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Abstract. Multiple cellular components are involved in the 
complex pathological process following central nervous system 
(CNS) injury, including neurons, glial cells and endothelial 
cells. Previous studies and neurotherapeutic clinical trials have 
assessed the molecular mechanisms that underlie neuronal 
cell death following CNS injury. However, this approach has 
largely failed to reduce CNS damage or improve the functional 
recovery of patients. Erythropoietin-producing human hepa-
tocellular (Eph) receptors and ephrin ligands have attracted 
considerable attention since their discovery, due to their exten-
sive distribution and unique bidirectional signaling between 
astrocytes and neurons. Previous studies have investigated the 
roles of Eph/ephrin bidirectional signaling in the developing 
central nervous system. It was determined that Eph/ephrin 
bidirectional signaling is expressed in various CNS regions 
and cell types, and that it serves diverse roles in the adult CNS. 
In the present review, the roles of Eph/ephrin bidirectional 
signaling in CNS injuries are assessed.
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1. Introduction

Erythropoietin-producing human hepatocellular (Eph) proteins 
constitute the largest known receptor tyrosine kinase family, 
and the first identified was the EphA1 receptor in 1987 (1). 
The Eph receptor family comprises 14 members in humans 
and other mammals and is divided into two subfamilies based 
on sequence conservation and ligand binding affinity: EphA 
(EphA1-EphA8 and EphA10) and EphB (EphB1-EphB4 
and EphB6) (2). Eph receptors are activated when bound to 
membrane-combined ephrin ligands. A total of nine EphA 
receptors preferentially bind to five glycosylphosphatidylino-
sitol-anchored ephrin-A ligands (ephrin-A1-A5). In addition, 
five EphB receptors possess high‑affinity binding domains to 
three transmembrane ephrin-B (ephrin-B1-B3) ligands. EphA4 
and EphB2 are exceptions, which can bind to both A-type and 
most B-type ligands (2). The formation of the Eph/ephrin 
complex initiates bidirectional signaling, which acts upon 
Eph-expressing and ephrin-expressing cells. Signaling path-
ways that are directly initiated by Eph receptors and ephrin 
ligand activations are termed forward signaling and reverse 
signaling, respectively (3). Previous studies have reported the 
diverse roles of Eph/ephrin bidirectional signaling in patho-
logical and physiological processes (4-7).

2. Eph and ephrin structure

Eph structure. Eph receptors exhibit similar structural 
characteristics, despite the large number of subtypes. The 
extracellular region of Eph receptors is primarily comprised 
of a highly-conserved N-terminal globular domain, which is 
essential for ephrin identification and binding (8). Following 
on from the globular domain, the Eph extracellular region also 
includes one unique cysteine‑rich and two fibronectin type III 
motifs, which affect receptor dimerization (8,9). The intracel-
lular region of Eph contains four structural and functional 
units: A juxtamembrane region, a conserved kinase domain, 
a sterile-a-motif (SAM) domain and a PSD95/Dlg/ZO1 
(PDZ)-binding motif. The juxtamembrane region is a highly 
conserved motif containing two tyrosine residues, which are 
the primary autophosphorylation sites for downstream signal 
transduction (10,11). The conserved tyrosine kinase domain 
is involved in the binding and activating of small guanosine 
5'-triphosphate (GTP)ases, which are important for the regu-
lation of the cytoskeletal structure (12). The SAM domain 
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is located in the carboxyl-terminal tail of Eph receptors. It 
is a conserved region containing 60-70 amino acids, which 
regulates receptor dimerization and initiates downstream 
signal transduction (13,14). The postsynaptic density of the 
protein zona occludens PDZ-binding domain is critical for the 
assembly and localization of the Eph/ephrin complex (15).

Ephrin structure. Ephrin ligands are divided into two subfam-
ilies based on sequence conservation and their respective 
affinities for Eph receptors; ephrin‑A and ephrin‑B. Ephrin‑A 
ligands (ephrin-A1-A5) possess a GPI-anchor that attaches 
ephrin-A to the membrane at the carboxyl terminal. Ephrin-B 
ligands (ephrin-B1-B3) possess a single transmembrane domain 
and a highly conserved carboxyl terminal tail, containing 
five tyrosine phosphorylation sites and a carboxyl‑terminal 
PDZ-domain binding motif that is the structural basis for 
downstream signal transduction (4,16).

