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Abstract: Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2
is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate.
In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity
of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic
hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after
treatment with 17β-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1
cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of
the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7,
and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1
cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite
results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest
that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome
formation. These results provide a better understanding of the mechanism involved in the effect of
LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or
treatment of human BPH.
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1. Introduction

Benign prostatic hyperplasia (BPH) is characterized by non-cancerous prostate gland
enlargement. BPH occurs commonly in aging men. Increased cell numbers in the epithelial
and stromal cells of the prostate are among the main etiologies of BPH [1]. Traditionally,
the development of BPH requires the presence of testicular androgen as the prostate is a
hormone-response organ. In prostate cells, androgen is transformed into dihydrotestos-
terone (DHT) by type II 5α-reductase. These signaling pathways have been considered to
be the main signaling pathways for BPH development [2]. Emerging evidence has shown
that BPH regulated by DHT is far from the clinical consequences of aging-related BPH
etiology. In humans, as serum androgens decline with advancing age, serum estradiol
(E2) levels remain relatively constant. However, the net effect is an increased serum E2 to
testosterone (T) ratio [3]. Moreover, in situ local production of E2 has been implicated in
prostatic hyperplasia. It has been shown that loss of aromatase expression causes decreased
estrogen-induced prostate proliferation [3,4]. In this regard, a high serum E2 to T ratio in
the prostate may contribute to the progression of BPH processes.

Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila [5].
The maintenance of cell polarity is the most essential property of normal cells. It is crucial
to regulate various biological processes, such as differentiation, proliferation, adhesion,
migration, and tumor formation [6,7]. In Drosophila, Lgl functions as a tumor suppressor,
controlling the self-renewal and differentiation of progenitor cells [8,9]. There are two
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orthologs of Lgl in mammalian genomes: Llgl1 and Llgl2. However, little is known about
their functions in vivo. Several studies have shown that LLGL1 is a tumor suppressor
in various human cancers [10–12]. LLGL2 is also associated with cancer progression. It
is vital for asymmetric cell division and migration [13,14]. LLGL2 can suppress Snail-
induced epithelial-mesenchymal transition (EMT) as a tumor suppressor, preventing the
dissemination of breast cancer [15]. Nevertheless, Saito et al. have recently reported that
LLGL2 functions as a tumor promoter, not a tumor suppressor, by assisting cancer cells
in overcoming nutrition stress in human ER+ breast cancer [16]. Leng et al. have also
shown that LLGL2 can facilitate the proliferation and migration as well as the metastasis
in hepatocellular carcinoma [17]. However, the biological implications of LLGL2 in the
prostate, especially BPH, remain unknown.

Thus, this study investigated the expression of LLGL2 in BPH. Furthermore, we
examined the role of LLGL2 in the E2-mediated proliferation of BPH-1 cells, which in turn
could influence autophagic pathways.

2. Materials and Methods
2.1. Animal Experiments and Immunohistochemical Staining

The experimental protocols using animals were approved by the International An-
imal Ethics Committee at Chungnam National University (202009A-CNU-147). Male
Sprague–Dawley (SD) rats (n = 30, six-weeks-old) were purchased from Orient Bio (Gyeonggi-
do, Korea) and acclimated for one week. These SD rats were placed in a specific-pathogen-
free (SPF) room under controlled temperature (22 ± 2 ◦C), humidity (55 ± 5%), and
photoperiod (12 h light/12 h dark cycle). All the animals were fed water and standard
chow ad libitum. The rats were given subcutaneous (S.C.) injections of T (5 mg/kg dis-
solved in corn oil) for four weeks to induce BPH. Following the final injection, the rats were
fasted overnight and euthanized by CO2 asphyxiation in a euthanasia apparatus. Their
prostate tissues were excised, fixed immediately in a 10% buffered formalin phosphate
solution, embedded in paraffin, and cut into 5 µm sections. These sections were subjected
to deparaffinization and hydration. The prostatic antigens were retrieved with Tris-EDTA
solution through heating under steam for 10 min. The sections were treated with 0.3%
(v/v) hydrogen peroxidase in methanol for 15 min to block endogenous peroxidase activity.
They were blocked with 1.5% normal goat serum for 1 h. These blocked specimens were
incubated with antibodies against LLGL2 (1:200, Santa Cruz, Dallas, TX, USA) in a hu-
midified chamber overnight at 4 ◦C. After washing with PBS, the sections were incubated
with horseradish peroxidase-conjugated anti-mouse IgG antibody (1:200; AbFrontier, Seoul,
Korea) in a humidified chamber for 1 h at room temperature (RT). A 3,3’-diaminobenzidine
substrate kit (Vector Labs, Burlingame, CA, USA) was used to visualize signals under a
microscope. The slides were examined using an Eclipse 80i microscope (Nikon, Tokyo,
Japan) and evaluated. Ten randomly selected fields were evaluated for each slide.

