51 patients were reviewed.
HGSC diagnosed based on tumor histology was reviewed by two pathologists (HK and
SK). The World Health Organization 2014 classification was used to classify HGSC.

2.2. Library Preparation and mRNA Sequencing

RNA was extracted from individual fresh snap-frozen tissue samples by using TRIzol
(Invitrogen) according to the manufacturer’s protocol. mRNA was purified and frag-
mented from total RNA (1 µg) using poly-T oligo-attached magnetic beads. RNA purity
was determined using NanoDrop8000 (Thermo Fisher Scientific, Waltham, MA, USA).
The total RNA integrity (RNA integrity number ≥ 6.5) was checked using the Agilent
2100 Bioanalyzer. RNA sequencing libraries were prepared using the Illumina TruSeq
stranded mRNA Prep kit according to the manufacturer’s instructions. The cleaved RNA
fragments primed with random hexamers were reverse transcribed into first strand cDNA.
Thereafter, a single ‘A’ base was added to the cDNA fragments, which were subsequently
ligated to the adapter. The products were purified and amplified by polymerase chain
reaction to create a strand-specific cDNA library. The quality of the amplified libraries
was verified by capillary electrophoresis (Bioanalyzer, Agilent, Santa Clara, CA, USA).
The libraries were multiplexed and loaded on a flow cell for cluster generation on cBot
(Illumina, San Diego, CA, USA). The flow cell was loaded on a HiSeq 2500 sequencing
system (Illumina, San Diego, CA, USA). The average sequencing depth was 82 million
(2 × 101-bp 41 million paired-end) sequencing reads.
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2.3. Transcriptome Analysis

All mRNA sequencing steps were conducted according to the guidelines proposed in
TCGA mRNA-seq Pipeline for UNC (University of North Carolina) data (https://webshare.
bioinf.unc.edu/public/mRNAseq_TCGA/UNC_mRNAseq_summary.pdf (accessed on
21 February 2017)) by using Mapsplice-v2.1.8 and RSEM-1.1.13 [9]. The consensusOV R
package was used to identify the molecular subtypes [5]. The edgeR package [10] was used
to identify differentially expressed genes (DEGs) in each comparison. Gene set analysis
of each DEG was performed using Fisher’s exact test. Gene Ontology [11] and MSigDB
7.0 (molecular signature database) [12] were used as reference pathway datasets. For each
gene, the area under the receiver operating characteristic curve (AUC) value, median
absolute deviation (MAD), and PFS p-value were calculated. For multiple comparisons,
we used the Benjamini–Hochberg p-value correction procedure. The AUC value ranges
between 0 and 1, and a higher value represents better predictability. A greater MAD score
represents a higher possibility that the expression of a particular gene can be discriminated
among groups.

2.4. Identification of Candidate Prognostic Biomarker Genes

A three-step sequential process was employed to identify genes with prognostic
significance (based on the (i) MAD score, (ii) AUC score, and (iii) PFS p-value). Random
forest models using the randomForest R package were generated based on genes that
were identified as being significant in the three-step analysis. Random forest represents
one of the most successful algorithms for classification and results in accurate and robust
predictions based on resampling mechanisms [13]. We set the number of trees to 10,000
and other parameters were set to default values. We created random forest models by
increasing the gene number from 2 to 28 (significant genes) and measured the error rates.
A higher mean decrease in the Gini score—which indicates how the accuracy of the model
would decrease when individual genes are excluded from the model—of the random forest
model indicates the prognostic value of individual genes. We selected the top two genes
based on the mean decrease in the Gini score for generating and validating the random
forest model.

2.5. Model Validation

We validated the random forest model using TCGA mRNA expression data (RNAseq
v2. RSEM Level 3) for 304 patients with HGSC [4] downloaded from Broad GDAC Firehose
(https://gdac.broadinstitute.org (accessed on 28 January 2016)). We selected data of 208
of the 304 patients with stage III or IV disease for whom information regarding PFS was
available; PFS data were obtained from the supplementary table from a study on TCGA
patients with ovarian cancer [4]. BRCA1/2 mutation data in the Ovarian Serous Cystade-
nocarcinoma TCGA dataset [4] were downloaded from cBioPortal [14]. The recurrence
probability was calculated by using the random forest model. If the recurrence probability
was <80, the patient was categorized as having a good prognosis.