Eph/ephrin complex formation and bidirectional signaling. 
A unique feature of the Eph/ephrin complex is that it initi-
ates bidirectional signaling following its formation; the Eph 
receptor may act as a ligand and the ephrin ligand may act as 
a receptor (17). Forward and reverse signaling is involved in 
numerous physiological processes, including cell migration, 
axonal outgrowth, axonal pathfinding, topographic mapping, 
axon fasciculation and vascular formation in the developing 
nervous system (18,19).

The initiation of Eph/ephrin bidirectional signaling requires 
the formation of highly clustered Eph/ephrin complexes. 
Previous studies have demonstrated that recombinant soluble 
ephrin must be pretreated to form clusters and induce Eph 
receptor phosphorylation and downstream signaling (20,21). 
Soluble monomeric ephrins act as Eph receptor antagonists 
instead of Eph receptor agonists (22,23). Similarly, reverse 
signaling through ephrin ligand requires interactions with 
clustered Eph receptors (24,25). The blocking functions of 
soluble monomeric ephrin or Eph extracellular domain (ECD) 
may therefore provide a potential tool for the manipulation of 
bidirectional signaling (26).

Eph forward signaling induced by ephrin binding initiates 
downstream signal transduction following the autophosphory-
lation of two conserved tyrosine residues in the juxtamembrane 
region (27). Downstream pathways of Eph forward signaling 
have been studied extensively (15,17,27-36). Eph receptor-medi-
ated forward signaling modulates the dynamic rearrangement 
of the cytoskeleton and is involved in cellular remodeling, 
serving a role in certain regenerative processes, including 
neurite outgrowth and cell migration (37). Previous studies 
have demonstrated that Eph receptors are highly specific to 
Rac, cell division control protein 42 (Cdc42), Rho and small 
GTPases, which are critical for the regulation of the actin cyto-
skeleton (37,38). Eph receptor forward signaling inhibits axonal 
regeneration in neurons by stimulating growth cone collapse 
through Rac and Cdc42 (37,39-41). In contrast, the blocking 
of Eph receptors stimulates the activation of downstream 
Rac and Cdc42, promoting axonal outgrowth (42). Therefore, 
EphA receptor signaling may also provide repulsive guid-
ance for growing axons via the activation of Rho. It has been 
demonstrated that Rac and Cdc42 activation promote axonal 
outgrowth in the absence of Eph forward signaling (31,42,43). 

Notably, EphB1/EphB2/EphB3 triple knockout mice had long, 
thin and immature neural spines compared with wild-type 
mice, suggesting that ephrin-B/EphB signaling promotes spine 
formation and maturation (44). Ephexin is a novel member of 
the diffuse B cell lymphoma-like family of guanine nucleotide 
exchange factors. It functions to link EphA4 receptors to Rho 
GTPases, which serve vital roles in axon guidance (31,43). 
It has been demonstrated that ephrin-A3 acts via EphA4 to 
suppress Wnt/β-catenin signaling to inhibit the neurogenic 
potential of retinal stem cells (45). Eph forward signaling may 
also be involved in the mitogen-activated protein kinase, phos-
phoinositide 3-kinase (PI3K) and Janus kinase/signal transducer 
and activator of transcription (STAT) pathways (46-48).

Ephrin signal conduction into its host cell is defined as 
reverse signaling. Previous studies have revealed that ephrin 
reverse signaling is involved in neural progenitor prolif-
eration (49), axon guidance (50), neuronal migration (51) and 
synaptic plasticity (50). However, the intracellular signaling 
cascades that are initiated following ephrin activation remain 
unknown. Ephrin-As lack a cytoplasmic tail; however, they are 
capable of activating downstream Src family kinases (SFKs) 
and PI3K with the aid of co-receptors (52,53). It was demon-
strated that associated transmembrane signaling partners, 
including topomyosin receptor kinase B and p75 neurotrophin 
receptor, may act as co-receptors for ephrin-As (54).

