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The conformational flexibility of carbohydrates is challenging

within the field of computational chemistry. This flexibility

causes the electron density to change, which leads to fluctuat-

ing atomic multipole moments. Quantum Chemical Topology

(QCT) allows for the partitioning of an “atom in a molecule,”

thus localizing electron density to finite atomic domains, which

permits the unambiguous evaluation of atomic multipole

moments. By selecting an ensemble of physically realistic con-

formers of a chemical system, one evaluates the various multi-

pole moments at defined points in configuration space. The

subsequent implementation of the machine learning method

kriging delivers the evaluation of an analytical function, which

smoothly interpolates between these points. This allows for the

prediction of atomic multipole moments at new points in con-

formational space, not trained for but within prediction range.

In this work, we demonstrate that the carbohydrates erythrose

and threose are amenable to the above methodology. We

investigate how kriging models respond when the training

ensemble incorporating multiple energy minima and their

environment in conformational space. Additionally, we evalu-

ate the gains in predictive capacity of our models as the size

of the training ensemble increases. We believe this approach

to be entirely novel within the field of carbohydrates. For a

modest training set size of 600, more than 90% of the external

test configurations have an error in the total (predicted) elec-

trostatic energy (relative to ab initio) of maximum 1 kJ mol21

for open chains and just over 90% an error of maximum 4 kJ

mol21 for rings. VC 2015 The Authors. Journal of Computational

Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24215

Introduction

The computational analysis of biochemical systems is largely

biased toward peptides and proteins. One may, therefore, be for-

given for assuming that they possess a near monopoly in bio-

chemistry. However, it is only by complexation with additional

molecular species that peptides and proteins are able to accom-

plish their myriad roles within biological systems.[1] For example,

eukaryotic proteins are subject to post-translational modification,

a process in which various carbohydrate sequences are attached

to the protein. Vital chemical entities, such as enzymatic cofactors

(e.g. ATP, NADP, etc.) and nucleotides, are entirely dependent

upon the existence of products from the pentose phosphate

pathway, which are synthesised from carbohydrates. In fact, the

phosphate pathway would be unable to run at all if it were not for

the energy derived from carbohydrates, which undergo glycolysis

and are subsequently passed into the tricarboxcylic acid cycle.

Many biochemical force fields are parameterised by exhaus-

tively sampling quantities arising from peptide atom types.

One cannot simply use protein atom types as a direct substitu-

tion for carbohydrate atom types for a number of reasons:

1. Peptides possess features that are generally absent in carbo-

hydrates, most prominently the presence of nitrogen and

the ability to form structural motifs. Both of these features

are particularly perturbative to electrostatic quantities associ-

ated with constituent atoms. For example, nitrogen pos-

sesses a significant quadrupole moment, which influences

other atomic electrostatic quantities anisotropically, and can-

not be captured by the standard point charge approxima-

tion. Equivalently, structural motifs such as helices and

sheets are stabilised by vast intermolecular bonding net-

works. This dependence on structural motifs necessarily

influences the properties of other atoms by constraining

them to states that do not necessarily coincide with those of

the unfolded non-native state. Although carbohydrates do

form structural motifs, they tend to remain flexible under

standard biological conditions, and do not typically assemble

into the stable secondary structures, which polypeptides do.

2. Carbohydrates exhibit much more conformational free-

dom than peptides. Electronic quantities vary as a func-

tion of the conformational degrees of freedom of a

molecular species[2]. As such, the electronic quantities of

a more flexible conformation will vary to a greater extent

than those of a less flexible one.

3. Many carbohydrate species exhibit a preference for axial

rather than equatorial arrangements of electron-rich sub-

stituents on an anomeric carbon. The origin of this
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anomeric effect is not entirely clear,[3] but the energetics

that arise from it must be captured by a force field which

deals with carbohydrates. Similarly, the exo-anomeric

effect, which deals with substituents linked to an anomeric

oxygen, forces a separate conformational preference. It is

not within the scope of this work to deal with the anome-

ric and exo-anomeric effects in any great detail, and so we

refer the interested reader to a more rigorous overview.[4]

4. Similar to the anomeric effect, the gauche effect can arise

within a number of carbohydrate species and bias rotamer

preferences.[5] This effect has an ambiguous origin. Research

has suggested it to arise from hyperconjugation or solvent

effects. In short, it is the preference of a gauche rotamer over

an antirotamer, where the latter would be stereoelectroni-

cally preferable. Work by Kirschner and Woods[6] proposed

that the gauche effect results from solvent effects, which are

not important in our work since we are explicitly dealing with

gas phase molecules. However, for a carbohydrate force field

to be of use, this effect must be accounted for.

The conformational freedom of carbohydrates renders them

somewhat troublesome for experimentalists, as they prove to be

highly difficult to characterize by conventional high-resolution

structural determination techniques,[7] particularly X-ray crystallog-

raphy. To be precise, carbohydrates tend to be difficult to crystal-

lize, which is problematic because X-ray diffraction techniques are

a valuable source of structural information. As such, the structural

characterization of carbohydrates rests with a few experimental

techniques, and subsequent validation by computational means.

This required harmony between experiment and computation is

vastly important, and has been recently explored,[8,9] and so

proves to be a fruitful avenue for development.

Classical force fields such as OPLS-AA, CHARMm, GROMOS, and

AMBER appear to have characterized carbohydrates as “secondary

molecular species” relative to their peptide counterparts. As such,

these parameterizations resemble “bolt-on” components. How-

ever, force fields that are specifically tailored for carbohydrates do

exist and have proven successful. GLYCAM[10] is perhaps the most

prominent of these force fields, and has been ported to AMBER.

More recently, the advent of DL_FIELD has facilitated the use of

GLYCAM parameters within DL_POLY 4.0.[11] GLYCAM has under-

gone extensive validation in an attempt to demonstrate its effi-

cacy. Several studies have focused upon its ability to reproduce

conformer populations in explicitly solvated molecular dynamics

(MD) simulations,[6,12,13] which is obviously important owing to the

massive conformational freedom of carbohydrates. The applicabil-

ity of GLYCAM to larger, more biologically relevant structures, such

as the binding of endotoxin to recognition proteins[14] or the

dynamics of lipid bilayers,[15] has also been demonstrated.