2.6. Validation of the Prognostic Value of USP19 and RPL23 Expression

We validated the prognostic value of USP19 and RPL23 expression using another
HGSC mRNA expression dataset (GSE102094) downloaded from the GEO database. We se-
lected the data of 81 of 85 patients with stage III or IV disease for whom information
regarding PFS was available; PFS data were obtained from the supplementary table in
Ducie et al. [15]. As GSE102094 included 10 normal samples, we calculated the fold change
of each gene based on its normal expression.

2.7. Statistical Analysis

All plots (i.e., volcano plots, violin plots, and survival plots) were constructed using
the ggplot2 R package [16]. Principal component analysis (PCA) was performed by using
the R stats package. AUC values were calculated by using the ROCR R package [17] and the

https://webshare.bioinf.unc.edu/public/mRNAseq_TCGA/UNC_mRNAseq_summary.pdf
https://webshare.bioinf.unc.edu/public/mRNAseq_TCGA/UNC_mRNAseq_summary.pdf
https://gdac.broadinstitute.org
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PFS p-value was calculated using the log-rank test in the survival R package [18]. Heatmaps
were generated by using ComplexHeatmap in R. Survival analysis was performed using
the survival [18] and survminer R packages. Statistical comparisons of age and stage
between our patients and those whose data were hosted on TCGA were performed in R
by using the t-test and Fisher’s exact test, respectively. The difference in the expression of
candidate prognostic genes based on clinical groups was evaluated using the t-test in R.
All statistical data were analyzed using R version 3.4.4.

3. Results
3.1. Clinical Characteristics of Patients with HGSC

We investigated 51 patients with HGSC in our study and 208 TCGA patients. First,
we investigated our 51 patients, whose clinical characteristics are listed in Table 1. The aver-
age age of the patients was 55 (range: 36–77) years. Most patients (n = 46, 90.2%) possessed
advanced stage III or IV.

Table 1. Clinical characteristics of 51 patients with HGSC in our study.

Characteristic Overall (n = 51) %

Age (Years), Median (Range) 55 (36–77)

Cancer site
Ovary 49 96.0
Fallopian tube 1 2.0
Peritoneum 1 2.0

Stage
I 3 5.9
II 2 3.9
III 41 80.4
IV 5 9.8

Platinum sensitivity
No recurrence 10 19.6
Recurrence

Platinum sensitive 26 51.0
Platinum resistant 12 23.5

Lost to follow up 3 5.9

The patients were divided into the following three groups based on their response to the
first cycle of conventional adjuvant chemotherapy (Table 1): no recurrence group—patients
with no recurrence at ≥2 years from the end of first-line platinum-based chemother-
apy; platinum-sensitive group—patients exhibiting recurrence 6 months after completing
chemotherapy; and platinum-resistance group—patients exhibiting recurrence within
6 months from the end of first-line chemotherapy. Approximately 50% of the patients
were in the platinum-sensitive group (n = 26, 51.0%). Except for three patients with stage
III HGSC for whom recurrence information was not available, patients with advanced
stage (III or IV) HGSC (n = 43) were stratified into two groups according to the recurrence
status (no recurrence versus recurrence). Patients exhibiting recurrence were found in the
platinum-sensitive and platinum-resistant groups.

As most patients were in an advanced stage, in order to eliminate the bias from
different stages, we focused on 43 patients with stage III and IV disease and with platinum-
sensitivity information (lost to follow up, n = 3). The data of 208 patients with stage III
and IV disease from TCGA were utilized as independent validation data. The clinical
characteristics of patients (n = 43; enrolled patients; training set) and patients with stage
III–IV HGSC (n = 208; TCGA; validation set) are summarized in Table 2. The mean
follow-up period for the training set was 45.1 (range 3.6–123.5) months with a median of
40.4 months, and the mean follow-up period of the validation set was 37 (range 0.3–179.2)
months, with a median of 31 months. The BRCA1/2 mutation data of 43 patients from our
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institute were published in a previous study [19], although this information was missing
for one patient. Somatic and germline BRCA1/2 mutation information was available for
134 patients in the TCGA dataset [4]. No significant differences in age, stage, and PFS were
identified between the TCGA patients and our patients; however, the overall survival and
the incidence of BRCA1/2 mutation were significantly different.