Ephrin-B ligands are composed of a single transmembrane 
region and a short, highly conserved cytoplasmic domain with 
a carboxy-terminal PDZ domain-binding motif. Together, 
these constitute the structural foundation required for reverse 
signaling (55). The activation of ephrin-B ligands leads to the 
recruitment of SFKs, which phosphorylate tyrosine residues 
located in the cytoplasmic domain. Previous research has 
revealed that Src-homology-2-domain-containing adaptor 
molecules, such as Grb4, are recruited and phosphorylated by 
ephrin-B, which further initiates downstream signaling and 
regulates cytoskeletal dynamics (56-60). The basophil-like 
protein tyrosine phosphatase is also recruited via its PDZ 
domain to the carboxy-terminal tail of ephrin-B, leading 
to its dephosphorylation and the inactivation of SFKs. This 
inactivation acts as a switch from phosphotyrosine-dependent 
to PDZ-domain-dependent signaling (61). PDZ regulation 
of G-protein signaling 3 may inhibit C-X-C chemokine 
receptor type 4-mediated chemoattraction by inhibiting the 
Gαβγ-protein complex, which further regulates the migration 
of endothelial cells and angiogenesis (62,63) (Fig. 1).

3. Eph/ephrin expression in the adult central nervous 
system (CNS)

Previous studies have assessed the role Eph in the developing 
CNS. The expression of Eph receptors and ephrin ligands 
changes markedly during CNS development (19). Ephs and 
ephrins continue to be expressed in the adult CNS and are 
distributed in most regions and types of cell (6). Various Eph 
receptors and ephrins continue to be highly expressed in adult 
brain regions that possess morphological and physiological 
plasticity, including the amygdala and hippocampus (64).

Previous studies have elucidated the diverse roles of Eph 
receptors and their ephrin ligands in the adult CNS. Eph 
receptors and their ligands serve primary roles in the regulation 
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of synapse formation, function and plasticity (33,65,66), which 
is particularly important in the maintenance of hippocampal 
plasticity (67) and the processing of certain types of pain (68). 
Previous studies have demonstrated that the activation of 
EphA4 forward signaling mediates the retraction of dendritic 
spines and reduces their number and size by remodeling the 
actin cytoskeleton and modifying the properties of adhe-
sion receptors (35,69,70). It has also been demonstrated that 
EphA4 blockade leads to significantly longer and overlap-
ping dendritic spines (71). However, contrasting effects were 
observed in triple EphB (EphB1/EphB2/EphB3) knockout 
mice. A significant decrease in dendritic spine density and the 
formation of headless or small-headed spines were observed, 
suggesting that EphB forward signaling is responsible for 
dendritic spine formation and synaptic maturation (44,72). 
Previous studies have also compared Eph/ephrin knockout with 
wild-type mice and demonstrated that pre- and post-synaptic 
Eph/ephrins affect memory and learning by controlling 
synaptic formation (67,73,74). Eph/ephrins may recruit 
cell surface molecules, such as the N-methyl-D-aspartate 
receptor (NMDAR), via their PDZ domain (75,76). EphB2 

forward signaling and ephrin-B3 reverse signaling also 
induces the generation of long-term potentiation (LTP) via 
NMDARs (33,50,77-80).

EphA4/ephrin-A3-mediated bidirectional signaling 
between neurons and astrocytes was implicated in the altera-
tion of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor and spine morphology in the hippocampus (67). 
In addition, Eph4A forward signaling and glial ephrin-A3 
reverse signaling regulates the astrocyte glutamate transporter 
and the plasticity of synapses within the hippocampus, respec-
tively (81,82). Furthermore, ephrin‑Bs/EphB participate in 
the processing of spinal cord pain via the NMDAR, PI3K and 
downstream signaling pathways (83-87).

Ephs and their ephrin ligands are also expressed in the 
subventricular zone (SVZ) of the lateral ventricle and subgran-
ular zone (SGZ) of the dentate gyrus, where neural stem cells 
maintain neurogenesis throughout the lifetime of mammals (88). 
Eph/ephrin bidirectional signaling influences the prolifera-
tion and differentiation of neural precursor cells (NPCs) (89). 
Previous studies have demonstrated that EphB3/ephrin-B3 
regulates the proliferation and differentiation of cells in the SVZ 