GLYCAM has attempted to break the paradigm of deriving

partial charges based on a single molecular configuration.

Instead, it has been developed such that the partial charges

are averaged over the course of a MD simulation, thus (albeit

simplistically) accounting for the dynamic nature of electronic

properties.[16] However, it must be emphasised that GLYCAM

resides within the partial charge approximation to electro-

statics, thus severely limiting its predictive capacity. Sugars are

particularly amenable to hydration, yet a partial charge

approximation to electrostatics cannot recover the directional

preferences of hydrogen bond formation without the addition

of extra point charges at non-nuclear positions. The isotropic

nature of partial charge electrostatics is readily overcome by

use of a multipole moment description of electrostatics, which

naturally describes anisotropic electronic features such as lone

pairs. The benefits of such a multipole moment description

over their partial charge equivalents has been systematically

demonstrated over the past 20 years in many dozens of

papers, recently reviewed.[17] These benefits are not necessarily

outweighed by the common misconception that multipole

moment implementations are computationally expensive rela-

tive to their point charge counterparts. The long-range nature

of point charge electrostatics, O(r21), relative to higher order

multipole moments [dipole-dipole interactions, for example,

die off as O(r23)], means this is not strictly true. Point charges

require a larger interaction cutoff radius relative to higher

order multipole moments, and, therefore, form the bottleneck

in electrostatic energy evaluation. Given proper handling (e.g.

parallel implementation), the computational overheads associ-

ated with multipole moment electrostatics can be managed.

In the remainder of this article, we shall demonstrate a

novel means for modelling electrostatics by use of a multipole

moment expansion centred upon each atomic nucleus. The

techniques we present will inherently capture the conforma-

tional dependence of these multipole moments.

Methodology

Atomic partitioning

The development of molecular orbital theory largely caused a

decline in chemical understanding of the theoretical descrip-

tion of molecular systems. The fact that each electron occupies

a molecular orbital dispersed across the spatial extent of the

molecule gave rise to a valid query: why do functional groups

impart some property, such as reactivity, to the molecule,

when the distribution of electrons throughout the system is

essentially no different to the inert species? Surely, there must

be some localization of electrons to the functional group,

which permits subsequent functionality. If this is not the case,

then even the most fundamental chemical concepts, such as

those of nucleophiles and electrophiles, have no theoretical

grounding. These terms are used to denote a property of an

atom in a molecule, which is not recovered by molecular

orbital theory. For example, if one assesses butanol by means

of molecular orbital theory, the electrons “belonging” to the

hydroxyl group are dispersed throughout the entirety of the

molecule. If this is truly the case, then it becomes particularly

problematic when one attempts to explain why the presence

of the functional group imparts reactivity (an electronic phe-

nomenon), when the electrons are not localized.

Bader and co-workers[18] went some way to address this

problem by performing an appealing partitioning of three-

dimensional space into atomic basins, which pictorially defines

an “atom in a molecule,” an approach called the Quantum
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Theory of Atoms in Molecules (QTAIM). The latter is the first

segment of a broader approach called Quantum Chemical

Topology (QCT),[19–22] which analyzes quantum mechanical

functions other than the electron density and its Laplacian.

The QTAIM partitioning has been demonstrated to have sev-

eral advantages compared to other partitioning schemes,[23–25]

and enjoy excellent transferability compared to other

schemes.[26] By use of Born’s interpretation of quantum

mechanics, one generates a physical electron density, q rð Þ,
from an ab initio wavefunction, w rð Þ, obtained entirely from a

first principle calculation. This electron density is then be com-

pletely partitioned by use of the gradient operator
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where î ; ĵ ; k̂ are unit vectors along the x, y, and z axes,

respectively, to generate the vector rq rð Þ. The evaluation of

the gradient of a scalar field results in a vector field, the vec-

tors of which are directed along the path of greatest increase

in a function. As such, the vectors that define the field rq rð Þ
point toward the greatest increase in the scalar field q rð Þ. If

one were to map q rð Þ by use of a contour plot, such that

each contour represented the encasing of a surface with con-

stant electron density, termed an isosurface, then each vector

in rq rð Þ would intersect each isosurface orthogonally.[27]

Points in the vector field defined such that rq rð Þ50 are

termed critical points. Within the scalar field q rð Þ they repre-

sent a maximum, minimum or saddle point (mixture of mini-

mum or maximum depending on direction). The identity

of each critical point is revealed by assessing the curvature of

q rð Þ at each point, achieved by evaluation of the Hessian of

q rð Þ

H qð Þ 5

@2q
@x2

@2q
@x@y

@2q
@x@z

@2q
@y@x

@2q
@y2

@2q
@y@z

@2q
@z@x

@2q
@z@y

@2q
@z2

2
666666664

3
777777775

(2)

This Hessian matrix is a real symmetric matrix and hence

Hermitian. Therefore, its eigenvalues are real and they express

the magnitude of the curvature along each of the principal

axes, which are marked by the direction of the corresponding

eigenvectors. The nature of the critical point in question is

then given by two easily evaluated parameters: the rank (x)

and signature (r) of the critical point, where the former is

defined as the number of nonzero eigenvalues of q rð Þ, and

the latter as the sum of the signs of the eigenvalues.

A fundamental result in the topology of rq rð Þ, of great

importance in the following, is the partitioning of a molecular

system into topological atoms. A key feature necessary to

achieve this result is the gradient path. An easy way to grasp

what this is to think of a succession of very short gradient vec-

tors, one after the other and constantly changing direction. In

the limit of infinitesimally short gradient vectors, one obtains a

smooth and (in general) curved path, which is the gradient

path. A gradient path always originates at a critical point and

terminates at another critical point. Bundles of gradient paths

form a topological object depending on the signature of the

critical points that the object connects. All possibilities have

been exhaustively discussed before[28] but three ubiquitous

possibilities are specified as follows: (i) the topological atom is

a bundle of gradient paths originating at infinity and terminat-

ing at the nucleus, (ii) the bond path (or more generally

atomic interaction line) is the set of two gradient paths, each

originating at a bond critical point and terminating at a differ-

ent nucleus, and (iii) the interatomic surface (IAS), which is a

bundle of gradient paths originating at infinity and terminat-

ing at a bond critical point.