Table 2. Clinical characteristics of patients in the training set and validation set for predicting prognosis.

Characteristic Our Study
(Training Set)

TCGA
(Validation Set) p-Value

Number of patients 43 208 -

Age (mean years, range) 56 (37–77) 59 (31–87) 0.073

Progression-free survival
(median months, 95% confidence interval) 22.8 (18.4–32.8) 17.5 (14.9–19.9) 0.089

Overall survival
(median months, 95% confidence interval) Not reached 45.4 (41.9–53.9) 0.0012

Stage III 38 (88.4%) 183 (88.0%)
1.0IV 5 (11.6%) 25 (12.0%)

BRCA1/2
mutation

Germline 14 (32.6%) 1 (0.5%)

9.5 × 10−6
Somatic 3 (7.0%) 9 (4.3%)

Germline + somatic 0 2 (1.0%)
No mutation 25 (58.1%) 122 (58.7%)
Not available 1 (2.3%) 74 (35.6%)

3.2. Gene Expression Profiles in 51 Patients with HGSC

As the responsiveness of the 51 patients to conventional therapy clearly differed ac-
cording to the stage (Table S1; Fisher’s exact test p = 6.06 × 10−5), we first identified DEGs
between early (I or II, n = 5) and advanced (III or IV, n = 46) stages, revealing 528 upregu-
lated and 22 downregulated genes in patients with early-stage disease based on an adjusted
p-value of <0.05 and |fold change| of ≥2 (Table S2, Figure 1A,B). The 22 downregulated
genes in patients with early-stage disease were not found to be significantly enriched for
pathway-related terms. However, the 528 upregulated genes in these patients were found
to be enriched in several immune pathway-related terms, such as innate immune response,
natural killer cell-mediated cytotoxicity, and chemokine signaling pathway (Figure 1A).

We then investigated the clinical utility of molecular subtypes suggested in previous
studies [5–7]. The consensus subtypes of Chen et al. [5] could not predict the prognosis
of our patients based on the transcriptome data, although these have been claimed to
be more reliable subtypes than others [5] (Figure S1A,B). Although the prognosis of the
immunoreactive subtype was known to be higher than that of the others, the difference
was not significant in terms of overall survival (log-rank test p = 0.59) and PFS (log-rank
test p = 0.58). The expression subtypes proposed by TCGA [4] (Figure S1C,D) also could
not predict the prognosis of our patients with HGSC.

The principal component analysis plot did not discriminate the transcriptome profiles
among the clinical groups (no recurrence, platinum-sensitive, and platinum-resistance)
based on the response to platinum therapy for the 43 advanced-stage patient. Furthermore,
no significantly enriched pathway was identified in 100 DEGs among groups (adjusted
p-value < 0.05 and |fold change| ≥ 2) (Figure S2 and Table S3). Therefore, we stratified
our patients with advanced-stage disease into two groups, that is, no recurrence (n = 6)
and recurrence (n = 37) for further investigation.
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3.3. Identification of Candidate Prognostic Biomarker Genes

As shown in Figure 2A, by using the three-step sequential process for identifying
candidate biomarkers in 43 patients with advanced HGSC, we selected 6,123 genes with a
MAD score in the top 30%, 51 of which were selected based on a high AUC (>0.85). These
51 genes were then narrowed down to 28 genes based on the PFS p-value of <0.1, indicating
relevance to prognosis. Although the adjusted p-value is a better statistical indicator when
making multiple comparisons, none of the 51 genes were found to be significantly related
to PFS based on the adjusted p-values (<0.1). The details of the 28 candidate biomarker
genes are provided in Table S4.