Figure 1. Schematic representation of Eph/ephrin structures and signaling pathways. Eph receptors are comprised of an ephrin‑binding globular domain, a 
cysteine‑rich region, two fibronectin type III domains, a juxtamembrane region, a kinase domain, a SAM domain and a PDZ‑binding motif. Ephrin‑As are 
attached to the cell membrane via a GPI-anchor, and ephrin-Bs are transmembrane proteins with a cytoplasmic tail and a terminal PDZ-binding motif. Activated 
Eph/ephrin bidirectional signaling initiates multiple different pathways involved in the regulation of synaptic plasticity, cell morphology, neurite outgrowth, 
cell migration, adhesion and proliferation. Eph, erythropoietin-producing human hepatocellular receptor; SAM, sterile-a-motif; PDZ, PSD95/Dlg/ZO1; GPI, 
glycosyl-phosphatidylinositol; RasGAP, Ras GTPase activating protein; ERK, extracellular signal-related kinase; MAPK, mitogen-activated protein kinase; 
PI3K, phosphoinositide 3‑kinase; Cdc42, cell division control protein 42; FAK, focal adhesion kinase; JAK2, Janus kinase 2; STAT3, signal transducer and 
activator of transcription 3.
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and the rostral migratory stream (RMS) through altering the 
expression of p53 (90-93). In addition, EphA4 knockout mice 
exhibit decreased cell proliferation and differentiation disorder 
in the SVZ and RMS, resulting in a reduced number of neuro-
blasts (94). It has been demonstrated that EphB1/ephrin-B3 
signaling also affects the proliferation and differentiation of 
NPCs in the SGZ of the dentate gyrus, highlighting a potential 
therapeutic target for neurodegenerative diseases and brain 
damage (7). In addition, the interactions between neural stem 
cells and blood vessels in the SVZ function to regulate quies-
cence and promote stemness. In particular, ephrin-B2 presented 
by vascular endothelial cells suppresses the proliferation and 
differentiation of stem cells through the activation of their 
respective Eph receptors and downstream notch signaling path-
ways. Ephrin-B2/Eph and notch signaling is suspended as stem 
cells detach from blood vessels to differentiate and divide (95).

Eph/ephrin signal transduction is involved in CNS 
angiogenesis. It has been demonstrated that EphA2 receptor 
blockade improves the formation of tight junctions between 
endothelial cells and promotes angiogenesis (96). In addition, 
an intracerebroventricular injection of ephrin-A1 may promote 
angiogenesis by stimulating EphA forward signaling (26). 
Small competitive Eph-ephrin antagonists have also been 
demonstrated to disrupt the interaction between EphA2 and 
ephrin-A1, blocking angiogenesis at low micromolar concen-
trations (97). A previous study also revealed that ephrin-A1 
was involved in the modulation of the actin cytoskeleton, 
demonstrating its vital role in re-endothelialization (98).

4. Expression and regulation of Eph receptors and ephrins 
in the adult CNS following injury

Eph/ephrin signaling is also involved in sophisticated patho-
logical processes following CNS injury. Eph receptors and 
ephrin ligands are upregulated following CNS injury and 
exhibit diverse changes depending on the location or time at 
which injuries occur (99-103). Certain types of cell behave 
differently following CNS damage: Neurons attempt to regen-
erate damaged connections; astrocytes and microglial cells 
proliferate, migrate and become activated to maintain homeo-
stasis; and oligodendrocytes initiate remyelination (104). The 
alteration of Eph and ephrin expression under these situations 
may reveal the function of Eph/ephrin signaling in the damage 
response. Ephs and ephrins may regulate axon guidance in the 
developing CNS and so may serve a similar role during CNS 
regeneration (105). Eph receptors and their ephrin ligands 
are also expressed in mature cell types, including neurons 
and astrocytes. They may therefore exhibit different effects 
compared with those observed in CNS development, including 
the mediation of astrocytic gliosis, neural regeneration, 
vascular remodeling and neuroinflammation (106).