An interatomic surface obeys the following condition

rqðrÞ•nðrÞ50 8r 2 IAS (3)

where n rð Þ is defined as the vector normal to the IAS. By find-

ing all surfaces that obey this condition, the molecule is com-

pletely partitioned into topological atoms Xi, where the

subscript denotes the atomic basin associated with the ith

atom in a molecule. All key topological features of rq rð Þ are

summarized in Figure 1.

Integration over these atomic basins allows atomic proper-

ties Pf(X) to be defined and calculated. The universal formula

from which all atomic properties can be calculated is

Pf ðXÞ5
ð
X

ds f ðrÞ (4)

where integration with respect to ds denotes a triple integra-

tion over all three Cartesian coordinates, confined to the

atomic volume X, and f(r) denotes a property density. For

example, if f(r) equals the electron density q(r) then the corre-

sponding atomic property is the electronic population of the

topological atom. If f(r) 5 1, then we obtain the atomic volume

and when f(r) 5 q(r)R‘m(r) the topological atom’s multipole

moments,[29] where R‘m(r) is a spherical tensor[30] of rank ‘

and m. Others have shown[31] the better agreement with refer-

ence electrostatic potentials of topological multipole moments

compared to CHELPG charges. A further advantage of QCT is

that the finite size and nonoverlapping nature of the topologi-

cal atoms avoids the penetration effect, which may otherwise

appear in the calculation of intermolecular interaction energies.

Kriging

We can only outline kriging here, for more technical details

the reader is referred to our work on histidine.[32] In general, a

machine learning method is trained to find a mapping

between an input and an output. The machine learning

method kriging[33–35] can also be seen an interpolative tech-

nique able to predict the value of a function at an arbitrary

d-dimensional point, x�, given the value of the function at n

different points, x1; x2; . . . ; xnf g, in this d-dimensional space.
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Kriging is apt at modeling high-dimensional function spaces,

and so is particularly stable when considering the conforma-

tional space of large molecules. A cornerstone of kriging is

that if two input points are very close together in space

then their output values are also very close. To put this more

formally, consider the example of three points x , x0; and x�

such that x� is closer to x than to x0 within the d-dimen-

sional space, i.e. jx�2x j < jx�2 x0j. As a result, the function

values of f xð Þ and f x�ð Þ should be correlated more so than

the values of f x0ð Þ and f x�ð Þ.
The function values f x1ð Þ; f x2ð Þ; . . . ; f xnð Þf g from which

f x�ð Þ is composed form a basis set that is necessarily only

complete if each point within d-dimensional space has been

sampled, that is, as n!1. Hence, kriging only gives an

approximate value for any predicted point f x�ð Þ, and the

accuracy of its prediction increases as n!1. An adequate

kriging model typically requires at least 10 3 d data points,

which is well within reach of modern day computational

power for high-dimensional functions, and so kriging is a

feasible machine learning method for our purposes.

There are several intricacies involved with the evaluation of

a kriging model, in particular the manner by which multidi-

mensional functions are dealt with. For a d-dimensional vector

in function space, x, each dimension, or feature, is assigned a

parameter hd, which maps the variance of f xð Þ with respect to

a change in the dth feature. Consider, for example, the function

mapped in Figure 2. In relative terms, whilst f x; yð Þ changes

significantly in response to a change in x, it is essentially invar-

iant with respect to a change in y. As such, y is relatively insig-

nificant when assessing the correlation between two points in

function space, i.e. f x; yð Þ is much more dependent on x than

on y. As a result, x is assigned a higher “importance” than y,

which is reflected in the value of hx, where hx > hy .

Kriging is a kernel method in view of the kernel function at

its heart. This function enables kriging to operate in a high-

dimensional, implicit feature space without ever computing

the coordinates of the data in that space. Instead, only the

inner products between the images of all data pairs in feature

space need to be computed. The kernel that we evaluate

when obtaining a kriging model is a function of the correla-

tion between two points in feature space, xi and xj, such that

the correlation between the points, R xi; x j
� �

, is given by

R x i; xj
� �

5exp 2
Xd

h51

hhjxi
h2 xj

hj
ph

" #
(5)

Brief analysis of this function shows that, if xi
h and xj

h are sit-

uated closely together for many features h, then the argument

of the exponential tends toward zero, leading the correlation

between the two points to tend toward one. Note that if the

hth feature is relatively unimportant, it will be assigned a low

hh value. As a result, the hth term in the sum becomes smaller

if xi
h and xj

h are relatively far apart, leading to an increased

correlation between the two points, which demonstrates that

f xi
h

� �
and f ðxj

hÞ are similar.

Figure 2. Plot of f x; yð Þ against the two dependent variables. Note how

the value of f x; yð Þ is relatively invariant in y compared to x, which results

in hx > hy .

Figure 1. (left) A contour plot of the electron density of in molecular plane of furan superimposed onto a representative collection of gradient paths.

Atoms are represented by black circles, where the gradient paths terminate. Interatomic surfaces are highlighted as solid curves, and contain bond critical

points (black squares). A ring critical point (triangle) is also shown in the center of the furan. (right) A 3D representation of the topological atoms in furan,

in the same orientation as the left panel. The molecule is capped by the q 5 0.0001 au envelope and the bond critical points are marked in purple.
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Given a set of n points in feature space, an n3n correlation

matrix, R̂ , is defined, whose elements are defined as the cor-

relation between the ith and jth points (and as such is symmet-

ric). The task at hand is then to minimize the mean squared

error of prediction of the kriging estimator. It can be shown

that this is equivalent to maximizing the likelihood function L,

which is given by

L5
1

2pð Þ
n
2 r2ð Þ

n
2jRj

1
2

exp
2 y21lð ÞtR21 y21lð Þ

2r2

� �
; (6)

where 1 is a column vector of ones, t denotes the transpose,

r2 is the process variance, and l is a constant term that

models the global trend (i.e. “background”) of the column

vector y of observations. This formula arises from the defini-

tion of a Gaussian process and is not discussed here. For our

purposes, it is more convenient to maximize the natural

logarithm of this function, which is done analytically (see Sup-

porting Information of Ref. 36) by differentiation with respect

to r2 and l and setting the respective derivatives to zero.