2.2. Cell Culture and Reagents

Human BPH-derived prostate epithelial cell lines (BPH-1) were purchased from Merck
Millipore (Merck, Kenilworth, NJ, USA). The cell line was cultured in RPMI 1650 (Gibco,
Grand Island, NY, USA) medium with 1% penicillin/streptomycin (Gibco) and 10% fetal
bovine serum (FBS, Gibco) at 37 ◦C in a 5% CO2 atmosphere. The cells were seeded into
6-well plates at a density of 3.0 × 105 cells/well in 2 mL of medium. E2 was purchased
from Sigma Aldrich (St. Louis, MO, USA).

2.3. siRNA and Plasmid Transfection

The BPH-1 cells were transfected with LLGL2 siRNAs (Santa Cruz) using Lipofec-
tamine™ RNAiMAX Transfection Reagent (Thermo Fisher Scientific, Waltham, MA, USA)
for 48 h according to the manufacturer’s instructions. Firstly, 30 p moles of siRNA were
diluted in 150 µL of OPTI-MEM (Gibco) medium, and 9 µL of Lipofectamine™ RNAiMAX
Reagent was diluted in 150 µL of OPTI-MEM medium. Diluted LLGL2 siRNAs were
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then mixed with Lipofectamine™ RNAi MAX Reagent (1:1 ratio) and incubated at RT for
5 min. During the incubation time, 2 mL of serum-containing medium was removed and
a charcoal-dextran-treated FBS (CDS, Gibco)-containing medium was added. Finally, the
transfection mix was dropped into cells in a CDS-containing medium. The efficiency of the
LLGL2 knockdown was examined by Western blot. To overexpress the LLGL2, the LLGL2
gene was sub-cloned into pEXPR-IBA105 vectors to obtain LLGL2 plasmids. The BPH-1
cells were transfected with the LLGL2 plasmids with Lipofectamine 2000 Reagent (Thermo
Fisher Scientific) according to the manufacturer’s instructions. The efficiency of the LLGL2
overexpression was then examined by Western blot.

2.4. Cell Viability Assay

The BPH-1 cells were seeded in a 96-well plate at a density of 1 × 104 cells/well and
incubated in a 5% CO2 atmosphere at 37 ◦C for 24 h. The cells were treated with LLGL2
siRNAs for 48 h. Next, the cells were treated with E2 (0, 10, and 100 nM) for 24 h. The
cell proliferation was examined with the EZ-Cytox Cell Viability Assay Kit (Biomax, Seoul,
Korea) according to the manufacturer’s instructions. Briefly, 10 µL of EZ-Cytox working
solution per 100 µL of the medium was added to the 96-well plate, and the cells were
incubated at 37 ◦C for 1 h. Absorbance was measured with a microplate reader (BIO-TEK,
Senergy HT). The cell viability was calculated as 100% × (OD450 nm of S. mirabilis extract
group/OD450 nm of the control group).

2.5. Observation of Cell Confluency

The BPH-1 cells were seeded in a 6-well plate at a density of 1 × 105 cells/well
and incubated in a 5% CO2 atmosphere at 37 ◦C for 24 h. The BPH-1 cells were treated
with LLGL2 siRNAs for 48 h and were treated with E2 (0 and 100 nM) for 24 h. The cell
morphology was observed with a phase-contrast microscope (Olympus, Tokyo, Japan).
Photographs were taken at a magnification of 100×.

2.6. Flow Cytometry

The BPH-1 cells were seeded in a 6-well plate at a density of 1 × 105 cells/well and
incubated in a 5% CO2 atmosphere at 37 ◦C for 24 h. The BPH-1 cells were treated with
LLGL2 siRNAs for 48 h and were treated with E2 (0 and 100 nM) for 24 h. The cells
were washed with PBS and were fixed with ice-cooled 70% ethanol at 4 ◦C for 1 h. The
BPH-1 cells were stained with propidium iodide (PI, Invitrogen) and analyzed by flow
cytometry (BD Bioscience, FranklinLakes, NJ, USA). The cell proliferation was expressed as
the percentage of S-phase cells.