3.4. Machine Learning—Based Identification of Key Prognostic Genes

Among the 28 key candidate genes screened as prognostic biomarkers, the random
forest model identified USP19 and RPL23 as the top two genes based on gene-importance
scores for prognosis predictability. As the error rates were very similar among the random
forest models with different numbers of genes (median error rate: 11.6%, range: 8.6–13.7%;
Figure S3A), we selected the simplest model of the top two genes (Figure S3B) in accordance
with the Occam’s razor principle for creating the random forest model. The prediction
performance of the random forest model was 11.6% leave-one-out cross-validation error
rate, and the sensitivity and specificity were 0.67 and 0.92, respectively.

3.5. Validation of the Random Forest Model Employing USP19 and RPL23 Expression

The random forest model that employed the expression of USP19 and RPL23 was
validated using the PFS data of TCGA patients with HGSC (n = 208) [4] stratified into
good prognosis (n = 66) and poor prognosis (n = 142) groups based on probability scores
of recurrences. The prognoses of the two groups were significantly different (p = 0.016) in
terms of PFS (Figure 2B) in accordance with our results.
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Figure 2. Screening for the prognostic markers and patterns of USP19 and RPL23 expression.
(A) Schematic depicting the workflow used for creating the random forest model and its validation.
(B) Progression-free survival (PFS) in TCGA HGSC dataset (stage III or IV, n = 208) for validation
of the predictive model. (C) The expression of USP19 mRNA in the recurrence and non-recurrence
groups (t-test p = 0.015). (D) Graph depicting the correlation between PFS and USP19 expression in
the training set. (E) Correlation between PFS and USP19 expression in the TCGA HGSC validation set.
(F) The expression of RPL23 mRNA in the recurrence and no-recurrence groups (t-test p = 0.020).
(G) Correlation between PFS and RPL23 expression in our training set. (H) RPL23-based evaluation
of prognosis in the TCGA HGSC validation set.

3.6. Prognostic Value of USP19 and RPL23 Expression—Lower USP19 and Higher RPL23
Expression in Patients with Recurrence

In our patients with HGSC, the expression of USP19 was significantly lower (0.63 times)
in the patients with recurrence than the patients without recurrence (t-test p = 0.015,
Figure 2C). We evaluated the PFS of 41 patients among the 43 patients, because the survival
data were not available for two patients. The patients were divided into three groups
based on the level of USP19 expression, that is, low (≤25%, 1st quartile), middle (25–75%,
1st–3rd quartiles), and high (>75%, 3rd quartile). The low and middle USP19 expression
groups showed a worse prognosis than the high expression group, and it was statistically
significant (n = 43, log-rank, test p = 8.3 × 10−3, adjusted p = 1; Figure 2D). In TCGA patients
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with HGSC for validation, the low and middle USP19 expression groups also showed
a worse prognosis than the high expression group (n = 208, p = 8.8 × 10−3; Figure 2E).
When we validated it by using another dataset [15] (GSE102094, n = 81), the patients with
less than 1.5-fold mRNA expression of the mean of normal samples for USP19 showed a
worse prognosis (p = 4.7 × 10−3; Figure S4C).

By contrast, the expression of RPL23 in patients with HGSC recurrence was signifi-
cantly higher (1.6 times) than the patients without recurrence (t-test p = 0.020; Figure 2F).
Consistently, the high expression group showed a worse prognosis in our patients with
HGSC (n = 41, log-rank test p = 0.062, adjusted p = 1; Figure 2G) and in TCGA patients with
HGSC, and it was statistically significant in TCGA data (n = 208, log-rank test p = 0.022;
Figure 2H). When we validated it by using another dataset (n = 81), the patients with
higher mRNA expression than the mean of the normal samples for RPL23 showed a worse
prognosis (p = 4.6 × 10−4; Figure S4D).

3.7. Functional Association between USP19 and DNA Double-Strand Break (DSB) Repair Genes
such as BRCA1/2

USP19 has been reported to be positively correlated with BRCA1-associated protein
1 (BAP1), a tumor suppressor gene involved in mediating the DSB repair response [20].
In HGSC patients with the BRCA1/2 mutation, the DSB repair response mechanism is an
important target for therapy. Therefore, we investigated the functional association between
USP19 and the DSB repair response. USP19 was co-expressed with 18 genes involved in
the DSB repair response, including BRCA1/2, BAP1 (Pearson correlation coefficient: 0.502,
p = 6.12 × 10−4), BARD1, MDC1, RAD50, TP53BP1, and PALB2 in our patients, as well as
in TCGA datasets (Figure 3A,B).