When these optimal values for r2 and l are substituted back

into eq. (6), one obtains the “concentrated” log-likelihood

function[32], or

log L5 2
n

2
log r̂2
� �

2
1

2
log jR̂j
� �

(7)

where L is the likelihood and r̂ is the process variance (a con-

stant). The parameters h and p, which are d-dimensional vec-

tors containing the individual feature parameters mentioned

previously, must be optimized, which is equivalent to maximiz-

ing the “concentrated” likelihood function. From eqs. (5) and

(7) it is clear that log L is a function of h and p. The function

log L is the quantity that needs to be maximized, which is

done by another machine learning method called particle

swarm optimization.[37] We can then make a prediction of the

output at a new point x� with the optimized kriging parame-

ters h and p, using the formula

ŷ x�ð Þ5 l̂1
Xn

i51

ai � u x�2xi
� �

; (8)

where ai is the ith element of the vector a5R21 y21l̂ð Þ where

l̂ is the (known) maximized mean l, while u x�2xi
� �

is calcu-

lated[32] via eq. (5).

In our implementation of machine learning, each atom

within a molecule is termed a kriging center, with a respective

multipole expansion (up to the hexadecapole moment) cen-

tered on the nucleus. Higher rank multipole moments are

highly sensitive to the change in conformation of the molecule

due to a fluctuating electric field. As such, we define each

multipole moment as a function of the 3N-6 degrees of free-

dom of the molecular system, pertaining to each kriging

center.

The molecule is distorted by means of energy input into

each of its normal modes (discussed in section 2.3), and the

multipole moments of each kriging center elucidated for a

given training set size. These data are used to construct sepa-

rate kriging models for each kriging center. From this, the krig-

ing model is then able to, given an arbitrary point in

conformational space, predict the associated multipole

moments which accompany such a position. This method has

been developed and tested substantially within our group,

and gives very agreeable results for a number of distinct

chemical species,[32,38] but is nevertheless necessarily a subject

of intense ongoing refinement.

Conformational sampling

Here, we present a conformational sampling methodology

that utilizes the normal modes of a molecular system as a

means for dynamically evolving the system. This methodology

has been used before in our lab for amino acids[32,39,40] and

small molecules[41] but this is the first time we report it in

great detail. Each normal mode has a corresponding frequency

that is calculated by diagonalization of the mass-weighted

Hessian, H, the details of which are incorporated in the Sup-

porting Information. With these frequencies, a system of equa-

tions of motion is obtained, which permits for the

conformational evolution of the molecular system in time.

These equations take a harmonic form, and are elaborated

upon in the Supporting Information.

Expressing the system in a basis of internal coordinates

results in six of the 3N Cartesian degrees of freedom possess-

ing a frequency of zero (these correspond to the global trans-

lational and rotational degrees of freedom), and so we need

only evaluate the 3N–6 “vibrational” equations of motion.[42]

We refer to these Nvib53N26 degrees of freedom in the inter-

nal coordinate basis as “modes” of motion. The transformation

from a mass-weighted cartesian coordinates, q, to the set of

internal coordinates, s, is attained by evaluating the 3N x 3N

transformation matrix, D, which satisfies

s5Dq (9)

Note that this transformation retains the mass-weighting of

q. Construction of D is undertaken by defining six orthogonal

vectors corresponding to the global translational and rota-

tional degrees of freedom of the system, as defined by the

Sayvetz conditions. To implement these, the system must be

specified in a global reference frame (sometimes termed the

Eckart frame), the origin and axes of which coincide with the

centre of mass and principal axes of inertia, respectively. Suf-

fice to say that these conditions dictate the system possesses

no net angular momentum relative to the Eckart frame, which

rotates with the system.

The above leads to the generation a set of six orthogonal

vectors, which are invariant under global translational and

rotational motion. These vectors correspond to the first six col-

umns of D. Since the internal coordinates form a mutually

orthogonal basis, the resultant Nvib26 columns are generated

by means of a Gram-Schmidt orthonormalization procedure,

whereby the projection of Dj on Di , Pij , is given by
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Pij5
Di �Dj

Di �Di
(10)

Note that the columns of D are also normalized by this pro-

cess. If Di and Dj are orthogonal, then Pij50. If Pij 6¼ 0, then

Pij is subtracted from Pj and the process iterated until Pij50.

Generalizing to account for our Nvib columns,

D75 D721
P6

i51 Pi7

D85 D821
P7

i51 Pi8

�

Dn5 Dn21
Pn21

i51 Pin

(11)

where 1 is column vector of ones. As before, this procedure

is iterated until Pij50 8 i; j, which results in the Dnf g forming

a mutually orthonormal set. In computational terms, the

threshold value of the Pij , which we require before considering

the fDng to be mutually orthonormal, is O 1028
� �

.

The mass-weighted Hessian H, outlined in Supporting Infor-

mation, is transformed into the internal coordinate basis, by

use of D

Hs5 D>HqD (12)

where the subscripts denote the basis in which these quanti-

ties are expressed, and T denotes the transpose. To evaluate

the frequencies of the various modes of motion, we require

diagonalization of Hs,

E21HsE5Ik (13)

where E denote the eigenvectors of Hs and I is the identity

matrix. In our protocol, this is achieved by tridiagonalizing the

Hessian by the Householder algorithm, followed by a QR

decomposition of the tridiagonal Hessian,[43] yielding a diago-

nal Hessian, as required. The resultant eigenvalues, Ikð Þii5ki ,

are related to the mode frequencies, mi , by

mi5

ffiffiffiffiffiffiffiffiffiffiffiffi
ki

4p2c2

r
8i51; . . . ; 3N (14)

where c is a factor which incorporates the speed of light, c, and

the conversion from atomic units to reciprocal centimeters.

Of course, six of these frequencies correspond to the global

translational and rotational degrees of freedom of the system

and are zero, thus yielding Nvib non-zero frequencies. The

reduced masses and force constants corresponding to the

modes with x 6¼ 0 are given by similar manipulations of these

quantities. The reader is again directed to Ref. [42] for a dis-

cussion of their calculation. The amplitude of the ith mode, Ai ,

is given by rearrangement of the familiar expression for the

energy of a simple harmonic oscillator, E5kiAi
2=2

Ai5

ffiffiffiffiffi
2E

ki

r
(15)

where ki is the force constant of the mode of motion, and E is

the energy available to it. We now have all quantities required

to evolve the modes of motion and replicate the vibrational

dynamics of the system. The total energy available to the sys-

tem is given by the expression for thermal energy,

E5NvibkT=2, and is stochastically distributed throughout the

modes. The phase factors of the modes, /, are also randomly

assigned: if /50 for all modes, then they oscillate in unison,

which corresponds to a photonic single frequency excitation.