2.7. Western Blot Analysis

The cells were lysed in a Radio-Immunoprecipitation Assay (RIPA) buffer (Cell Sig-
naling Technology, Danvers, MA, USA) in the presence of a protease inhibitor cocktail
(Roche, Mannheim, Germany) for 15 min on ice and centrifuged at 12,000 rpm for 15 min
at 4 ◦C. The supernatant was collected and used for Western blotting. Protein samples
(10 µg/well) were separated by 6–12% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE). Resolved proteins were transferred to polyvinylidene fluoride
membranes with a wet transfer system (Bio-Rad, Hercules, CA, USA). The membranes
were blocked with 5% (w/v) skim milk in 1× phosphate buffered saline (PBS) containing
0.1% Tween-20 (PBS-T). These membranes were then incubated with antibodies against
LLGL2, ATG7 (1:1000, Santa Cruz), LC3 (1:1000, Sigma-Aldrich), CyclinD1 (1:1000, Cell
Signaling Technology, Danvers, MA, USA), p-beclin, or β-actin (Abcam, Cambridge, UK)
at 4 ◦C overnight. After washing three times with PBS-T, the membranes were incubated
with a horseradish peroxidase-conjugated IgG (anti-rabbit or anti-mouse) secondary anti-
body (1:5000, AbFrontior, Seoul, Korea). Each protein expression was detected using an
enhanced chemiluminescence detection kit (Thermo Fisher Scientific). Signal intensities
were quantified using Image Lab (Bio-Rad).
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2.8. Immunofluorescence

The BPH-1 cells were fixed in 4% paraformaldehyde for 15 min, washed with PBS
three times, and blocked with 3% bovine serum albumin for 30 min. These cells were
then incubated with anti-LC3 (1:500, Sigma-Aldrich) at 4 ◦C overnight. The cells were
washed with PBS and incubated with Goat Anti-Rabbit IgG (Alexa Fluor® 488) conju-
gated secondary antibodies (Abcam) at RT for 1 h. The nucleus was counterstained with
4′6-diamino-2-phenylinodole (DAPI, Vector Labs). Zeiss LSM 880 with Airyscan confocal
microscopy (Carl Zeiss, Jena, Germany) was performed at 488 and 592 nm wavelengths.
Images were captured with ZEN software.

2.9. Detection of Autophagy Flux

The formation of autophagosome and autolysosome in the BPH-1 cells was detected
using a Premo™ Autophagy Tandem Sensor RFP-GFP-LC3B Kit (Thermo Fischer Scientific,
Grand Island, NY, USA) following the manufacturer’s instructions. The RFP-GFP-LC3B
sensor could detect LC3B positive, neutral pH autophagosomes in green fluorescence (GFP)
and LC3B positive, acidic pH autophagolysosme in red fluorescence (RFP). The BPH-1
cells were grown on coverslips and incubated with 6 µL of BacMam Reagents containing
RFP-GFP-LC3B overnight. These cells were then treated with LLGL2 siRNAs alone for 48 h.
The cells were washed with PBS three times. The nucleus was counterstained with DAPI
(Vector Labs). Zeiss LSM 880 with Airyscan confocal microscopy (Zeiss) was performed at
wavelengths of 488 and 592 nm. Images were captured with ZEN software.

2.10. Statistical Analysis

The data are expressed as mean ± standard deviation (SD). All statistical analyses
were performed using one-way ANOVA with a Tukey’s multiple comparison test. p-values
of less than 0.05 were considered statistically significant.

3. Results
3.1. LLGL-2 Expression in Testosterone-Induced Rat BPH Animal Model

To investigate the expression of LLGL2 in BPH in vivo, we used normal rat prostate
and testosterone-induced rat prostate for IHC and Western blotting. In the testosterone-
induced BPH tissues, LLGL2 was especially overexpressed in the epithelial region of the
prostate (Figure 1B,D). However, the normal rat prostate barely had LLGL2 expression
(Figure 1A,C). To confirm this finding, the LLGL2 expression level in prostate tissue was
analyzed by Western blotting. Consistent with the results of the IHC analysis, the expression
of LLGL2 was increased in testosterone-induced BPH tissues compared to that in the normal
prostate tissue (Figure 1E,F).