Moreover, our HGSC patients with a mutation in BRCA1/2 exhibited significantly
higher expression of USP19 mRNA than those without (ANOVA p-value: 2.2 × 10−3;
Figure 3C). The USP19 mRNA expression was not related to the BRCA1/2 mutation in the
TCGA dataset (ANOVA p-value: 0.27). However, in both datasets, the expression of USP19
mRNA was significantly associated with PFS in patients with HGSC after adjusting for
the BRCA1/2 mutation status in Cox regression analysis (in patients with available BRCA
mutation and survival data; 42 and 134 patients in our study and TCGA data, p = 0.0018
and p = 0.017, respectively; Table 3).

Table 3. Cox regression analysis for investigating the correlation between USP19 expression and BRCA1/2 mutation and
progression-free survival.

Cohort Model Variable Coefficient Exp (coef.) =
Hazard Ratio

SE
(coef.) p-Value

This study
(n = 42)

USP19 exp. USP19 −0.040 0.96 0.014 0.0048 *
BRCA mutation BRCA −0.15 0.86 0.35 0.67

USP19 exp. + BRCA
mutation

USP19 # −0.056 0.95 0.018 0.0018 *
BRCA 0.73 2.07 0.45 0.10

TCGA
(n = 134)

USP19 exp. USP19 −0.014 0.99 0.0085 0.091
BRCA mutation BRCA −0.62 0.54 0.35 0.081

USP19 exp. + BRCA
mutation

USP19 # −0.023 0.98 0.0097 0.017 *
BRCA −0.89 0.41 0.38 0.018 *

# USP19 expression after adjusting the BRCA1/2 mutation status. * p < 0.05.

Finally, we investigated the functional association between USP19 and 14 genes
(DSB repair genes—BARD1, BRCA1, BRCA2, BRIP1, CHEK2, MRE11, NBN, PALB2, PTEN,
RAD50, RAD51, RAD51C, RAD51D, and TP53) related to hereditary breast and ovarian
cancer syndrome in DisGeNet (ID: C0677776) by using the HumanNet v2 functional
network (https://www.inetbio.org/humannet/ (accessed on 2 December 2020)), which is
a tool for identifying an association between candidate genes and specific diseases using a
functional gene network [21]. USP19 was functionally associated with nine genes, namely

https://www.inetbio.org/humannet/
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BARD1, BRIP1, MRE11, NBN, PALB2, RAD50, RAD51, RAD51C, and RAD51D, through the
TOP3B gene in HumanNet-XN (Figure 3D). The mRNA expression of TOP3B and XRN2
also positively correlated with that of USP19 in patients with HGSC (Figure 3A,B).
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Figure 3. Functional association between USP19 and DNA double-strand (DSB) repair genes such
as BRCA1/2. (A,B) Co-expression pattern among USP19, 18 DSB repair genes, and two candidate
genes in our patients with HGSC and TCGA datasets, respectively. (C) Violin plot depicting USP19
expression according to the BRCA1/2 mutation in our patients. (D) Sub-network of functional
associations among USP19 and hereditary pathogenic genes responsible for causing breast and
ovarian cancer syndrome. Node color represents the characteristics of genes; red: USP19, green: DSB
repair genes, blue: gene connecting USP19 to DSB repair genes.