Instead, we assume the modes to resonate out of phase with

one another, as energy transfer to each mode from an external

heat bath will be predominantly decoherent.

The sole remaining issue is the choice of a dynamical time-

step with which to evolve the various modes of motion. Our

choice is based on the desire to ensure a single oscillation of

a mode is sampled uniformly, i.e. we do not want to bias our

sampling toward specific regions of the period function that

describes the evolution of the mode. We obtain the time

period of the mode as Ti51=mi, and subsequently ensure that

the sampling methodology permits ncycle points to be eval-

uated along a single oscillation. In this case, the dynamical

timestep for the ith mode, Dti51=mincycle. ncycle is left as a user-

defined input, and is set to ncycle 5 10 in the following work.

Additionally, the distribution of the total energy throughout

the modes is considered a dynamic quantity, and so for every

nreset samples that are output, the energy is randomly redis-

tributed throughout the system. The phase factors are also

redefined at the same frequency. Again, nreset is left as a user-

defined parameter, and is set as nreset 5 2 in the following.

We wish to clarify an issue in order to avoid misinterpreta-

tion. The above methodology is not meant as an exact tech-

nique for the exploration of the molecular potential energy

surface (PES). By truncating the Taylor series of the potential

energy at second order, we essentially model the local PES as

a harmonic well, which is obviously a simplification. However,

we believe the above process to be a computationally efficient

means for generating molecular conformers. Moreover, the

important alternative method of MD to generate conformers is

not necessarily more realistic. Whilst the success of MD is not

in question, the validity of the forces fields that are currently

implemented is not guaranteed.

Computational Details

The workflow proposed below essentially takes an ensemble

of configurations as input, and outputs kriging models for the

variation in the atomic multipole moments as a function of

the configuration of the system:

1. The test system is sampled in accordance with the meth-

ods outlined in section 2.3. The general idea is to sample

as much of configuration space as would form an ensem-

ble for the true physical system along to the course of a

dynamical trajectory. This subsequently allows for the for-

mation of a kriging model that will be used in a purely

interpolative context.

2. Single-point calculations are performed on each sample and

the resultant ab initio electron density is partitioned by QCT

software. The multipole moments of the topological atoms
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are subsequently obtained. This allows a kriging model to

evaluate a functional form corresponding to the evolution

of the various multipole moments as a function of

conformation.

3. The sample set is split into a nonoverlapping training set

and test set. The training set is utilised for training of our

kriging models, i.e. these are the points that the kriging

function must pass through. The test set is not trained for,

but is used after the construction of the kriging models to

evaluate the errors associated with their predictions.

4. A kriging model is built for each multipole moment of each

atom, which allows for the generation of a smooth interpola-

tive function, mapping the evolution of the multipole

moment against the conformational parameters of choice.

By use of particle swarm optimization, we optimize our krig-

ing parameters, h; pf g to obtain an optimal kriging model.

5. The kriging models are assessed by making them predict

the multipole moments for each atom in a system whose

configuration has not been used for training of the krig-

ing model. However, we do possess the ab initio multi-

pole moments for this configuration. As such, we

evaluate the energy associated with all 1–5 (i.e. two

nuclei separated by four bonds) and higher (1–n, n> 5)

order interatomic electrostatic interactions as given by

the predicted multipole moments from the kriging mod-

els, and the equivalent energy as given by the (exact or

original) ab initio atomic multipole moments. We subse-

quently assess the deviation of the kriging predictions

from the ab initio electrostatic energies.

The choice of 1–n (n � 5) interactions over the conventional

1–n (n � 4) serves a twofold purpose: (i) avoiding any poten-

tial divergence in the electrostatic energy between two atom-

centered multipole moment expansions, (ii) avoiding any

issues from a coupling of torsional and electrostatic energetics.

In other work from this lab, to be published soon, we show

that short-range electrostatic energy 1–n (n< 5) can be satis-

factorily kriged. Nonelectrostatic energy contributions can be

calculated within the QCT context and again adequately

kriged, a result that will be published elsewhere.

Note that the electrostatic energy[38] is the final arbiter in

the validation of the kriging models, rather than the atomic

multipole moments themselves, which are the kriging observa-

tions. The molecular electrostatic energy is calculated by a

well-known multipolar expansion[30] involving a multitude of

high-rank atomic multipole moments.[41] This expansion is

truncated to quadrupole-quadrupole (L 5 5) and rank-

equivalent combinations (dipole-octopole and monopole-hexa-

decapole). Second, the interatomic contributions to the total

molecular electrostatic energy are limited to 1–5 and higher.

Whilst somewhat indirect, the validation through energy

rather than multipole moment has a twofold purpose. Primar-

ily, the energy is the quantity that will be used for dynamical

simulations, and so is the ultimate descriptor that we wish to

evaluate correctly. Second, the alternative would be to assess

the predictive capacity of each individual kriging model. For a

system with any sizeable number of atoms, where each atom

has 25 individual multipole moment kriging models, the data

analysis obviously becomes overwhelming. However, this anal-

ysis is unnecessary owing to the uniqueness of the Taylor

expansion from which the multipole moments arise. Since the

electrostatic energy is computed from two such unique series,

then if the electrostatic energy is correctly predicted, the mul-

tipole moments must also be correct by deduction. Note that

this consideration is valid for a single atom-atom interaction.

In order to gauge the models’ validity, we plot a graph col-

loquially termed an “S-curve” owing to its typical sigmoidal

shape but of course it is really a cumulative distribution func-

tion. The S-curve plots the absolute deviation of the predicted

energy from the ab initio energy, predicted from the ab initio

multipole moments, after having evaluated the multipole

moment interactions. Put more precisely, the predicted multi-

pole moments form an energy that is subtracted from an

energy obtained from the ab initio moments. Then the abso-

lute value of this difference is taken. Hence compensation of

errors is not allowed because first the difference is taken and

then the absolute value. These energetic deviations are plotted

against the percentile of test configurations that fall on or

below the given energetic deviation.