3.2. LLGL2 Expression in Estradiol-Induced BPH-1 Cell Proliferation

During the progression of BPH, the hormone is a pivotal regulatory factor for the
proliferation of the prostate. Testosterone is one of the most potent hormones for prostatic
proliferation. Recently, it has been shown that E2 can also affect prostatic cell prolifer-
ation [18]. In this regard, we treated the BPH-1 cells with E2 to analyze its effect on
cell proliferation. Upon E2 treatment, the cell proliferation was observed by MTT assay
(Figure 2A). Notably, the expression of LLGL2 was up-regulated by the E2 treatment in
the BPH-1 cells. Additionally, the expression of Cyclin D1 was increased in the E2-treated
BPH-1 cells (Figure 2B). The knockdown of LLGL2 using siRNA significantly reduced the
expression of LLGL2 in the BPH-1 cells. The expression of Cyclin D1 was also decreased by
si-llgl2 in the E2-treated BPH-1 cells (Figure 3A). Morphologically, the number of adherent
cells was increased after the E2 treatment, whereas the knockdown of LLGL2 reduced
the number of adherent cells (Figure 3B). Moreover, the viability of the BPH-1 cells was
significantly decreased after si-llgl2 treatment in the E2-treated BPH-1 cells compared to
that in the E2-treated BPH-1 cells with si-cont treatment (Figure 3C). Cell cycle analysis
also showed that the E2-treated BPH-1 cells with si-cont elevated in the S-phase, while the
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E2-treated BPH-1 cells with si-llgl2 showed a decrease in the S-phase (Figure 3D,E). Taken
together, these results demonstrate that the silencing of LLGL2 expression could reduce the
E2-induced proliferation of BPH-1 cells.
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3.3. Inhibition of LLGL2 Expression Induces Autophagy

Several studies have shown a close correlation between cell cycle responses and au-
tophagy [19,20]. Next, we examined whether the silencing of LLGL2 expression could
regulate autophagy in E2-induced BPH-1 cells. The silencing of LLGL2 expression remark-
ably induced LC3-II expression and increased LC3 puncta in the E2-treated BPH-1 cells
(Figure 4A,B). The expression levels of ATG7 and p-beclin, closely related to autophago-
some formation, were significantly increased in the si-llgl2-E2-treated BPH-1 cells. The
silencing of LLGL2 resulted in a decreased level of p62 expression (Figure 4A). To visualize
the effect of silencing the LLGL2 gene in the E2-treated BPH-1 cells, autophagosomes were
stained with a specific tandem RFP-GFP-tagged LC3. Consistent with the protein expres-
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sion results of LC3 and LC3 puncta, the yellow fluorescent autophagosomes were increased
after the LLGL2 knockdown in the E2-treated BPH-1 cells (Figure 4C). These results indicate
that the silencing of LLGL2 expression can induce autophagosome formation in E2-treated
BPH-1 cells.
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Figure 4. LLGL2 knockdown stimulates autophagosome formation in E2-treated BPH-1 cells. BPH-1
cells were transiently transfected with a negative control siRNA (si-cont) or with LLGL2 siRNA (si-
llgl2) against LLGL2 for 48 h. After that, cells were treated with E2 (0 and 100 nM) for 24 h. (A) Western
blot data of p-beclin, ATG7, LC3, and p62 protein expression levels in E2-treated BPH-1 cells after
LLGL2 knockdown. (B) Representative images of endogenous LC3 puncta in E2-treated BPH-1 cells
after LLGL2 knockdown. Cell nuclei were visualized by 6-diamino-2-phenylindole (DAPI; blue)
staining and LC3-II was visualized with Alexa 488 conjugate (green) at 400×magnification. Scale
bar = 10 µm. (C) Representative images of RFP-GFP-LC3 tandem fluorescent-tagged LC3 (RFP-GFP-
LC3) in E2-treated BPH-1 cells after LLGL2 knockdown at 630×magnification. Scale bar = 50 µm.