4. Discussion

We sought to identify prognostic biomarkers for patients with HGSC treated with con-
ventional therapy by exploring the gene expression profiles of tumors by RNA-sequencing.
In this study, many of the DEGs identified based on disease stage were associated with in-
nate immune response pathways (Figure 1), implying that the innate immune response may
play an important role in the prognosis of early stage HGSC. This finding is in agreement
with that of a previous study, which demonstrated that a higher number of intratumoral
tumor-infiltrating lymphocytes were significantly associated with a favorable prognosis in
patients with ovarian cancer [22].
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Here, we identified USP19 and RPL23 as prognostic biomarkers for advanced-stage
ovarian HGSC by using a machine-learning model, and these findings were validated
using TCGA data (Figure 2). RPL23 is a ribosome protein (RP), which is considered a
nonspecific molecular machine responsible for translating mRNA into proteins. There
are approximately 80 RPs in eukaryotic ribosomes, and RPL23 has been reported to be
associated with multidrug resistance and cancer progression. RPL23 was found to nega-
tively regulate apoptosis via the RPL23/Miz-1/c-Myc circuit in a higher-risk myelodysplastic
syndrome patient cell line [23], and it could promote multidrug resistance in gastric cancer
cells by inhibiting drug-induced apoptosis [24]. According to the human protein atlas
(www.proteinatlas.org (accessed on 7 June 2021)), various cancers exhibit a high expres-
sion of RPL23, including breast, endometrial, ovarian, and urothelial cancers. In the present
study, RPL23 expression was 1.6-times higher in patients with recurrent HGSC than that
in patients without recurrence. Although the survival curve did not show a significant
correlation between higher RPL23 expression and a worse prognosis in our patients with
HGSC (n = 41, log-rank test p = 0.062, adjusted p = 1; Figure 2G), there was a statistically sig-
nificant correlation between higher RPL23 expression and poor survival in TCGA patients
with HGSC (n = 208, log-rank test p = 0.022; Figure 2H). In accordance with our results,
Newton et al. reported that RPL23 was one of the significantly altered genes in the non-
responders after first-line chemotherapy (1.5-fold higher than that in responders, p = 0.019)
when they examined 31 patients with advanced HGSC using the cDNA microarray [25].
Taken together, a higher expression of RPL23 might induce the recurrence of HGSCs and,
consequently, results in worse prognoses in these patients.

Ubiquitin-specific peptidases (USPs) are the main deubiquitinating enzymes (DUBs)
that control the activities and levels of proteins regulating many intracellular processes,
including cell cycle progression, transcriptional activation, and signal transduction by
removing ubiquitin from ubiquitinated substrates [26–28]. DUBs are extensively involved
in cell cycle regulation, DNA damage repair, and cell growth control [29]. Therefore,
DUBs have been recently suggested as potential targets for cancer therapy [30].

Among the approximately 100 DUBs identified in the human genome, 48 were sug-
gested to be the major USPs associated with tumorigenesis. USP19 is one of the puta-
tive tumor-suppressive USPs [31]. USP19 physically interacts with and deubiquitinates
HDAC1/2 in order to regulate DNA damage repair, chromosomal stability, and tumorigen-
esis, and USP19 expression is low or depleted in several types of tumors [32]. Therefore,
USP19 could be a key factor modulating DNA damage repair by targeting HDAC1/2
K63-linked ubiquitination; cells with USP19 deletion or decreased USP19 expression might
exhibit genome instability and even contribute to tumorigenesis [32]. A previous study on
the expression of BAP1 tumor suppressor gene in 1222 patients with TCGA breast cancer
data reported that the expression of BAP1, which enhances BRCA1-mediated suppression
of cell proliferation through BRCA1 stabilization, is highly correlated with USP19 expres-
sion. The study also reported that its expression is lower in dead patients than compared
to the survivors of breast cancer and uveal melanoma [20]. Another cancer in which UPS19
has been reported to be a prognostic marker of is clear cell renal cell carcinoma (ccRCC).
Specifically, the major isoform of USP19 (uc003cvz, NM_001199161 also known as isoform
2 of USP19) was significantly downregulated in patients with stage IV ccRCC [32,33],
and this was similar to our results in patients with HGSC. Moreover, the downregulation
of USP19 promoted tumor growth in a xenograft model. Isoform 1 of USP19 (uc011bch or
NM_001199160) has a transmembrane domain for anchoring to the endoplasmic reticulum,
whereas isoform 2 contains an EEVD motif [34] and a distinct C-terminal. The functional
difference between the USP19 isoforms should be further studied in order to elucidate the
molecular mechanism associated with USP19-mediated promotion of cancer pathogenesis.