Eph/ephrin signaling affects glial scar formation and 
glutamate homeostasis. Eph receptors and their ephrin ligands 
may influence the structural and functional reorganization of 
the CNS during trauma. Ephs and ephrins may respond to CNS 
injury by promoting the formation of glial scars due to their 
inhibitory effect on axonal regeneration (105). Previous results 
have revealed that the sophisticated processes involving gliosis 
include glial reactivation, extracellular matrix alteration and 

collagen deposition (107). Multi-cellular components including 
astrocytes, microglia, oligodendrocyte progenitors and fibro-
blasts participate in the formation of glial scars (108-110). Ephs 
and ephrins are expressed in many types of cells associated 
with gliosis and glial scars and affect their response to damage. 
Glial cells trigger gliosis in CNS injury as they are highly 
sensitive to damage (111). Gliosis is a process that begins with 
glial cell activation and proliferation, and is characterized 
by morphological and functional changes in astrocytes and 
microglia. Astrocytic activation results in cellular hypertrophy, 
proliferation and gliosis (112), which are observed in areas 
distal to the site of injury (113,114). However, the astro-glial 
response has positive and negative effects on neuronal cell 
recovery and degeneration. There are various benefits of glial 
scar formation, including the separation of the site of injury 
from surrounding normal tissues, thus reducing the spread of 
damage and filling of the lesion cavity (115‑117). Glial scars 
help to reconstruct damaged brain areas and re-organize blood 
vessels following epithelial cell invasion into the scar tissue. 
Previous studies have demonstrated that glial scars also act 
as primary barriers to neural regeneration (35,118,119). There 
is mounting evidence that Eph/ephrin signaling is involved in 
glial scar formation in CNS disorders. It has been demonstrated 
in a model of spinal cord injury, that the development of glial 
scars and the exclusion of meningeal fibroblasts from the site 
of damage are a result of cell contact-mediated bidirectional 
signaling cascades, stimulated by the interaction of ephrin-B2 
and EphB2 with reactive astrocytes and meningeal fibroblasts, 
respectively (103). Another previous study demonstrated that 
ephrin B2 (-/-) mice exhibited a reduction in astrogliosis and an 
accelerated regeneration of injured corticospinal axons, which 
resulted in the recovery of murine motor function following 
spinal cord injury (SCI) (105). It was also demonstrated that 
astrocytic gliosis and glial scars were greatly reduced in lesioned 
EphA4-/- spinal cords. EphA4-/- astrocytes also failed to respond 
to inflammatory cytokines, including interferon‑γ and leukemia 
inhibitory factor in vitro (35). In addition, neurons grown in 
wild-type astrocytes exhibited shorter neurites compared with 
neurons grown in EphA4-/- astrocytes (120). Previous studies 
have demonstrated that the use of EphA4 inhibitors moderately 
reduced astrocytic gliosis, promoted axonal regeneration and 
improved functional outcome following spinal cord hemisec-
tion in wild-type mice (35,121).

Glutamate is the primary excitatory neurotransmitter in 
the CNS; however, it is also a potential neurotoxin as excessive 
glutamate signaling may lead to excitotoxic cell death (122). 
The maintenance of extracellular glutamate homeostasis is 
a supportive function of astrocytes that occurs during brain 
injury, the function of which may be regulated by Eph/ephrin 
signaling. The use of clustered EphA4 was demonstrated to 
decrease the expression of astrocyte glutamate transporters and 
the glutamate uptake capacity of astrocytes via the activation 
of ephrin-A3 reverse signaling (123). These results indicated 
that EphA4-mediated ephrin-A3 reverse signaling is a vital 
mechanism for astrocytes to control glial glutamate trans-
porters and prevent glutamate excitotoxicity under pathological 
conditions (123). A novel role of ephrin-B1 was determined in 
astrocyte-mediated synapse remodeling following traumatic 
brain injury (TBI). The upregulation of astrocytic ephrin-B1 
following injury reduced the vesicular glutamate transporter 1 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  15:  2219-2227,  2018 2223

positive excitatory presynaptic innervation of CA1 neurons via 
STAT3-mediated signaling in astrocytes (124). Therefore, the 
regulation of ephrin-B1 signaling in astrocytes may provide 
novel therapeutic opportunities to aid glutamate homeostasis 
and functional recovery following TBI (124).

Eph/ephrin signaling mediates neurogenesis and 
angiogenesis. Endogenous NPCs are present in the SGZ of the 
dentate gyrus and in the rostral SVZ of the lateral ventricles 
in the mature CNS (125). NPC proliferation in the SVZ and 
SGZ is triggered under pathophysiological conditions. These 
neuroblasts may migrate to the lesion area and differentiate 
into neurons to replace those that are damaged (126,127).