3.4. Overexpression of LLGL2 Promotes the Proliferation of BPH-1 Cells

To further examine the effects of LLGL2 on the proliferation and autophagy of E2-
treated BPH-1 cells, the overexpression (O/E) LLGL2 vector was used to transfect E2-treated
BPH cells. The expression of Cyclin D1 was increased in the LLGL2 O/E vector-treated
group. Additionally, there was no significant change in the expression of LC3-II due
to the overexpression of LLGL2 (Figure 5). Collectively, these findings suggest that the
overexpression of LLGL2 shows the opposite results from the knockdown of LLGL2 in
E2-treated BPH-1 cells.
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treated BPH cells. The expression of Cyclin D1 was increased in the LLGL2 O/E vector-
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in E2-treated BPH-1 cells. 
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expression are shown. 
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upregulated the expression of LLGL2. The silencing of LLGL2 expression inhibited cell 
proliferation and induced autophagosome formation in the E2-treated BPH cells. Moreo-
ver, the overexpression of LLGL2 stimulated the proliferation of E2-treated BPH cells. Our 
results are noteworthy because the role of LLGL2 in proliferation of the prostate is cur-
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Figure 5. LLGL2 overexpression in E2-treated BPH-1 cells. BPH-1 cells were transiently transfected
with a negative control vector (Cont) or with LLGL2 overexpression plasmid (LLGL2 O/E, Strep-
tag pEXPR-IBA 105-LLGL2) for 24 h. After that, cells were treated with E2 (0 and 100 nM) for
24 h. Western blot data of STrEP, LLGL2, cyclinD1, and LC3 in E2-treated BPH-1 cells after LLGL2
overexpression are shown.

4. Discussion

In this study, we first assessed the expression levels of LLGL2 in the prostate, especially
in the BPH. We found that the expression of LLGL2 was increased in testosterone-induced
rat BPH in vivo. In the BPH-1 cells, E2 treatment affected the cell viability and upregulated
the expression of LLGL2. The silencing of LLGL2 expression inhibited cell proliferation
and induced autophagosome formation in the E2-treated BPH cells. Moreover, the over-
expression of LLGL2 stimulated the proliferation of E2-treated BPH cells. Our results are
noteworthy because the role of LLGL2 in proliferation of the prostate is currently unknown.

McNeal has proposed one prominent theory of BPH pathogenesis, which is that
hyperplasia of the prostate is induced by DHT, which is an essential metabolite of T and the
most potent androgen in men [21]. However, various studies have shown that androgens
are permissive but insufficient for the induction and maintenance of BPH. Androgens might
not influence prostate growth because the supplementation of men with androgens does not
appear to increase the incident risk of BPH or to lower urinary tract symptoms (LUTS) [22].
Furthermore, BPH prevalence increases with age, while levels of serum androgens decline.
On the other hand, the serum levels of E2 remain relatively constant, although the net
effect is an increased ratio of serum E2 to T. E2 is considered the most potent estrogen
in men. It is essential for various physiologic processes, including bone maturation and
mineralization, peak bone mass, and skin and lipid metabolism [23]. Recently, Saito et al.
have reported that E2 in ER+ breast cancer can control the regulation of LLGL2. We focused
on these mechanisms of the action of E2 regarding cell proliferation and applied them to
BPH-1 prostate epithelial cell lines. Our results showed that E2 treatment induced cell
proliferation and regulated the S-phase of BPH-1 cells. Moreover, E2 treatment increased
the expression of LLGL2 in BPH-1 cells. Consistent with the in vitro results, the expression
of LLGL2 was also upregulated in the testosterone-induced rat BPH prostate. These results
demonstrate that LLGL2 is closely related to prostate cell proliferation.
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Autophagy is a highly conserved evolutionary and complex cellular process in eu-
karyotic cells. Cytoplasmic long half-life proteins and organelles are sequestered within
autophagosomes and delivered to lysosomes for degradation and recycling [24]. Au-
tophagy is a critical regulatory mechanism for cell proliferation and death. Several reports
have revealed that autophagy is involved in BPH development [25,26]. The inhibition of
androgen can induce autophagy in benign prostatic epithelial cells [27]. Jiang et al. have
shown that ATG9A is upregulated after long-term 5α-reductase treatment in BPH progres-
sion [28]. In this regard, autophagy is helpful against the proliferation of the prostate by
protecting intracellular homeostasis [19,29]. In this study, silencing LLGL2 expression upon
E2 treatment showed enhanced autophagy through the upregulation of LC3-II, ATG-7, and
p-beclin and the downregulation of p62. LC3-II, ATG-7, p-beclin, and p62 are known to be
key regulatory molecules for autophagosome formation [24]. These results suggest that the
silencing of LLGL2 expression might regulate the autophagosome formation in E2-treated
BPH-1 cells. Moreover, the overexpression of LLGL2 was able to further prove these find-
ings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1
cells. The present study revealed that silencing LLGL2 could suppress the proliferation of
BPH-1 cells.

Overall, we suggested the role of LLGL2 in the proliferation of the prostate by the
regulation of autophagy processes. This is the first attempt to study the role of LLGL2 in
the prostate. These results provide a better understanding of the mechanisms involved in
the role of LLGL2 in prostate cell proliferation. LLGL2 might serve as a potential target in
the diagnosis and/or treatment of BPH.
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