Our aim is then twofold: the first is to reduce the upper tail

of the sigmoid such that the 100th percentile error is conver-

gent at as low an error as possible. This corresponds to the

predictions being uniformly good across the test set with no

spurious predicted interactions. Our second aim is to shift the

S-curve as far down the abscissa (i.e. to the left) as possible,

which ensures the average error associated with our predic-

tions is as low as possible. The first goal is achieved by certify-

ing that the training points used for the construction of the

kriging models form the boundaries of configurational space

with respect to our sample set. This boundary checking guar-

antees that the kriging model is being asked to interpolate

from training data. Boundary checking has not yet been imple-

mented, but we propose a simple means by which this could

be accomplished. The initial geometry from which we start

sampling may be approximated as occupying the center of

the sampling domain. The Euclidean metric in the (3N-6)-

dimensional conformational space decides which sample

points form the boundaries of the sampling domain by their

distance to the initial geometry in conformational space. The

second goal is attained by consistent improvement of the krig-

ing engine, and making sure that the test points are uniformly

close to the training data, allowing for efficient interpolation.

Note that we do not necessarily choose test points that are

close to the training points. In other words, the training and

test sets are constructed independently. By ensuring that the

training data is uniformly distributed throughout the sampling

domain, the average “distance” between an arbitrary test point

and a training point will equal that between some other arbi-

trary test point and another training point. This guarantees no

spurious predictions in under-trained regions of conforma-

tional space. Of course, it is prudent to invoke some form of

importance sampling, which yields a greater sampling density

in more “important” regions of conformational space, but this

issue has not been explored.
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We work on the tetrose diastereomers erythrose and

threose, the smallest carbohydrates that adopt open chain and

furanose forms. The particular conformations studied are given

in Figure 3. Energetic minima were provided by Prof Alkorta,

who had previously conducted a PES scan of these species,[44]

and are reported more thoroughly elsewhere.[45] The chemical

structures of these molecules are given in Figure 3. All geome-

tries were subsequently optimized by the program GAUS-

SIAN03[46] at the B3LYP/6-31111G(d,p) level of theory. The

Hessians were computed for each geometry, and utilized in

the conformational sampling methodology we have described

in the previous section, allowing for the output of 2000 geo-

metries for each system. Single point calculations were per-

formed on each sample at the B3LYP/apc-1[47] level of theory.

The apc-1 basis set (which is a polarization-consistent (pc)

double-f plus polarization basis set with diffuse functions) was

used for the DFT calculations, since this family of basis sets

has been specifically optimized for DFT. The resultant wave-

functions are then passed on to program AIMAll,[48] which cal-

culates the atomic multipole moment according to QCT. We

are only interested in the internal degrees of freedom of the

molecular configurations.

Hence the atomic multipole moments must be expressed in

an atomic local frame (ALF) rather than in the global frame.

This procedure makes sure that the kriging focuses on the var-

iation of atomic multipole moments within the molecule. Oth-

erwise, when referring to the global frame (rather than the

ALF), the three components of an atomic dipole moment, for

example, vary upon rigid rotation of the whole molecule.

Training for such a variation is useless. The same principle

applies to atomic multipole moments of rank ‘ � 2. The

details of the atomic local frame chosen for our work are out-

lined elsewhere.[49] Briefly, the origin of the ALF is the nuclear

position of the atom of interest, which is kriged. The heaviest

(by atomic number, see Cahn-Ingold-Prelog rules) nucleus,

which is directly bonded to the atom of interest, determines

the ALF’s x-axis, the second heaviest determines the xy-plane

such that an orthogonal y-axis can be installed. The three

atoms involved in the ALF are described by the first three fea-

tures: the distance between origin and x-nucleus, the distance

between origin and “y-nucleus” and the corresponding sus-

pended angle. The non-ALF atoms are located by features that

coincide with the familiar spherical coordinates (r, h, u),

expressed with respect to the ALF. Kriging of each multipole

moment (up to the hexadecapole moment) was performed for

each atom by the in-house program FEREBUS 1.4 and models

consisting of N training examples were generated. Atom-atom

interaction energies of 1-5 and higher were computed in a

test set of 200 arbitrary conformations, using the ab initio mul-

tipole moments, and compared to the interaction energies

from multipole moments predicted by the kriging models.

Errors are given in the form of so-called S-curves, which map

the percentile of conformations within the test set, predicted

up to a maximum error chosen, which is read off on the

abscissa.

Here, we give a brief overview of how the force field we

propose could be utilised within the context of MD. We limit

the discussion to the evaluation of electrostatic interactions,

but work is currently being undertaken within our group to

establish the framework for an entire force field,[50] which devi-

ates considerably from the terms arising in a classical force

field. The non-electrostatic terms are also obtained via the

QCT partitioning of molecular energy, originally derived from

work in Ref. 51 and then elaborated in an approach called

Interacting Quantum Atoms (IQA).[52] At designated points

over the course of a MD simulation, the conformational state

of the system is evaluated. At this point, atomic multipole

moments, up to the hexadecapole moment, can be extracted

from the kriging models, and subsequently utilized for the

evaluation of interatomic electrostatic interactions. In this way,

we capture the conformational dependence of the atomic

multipole moments. Separate kriging models are obtained for

the non-electrostatic terms, that is, the intra-atomic energy

(both kinetic[53] and potential), the short-range interatomic

Coulomb energy not obtained by multipolar expansion, and

the interatomic exchange energy.

The issue of coordinate frames needs further clarification

because the Cartesian MD frame coordinate system is not the

same as the local coordinate frame within which we have eval-

uated the atomic multipole moments (ALF). Prior to invoking a

kriging model for the evaluation of multipole moments, the

Figure 3. Comparison of erythrose and threose in the open chain (topolog-

ical atoms and molecular graph) and in the ring configurations of a and b
furanose (in traditional ball-and-stick representation). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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conformational state of the system must be converted from a

Cartesian frame of reference to an ALF. From here, atomic multi-

pole moments can be evaluated corresponding to the current

state of the system. Previous work has derived the forces arising

from the interactions of atomic multipole moments within the

Cartesian frame of reference,[54] which requires the partial deriv-

atives of the multipole moments with respect to the ALF

degrees of freedom. These terms have an analytical functional

form, and so computation of the forces in the Cartesian frame of

reference can be performed explicitly. These forces can subse-

quently be utilized by the standard MD procedure.