Eph/ephrin bidirectional signaling inf luences the 
proliferation and differentiation of NPCs, affecting their 
response to CNS injury. EphB3/ephrin-B3 regulates the prolif-
eration and differentiation of cells in the SVZ and the RMS by 
controlling p53 levels (90-93). Post-ischemic neurogenesis in 
ephrin-B3 (-/-) mice was strongly enhanced and associated with 
the caspase-3-dependent activation of STAT1 (128). EphB2 
has been demonstrated to control the migration of dentate 
progenitor cells into the dorsal half of the developing dentate 
gyms (129). A previous study revealed that blockade of EphB2 
enhanced neurogenesis in the SVZ and improved neurological 
function following cerebral cortical infarction in hyperten-
sive rats (130). Neurons adapt their structure and function to 
microenvironmental changes by controlling neural plasticity. 
Previous studies have demonstrated that Eph/ephrin signaling 
exhibits an inhibitory effect on neurite outgrowth in CNS 
damage (131‑133). For example, ephrin‑A5 reverse signaling 
induces growth cone collapse and inhibits axonal regen-
eration by activating RhoA or dependent protein kinases (131). 
Ephrin-A5-mediated EphA4 forward signaling also trig-
gers axonal growth cone collapse via the downstream Rac 
GTPase-activating protein α2-chimera-independent signaling 
pathway (132). The intervention of ephrin-A5/EphA4 commu-
nication may therefore serve a vital role in the suppression of 
neuron generation through the phosphorylated (p)-Akt and 
p-extracellular signal-related kinase (ERK) pathways (133). 
EphA4 targeting using miR-93 was demonstrated to promote 
neurite outgrowth in spinal cord injury in rats following a 
reduction in p-Ephexin and active RhoA levels (134).

Eph/ephrin bidirectional signaling regulates oligodendro-
cyte precursor cells (OPCs) and oligodendrocytes. Eph-ephrin 
interactions between axons and OPCs may control the distribu-
tion of OPCs in the optic axonal tracts and the cessation of their 
migration (135). It was revealed that ephrin-B3 is expressed 
in postnatal myelinating oligodendrocytes and acts as 
myelin-based inhibitor through a combined p75 neurotrophin 
receptor (136). A previous study demonstrated that EphB3 func-
tions as a dependence receptor that mediates oligodendrocyte 
cell death following SCI, which further supports the develop-
ment of ephrin-B3 based therapies to promote recovery (137).

It is now relatively well accepted that neurogenesis and 
angiogenesis are coupled processes. Eph receptors and their 
ephrin ligands are also involved in angiogenesis, which is 
critical for the remodeling of vasculature following CNS 
injury (138). EphA2 is an essential regulator of post-natal 
angiogenesis. The stimulation of ephrin-A1 induces the 
PI3K-dependent activation of Ras-related C3 botulinum toxin 1 

(Rac1) in wild‑type endothelial cells, and EphA2‑deficient 
cells fail to activate Rac1 upon stimulation. EphA2‑deficient 
endothelial cells fail to undergo vascular assembly and migra-
tion in response to ephrin-A1 in vitro (139). The competitive 
small molecule UniPR129 acts as an Eph/ephrin antagonist 
and blocks angiogenesis at low concentrations in vitro (140). 
It has been suggested that increasing ephrin-B2 levels may 
promote vascular endothelial growth factor (VEGF)‑induced 
VEGF receptor 2 endocytosis and the angiogenic function of 
endothelial cells (141). Previous studies have demonstrated 
that the ephrin-A5/EphA4 interaction mediates the ERK and 
Akt signaling pathways in pilocarpine-induced epilepsy, and 
that the intervention of ephrin/Eph interactions suppresses 
newborn neuron generation and microvessel remodeling in a 
mouse model of temporal lobe epilepsy (142,143).