As for the ovarian cancers, this is the first study to report that USP19 is a putative
prognostic marker, demonstrating that its low expression is significantly related to cancer
recurrence and worse prognoses in patients with HGSC receiving conventional therapy.

www.proteinatlas.org
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We also found that patients with the BRCA1/2 mutation exhibited significantly higher
mRNA expression of USP19 than patients without the BRCA1/2 mutation in our cohort,
but it was not related to the BRCA1/2 mutation in TCGA datasets. The different results for
these two cohorts might be related to the higher (40.5%, 17/42) BRCA1/2 mutation rate in
our patients compared with that in TCGA patient data (9.0%, 12/134) (Table 2).

The HumanNet v2 functional network analysis further revealed that TOP3B and
USP19 might physically interact (Figure 3D). TOP3B is a DNA topoisomerase that relaxes
the supercoils and alters the topology of DNA. TOP3B is required for preventing the
accumulation of excessive R-loops, and its loss results in genome instability and DNA
damage [35]. In addition to TOP3B, XRN2 was also predicted to physically interact with
USP19, and the loss of XRN2 results in increased DSB formation and genomic instabil-
ity [36]. Consistent with the findings of the previous study, we found that the mRNA
expressions of TOP3B and XRN2, which regulate genome instability, positively correlated
with that of USP19 in our patients with HGSC.

The DSB repair response is mediated via two major pathways that include the ho-
mologous recombination (HR) and non-homologous end joining (NHEJ) [37]. A central
function of ubiquitination in DSB repair is to maintain the balance between NHEJ and
HR at the S/G2 checkpoint [38]. USP19 was co-expressed with 18 genes involved in the
DSB repair response in our patients as well as in TCGA patients (Figure 3A,B). There-
fore, USP19-mediated deubiquitination of key regulators associated with DSB repair or
genome instability might be responsible for the worse prognosis of HGSC patients with
downregulated USP19.

Taken together, USP19 appears to play a key role in tumorigenesis-related processes,
such as DNA damage repair and genome instability in many human cancers, including
HGSCs and ccRCC. Therefore, we tried to investigate whether RPL23 expression, which
is one of our prognostic markers in this study, is also associated with the prognosis of
patients with ccRCC as well as HGSC and identified a significant association between
RPL23 expression and the prognosis of patients with ccRCC (Figure S5). Considering
that HGSC patients with a higher expression of (z-score > 1) RPL23 mRNA exhibited a
worse prognosis than other patients in our study and that both ccRCC and HGSC are
characterized by high genomic instability, the altered USP19 and RPL23 expressions might
be related to genomic instability in cancers.

Some limitations of our study include the small number of our initial samples and the
bias between the sample size of groups, which includes early stage (n = 5) vs. late stage
(n = 46) and no recurrence (n = 6) and recurrence (n = 37). As most patients with HGSC
possess a recurrent disease, it is difficult to obtain many samples from patients with
the early stage disease or without recurrence. In order to overcome these limitations,
we employed random forest models as a robust model based on resampling methods and
validated our findings in 208 TCGA patients with HGSC. However, their molecular and
functional mechanisms need to be further investigated.

5. Conclusions

We identified USP19 and RPL23 as candidate prognostic markers for patients with
ovarian HGSC treated conventional therapy by using a machine-learning model, which
was validated by using a larger TCGA cohort. Among these two new markers, USP19
is related to critical known biomarkers of ovarian HGSCs, such as BRCA1/2, which is
associated with DSB repair mechanisms. Therefore, USP19 might serve as a new treatment
target or a clinical marker when treating HGSC patients with PARP inhibitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13163976/s1, Figure S1: Kaplan–Meier plots according to known molecular subtypes,
Figure S2: Principal component analysis according to the response groups of platinum therapy,
Figure S3: Performance results of random forest models, Figure S4: Kaplan–Meier plots of another
independent dataset of patients with HGSC according to USP19 and RPL23 fold change based on
its normal expression, Figure S5: Kaplan–Meier plots of TCGA patients with renal cell carcinoma
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according to RPL23 mRNA expression levels, Table S1: Relationship between clinical stage and
response to conventional chemotherapy, Table S2: Differentially expressed 550 genes identified in the
comparison of early vs. advanced stages, Table S3: Differentially expressed 100 genes identified in
the comparison of response groups of platinum therapy among 43 patients with advanced HGSC,
Table S4: Twenty-eight genes associated with prognosis of patients.
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