An embryonic workflow has been integrated within the MD

package DL_POLY 4.0. Currently, an atomic kriging model is

loaded into memory and the relevant data stored, followed by

removal of the kriging model from memory. In this way, the

dynamic memory requirements have not yet exceeded roughly

200 Mb, and are thus well within the capabilities of modern

computational resources. Of course, memory management is

crucial to the speed of the proposed methodology, and so will

require a great deal of fine-tuning. However, much speedup can

undoubtedly be accomplished by a number of techniques, e.g.

caching of regularly used quantities and parallel implementation.

Finally, it is too early to extensively comment on the compu-

tational cost of the current approach. It would be na€ıve to

directly compare the flop count of the current force field with

a traditional one without appreciating that (i) extra non-

nuclear point charges are needed to match the accuracy of

multipole moments and the former propagate over long

range, (ii) multipolar interactions drop off much faster than 1/r,

depending on the rank of the interacting multipole moments,

which depends on the interacting elements themselves (see

extensive testing in the protein crambin[55]), (iii) the efficiency

of the multipolar Ewald summation[56] that is being imple-

mented in DL_POLY 4.0, (iv) the dominance of monopolar

interactions at long range (vast majority of interactions) and

the (v) outstanding fine-tuning of the kriging models at pro-

duction mode. The current force field may well be an order of

magnitude slower than a traditional force field. This estimate

and the fact that the current force field contains electronic

information invite one to compare its performance with on-

the-fly ab initio calculations instead.

Results and Discussion

Single minimum

The lowest energy conformer for each system was chosen as

an input structure for sampling. S-Curves were subsequently

generated for each of these training sets by the methodology

outlined in the previous section. The S-curves are given in Fig-

ure 4, and the accompanying mean errors in Table 1.

The first point to notice is that the open chains for both

erythrose and threose are modeled by kriging to a significantly

better standard than the furanose forms. We may, however,

immediately attribute this to the number of 1-5 and higher

interactions occurring in these systems. For both open chains,

25 interactions are required to be evaluated for comparison to

the energies produced from the ab initio multipole moments.

The numbers of interactions requiring evaluation for the fura-

nose forms comes to 39, which is virtually twice the amount

evaluated in the open chain forms. We would subsequently

expect a proportional relationship between the number of

interactions required for evaluation and the mean error attrib-

uted to the kriging model. Whilst we see this to be roughly

true when comparing the errors on the threose open and a-

furanose forms, the errors appear disproportionately higher for

the other systems.

Kriging is an interpolative technique, and so is not suited for

extrapolation. However, we point out that the kriging engine

is still predictive for extrapolation- in this case, the prediction

falls to the mean value of the function. Obviously this is not

ideal for highly undulatory functions. However, considering

how the atomic multipole moments do not fluctuate over vast

ranges, the mean will often represent a respectable prediction

to the function value. The kriging model can be refined in an

iterative fashion, whereby extrapolation points are added to

Figure 4. S-curves corresponding to all erythrose (left) and threose (right) systems studied. The open chain forms are systematically better predicted than

the corresponding furanose forms. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 1. Mean errors associated with the S-curves given in Figure 4.

Mean error (kJmol21)

Open chain a-Furanose b-Furanose

Erythrose 0.27 1.32 1.30

Threose 0.34 0.83 1.47
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the training set. This is a commonly used technique in the

field of machine learning. Whilst not currently implemented

within our methodology, the iterative protocol is a technique

which is currently being explored.

Regardless of the problem encountered in the above, we

see that it is easily remedied by strategic sampling of confor-

mational space. In fact, these problems are ubiquitous to

machine learning techniques, and have been encountered in

studies which attempt to implement neural networks to pre-

dict a PES.[57] In this field, the problems have been solved to

some extent by making the prediction engine issue a warning

to the user that a point is being predicted which lies outside

of the training set. This proves to be advantageous as the user

may then recognize that the point should be included within

the training set as it obviously lies within an accessible portion

of conformational space. The point can then be included

within the training set, and one can generate refined models

by undergoing this process iteratively.

Training set dependency

We start by discussing the effects of increasing the training set

size on the prediction error for a kriging model. For this pur-

pose, we use the erythrose open chain system owing to its

higher conformational flexibility, which we assume amplifies

the effects of training set size. Kriging models were generated

for this system with training sets ranging from 700 to 1500

sampling points, in increments of 100. The same test set (of

200 points) was reserved for prediction by all models. The

S-curves for this are given in Figure 5.

As expected, the prediction errors of the S-curves in Figure

5 systematically decrease as the training set size is increased.

In other words, the S-curves move to the left with increasing

training set size, although this is not true for all parts of the

S-curves because they clearly intersect in many places. Overall

the uniform increments of 100 in training set size are not

matched by equal uniform strides of improvement in S-curve

shape and position. An alternative way to gauge the improve-

ment in prediction with increasing training set size is monitor-

ing the average prediction error for each S-curve. This value

cannot be read off for an S-curve in Figure 5 but can be easily

calculated.

Figure 6 plots the average prediction error for each S-curve

against increasing training set size: red for “Old FEREBUS” and

blue for “New FEREBUS,” a development version of our kriging

engine, which differs in a number of ways to the “Old

FEREBUS.” We include both “Old FEREBUS” and “New FEREBUS”

data to establish whether any functional forms of average pre-

diction error against increasing training set size are conserved

with respect to improvements in the engine. The “Old

FEREBUS” data show a plateau in the average error (left pane)

at a training set size of about 1200, after an initial decrease in

this error. This plateau would be rather problematic, as it

implies some maximum efficiency of the kriging engine,

beyond which there is no reward for an extension of the train-

ing set. However, this is not the case for the New FEREBUS

data (right pane).

Learning theory states that for a machine learning method

of this type (kriging), the mean prediction error should

decrease asymptotically toward zero, with functional form

A 1 B/n or C 1 D/
ffiffiffi
n
p

, where n is the training set size, and A, B,

C, and D are fitted constants. Figure 6 plots these asymptotes,

where (Aold 5 0.105; Bold 5 348.11) and (Cold 5 20.293;

Dold 5 22.06), as determined by regression analysis against the

Old FEREBUS data, each with R2 coefficients of 0.93. Similarly,

for the New FEREBUS data, constants of (Anew 5 0.097;

Bnew 5 293.38) and (Cnew 5 20.193; Dnew 5 18.60) were

obtained. These fitted asymptotes both possess R2 values of

0.98. As such, we conclude that the decay of the mean predic-

tion error of our machine learning method possesses, as yet,

inconclusive functional form.