Eph/ephrin signaling and neuroinflammation. Post-injury 
inflammation is implicated in most types of CNS injury. 
Neurodegeneration, trauma and ischemia stimulate an 
inflammatory response that causes microglial activation 
and circulating immune cell infiltration in the brain (144). 
Inflammation is generally considered to be beneficial for the 
clearance of debris formed by necrotic cells. However, severe 
inflammation causes cerebral swelling and vascular dysfunc-
tion, which exaggerates neuronal damage (144). Previous 
studies have indicated that Eph/ephrin proteins are involved 
in the inflammatory process following CNS injury. EphA2 
and ephrin-A1 serve roles in the maintenance of endothelial 
junction integrity and cytoskeletal structure, potentially in 
response to the upregulation of inflammatory mediators, 
resulting in vascular leakage (145,146). EphA2 inactivation 
promotes the formation of tight junctions in the endothelial 
cells of the brain (96). There is also considerable interest in 
ephrin-B2/EphB4 signaling. Ephrin-B2 is a marker of arte-
rial endothelial cells in the vasculature and EphB4, one of its 
cognate receptors, is predominantly expressed in the venous 
endothelium. Endothelial ephrin-B2 primarily functions via 
the VEGF receptor to mediate vascular responses during 
inflammation (147). Therefore, therapies that inhibit the func-
tion of ephrin-B2/EphB4 may suppress the inflammatory 
response following injury (148). EphB receptor inhibition using 
EphB1-fragment crystallizable reduced formalin-induced 
inflammation and chronic constrictive injury‑induced neuro-
pathic pain behaviors via the control of PI3K and PI3K 
crosstalk to ERK signaling (87). Ephrin-B/EphB signaling also 
serves a primary role in the regulation of inflammatory pain 
via NMDAR subunit NR2B and PKCγ regulation (76,149).

5. Therapeutic implications in neurological disorders

The underlying mechanisms of Eph/ephrin signaling remain 
poorly understood. The key roles of Eph/ephrin signaling 
in the progression of a large range of neurological disorders 
suggest that Ephs and ephrins may be potential therapeutic 
targets. Previous studies have indicated that Eph/ephrin 
signaling may be a suitable therapeutic target for the treatment 
of neurological diseases.

Alzheimer's disease (AD). AD is the most common type of neuro-
degenerative disorder that manifests as a progressive decline in 
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cognitive function. It has been demonstrated that EphB2 and 
EphA4 are downregulated in AD (74). Soluble amyloid-β (Aβ) 
peptide oligomers are derived from amyloid precursor proteins 
(APPs) and are a major causative agent of synaptic impairment 
in AD. Previous studies have suggested that Aβ oligomers indi-
rectly affect the NMDAR NR1 subunit and induce NMDAR 
depletion by forming a complex with EphB2 (150,151). In 
addition, increased EphB2 expression reverses deficits in 
NMDAR-dependent LTP and memory impairments in murine 
models of AD (152). EphA4 may also be a potential therapeutic 
target of AD. It has been demonstrated that EphA4 mediates the 
Aβ-induced impairment of synaptic plasticity; the depletion or 
blockade of postsynaptic EphA4 activity reverses synaptic defi-
cits in murine models of AD. Rhy is a small-molecule inhibitor 
of EphA4 that rescues Aβ-induced impairments in neurotrans-
mission and LTP in murine models of AD (153).

Amyotrophic lateral sclerosis (ALS). ALS is a neurodegenera-
tive disease that is caused by the progressive degeneration of the 
upper and lower motor neurons in the anterior horn of the spinal 
cord, brainstem and cerebral cortex (154). The ALS8 gene leads 
to the development of familial ALS and accounts for 10-15% 
of all ALS cases (155). The ALS8 protein vesicle-associated 
membrane protein-associated B (VAPB) is a ligand for EphA4. 
Mutations of VAPB may enhance EphA4/ephrin-A3 signaling 
and lead to the dysfunction of glial glutamate transporters, as 
observed in ALS (81,156). However, the specific role of EphA4 
in the pathology of ALS requires further investigation (81,155).

6. Conclusions

The observations described in the present review provide 
evidence that Ephs and ephrins serve a vital role in deter-
mining the regenerative outcomes of CNS disorders. Signaling 
through Eph/ephrin complexes directly regulates neural 
regeneration by stimulating growth cone collapse, promoting 
glial scar formation, regulating homeostasis, reducing neuro-
genesis, inhibiting myelination and exaggerating inflammation 
together with injury-induced neuropathic pain. In addition, the 
interaction between Ephs and ephrin ligands is essential for 
angiogenesis. Therefore, the regulation of these molecules 
following CNS injury may serve as therapeutic targets for the 
treatment of various neurological diseases.
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