The results in Figure 6 are consistent with the behavior seen

in similar interpolation methods[58]: for an infinite training set

size, the mean prediction error will asymptote to zero. How-

ever, for the methodology to remain computationally feasible,

some finite training set size will of course be required.

So, for example, we find that for a mean prediction error of

0.3 kJ mol21, the training set would require about 1450 sam-

ple points for either functional form taken as the decay of the

prediction error, i.e. A 1 B/n or C 1 D/
ffiffiffi
n
p

.

A comment on the nature of the average error is in place

here. In principle, the prediction error consists of the sum of

the estimation error and the approximation error. From learn-

ing theory, one expects the estimation error only to go to

zero. The bias–variance decomposition of a learning algo-

rithm’s error also contains a quantity called the irreducible

error, resulting from noise in the problem itself. This error has

been investigated some time ago in the context of tests on

kriging of ethanol multipole moments[41] and is caused by the

small noise generated by the integration quadrature of the

atomic multipole moments. Second, any bias caused by an

inherent error in the ab initio method used, compared to the

Figure 5. S-curves for erythrose open chain at various training set sizes.

Note the progression of the S-curves towards the lower prediction errors

as the training set size increases. However, owing to the logarithmic

abscissa, this does not correspond to a uniform enhancement of a kriging

model given a consistently larger training set size. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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best method available (e.g. CCSD(T) with a complete basis

set), is not relevant in our error considerations. The reason is

that we always assess the performance of kriging training

against the (inevitably approximate) ab initio at hand, which

we refer to the source of “the” ab initio data.

Multiple minima

The amount of conformational space available to molecular

systems reaches levels which are entirely unfeasible for sys-

tematic sampling as the number of atoms increases. As such,

it becomes all the more prudent to obtain an efficient sam-

pling scheme for our purposes. As we have mentioned, our

sampling methodology is limited to local conformational

exploration about some given input geometry, since the PES

about that point is approximated as a harmonic well. As such,

to thoroughly explore conformational space, our methodology

requires the usage of a number of such starting geometries.

Then, the molecular PES is approximated by a number of har-

monic wells. If the input geometries are sufficiently close to

one another, the wells will overlap, and the PES may be

explored seamlessly. Non-equilibrium normal mode conforma-

tional sampling has also been demonstrated in a recent publi-

cation.[59] This advance will facilitate a more thorough

sampling of these higher energy parts potential energy surfa-

ces. The validation of this methodology is presented in Part B

of Supporting Information.

For the open chain form of erythrose, 174 energetic minima

were found by an exhaustive search of conformational space.

Figure 7 plots the S-curves obtained for samples which have

been generated from different numbers of up to 99 minima.

The S-curves display increasingly poor prediction results as the

number of starting minima increases. The actual mean errors

for these S-curves are summarized in Table 2. This trend has a

logical interpretation. As the number of seeding structures

increases, the sampled conformational space grows in size.

Given a fixed kriging model size, the sampling density therefore

decreases. The kriging model then deviates from the true ana-

lytical function, and the results from predictions deteriorate.

Of course, thorough sampling of conformational space is an

issue for parameterizing any force field, and by no means one

that is resultant from our methodology. We may overcome this

issue in two ways. The first is the ongoing improvement of our

kriging engine to deal with larger training sets comprising more

molecular configurations. The second is by undertaking sampling

with only a subset of the energetic minima that are available.

This is all the more valid an approach if most of the minima are

very high in energy relative to the lowest-lying minima. These

Figure 6. Mean prediction errors associated with S-curves for erythrose open chain as the training set size is increased. With the old kriging engine (left), a

distinct plateau formed after roughly 1200 training examples, corresponding to no further improvement in the kriging model despite additional training

points. However, the new kriging engine (right) appears to avoid premature plateauing, with additional kriging model improvement at higher training set

sizes. Regression fits of the FEREBUS errors against training set size, of functional forms A 1 B/n (blue) and C 1 D/
ffiffiffi
n
p

(black), where n is the training set

size, are also given. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. S-curves depicting the power of a kriging model as more ener-

getic minima are utilized for conformational sampling. As the number of

minima utilized increases, the S-curves tend toward higher prediction

errors. The kriging models which underlie these S-curves have a fixed train-

ing set size of 700. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Table 2. Mean errors corresponding to the S-curves depicted in Figure 7.

Number of minima 1 20 40 60 80 99

Mean prediction

error (kJmol21)

0.27 0.85 0.9 1.23 1.30 1.37

Note the “bunching” of prediction error when 60 energetic minima or

higher are used as seeds for the conformational sampling.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 2361–2373 2371

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


regions of conformational space will be accessed very infre-

quently during the course of a MD simulation, and so may be

sampled much more coarsely. This selective sampling is quite

readily employed, and has been discussed at length in the litera-

ture. For example, Brooks and Karplus[60] found that a compre-

hensive sampling of conformational space for bovine pancreatic

trypsin inhibitor could be achieved by evolving only the lowest

frequency normal modes of motion. Needless to say, this is read-

ily accomplished by our sampling methodology.

Conclusion

We have demonstrated that the atomic multipole moments of

a set of carbohydrates are amenable to the machine learning

technique kriging. Whilst this has been done in the past for a

variety of chemical species including naturally occurring amino

acids, this is the first foray into the field of glycobiology. Krig-

ing is able to capture the conformational dependence of the

multipole moments and make predictions, such that the error

in the electrostatic energy relative to that derived from ab ini-

tio data is encouraging, given the popular aim is to obtain

errors below 4 kJ mol21. Indeed, the presented methodology

is immediately extensible to any term arising in an energetic

decomposition of a system. If some quantity is conformation-

ally dependent, then the dependence can be modelled by

kriging. As such, an entire force field can be parameterized by

the current methodology, reproducing ab initio quantities for

use in classical MD. This route is preferable to the computa-

tionally intensive approach of ab initio MD.
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