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Fast nonadiabatic dynamics of many-body
quantum systems
B. Larder1, D. O. Gericke2, S. Richardson1,3, P. Mabey4, T. G. White5, G. Gregori1*

Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics.
A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations,
and realm of applicability. However, there remain many problems that are intractable for existing methods. In
particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons
and ions at finite temperature. Here, we address this shortfall with a new approach tomodelingmany-body quantum
systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a
considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled
electron-ion systems without using the adiabatic Born-Oppenheimer approximation.
INTRODUCTION
Let us consider a many-particle electron-ion system at finite tempera-
ture. In calculating the dynamics of both the electrons and ions, wemust
account for the fact that the ions evolvemultiple orders of magnitude
more slowly than the electrons, as a result of their much higher masses.
If we are interested in the long-time ionic dynamics (for example, the
ion mode structure), then we face a choice of how to deal with this
time scale issue. We can either model the system on the time scale of
the electrons—nonadiabatically—and incur a substantial computa-
tional cost (a cost that is prohibitive in most simulation schemes), or
model the system on the time scale of the ions—adiabatically—by
treating the electrons as a static, instantaneously adjusting back-
ground. The latter approach is far cheaper computationally but does
not allow for a viable description of the interplay of ion and electron
dynamics.

Themethodwepropose here (seeMaterials andMethods for details)
enables us to use the former (nonadiabatic) approach, retaining the
dynamic coupling between electrons and ions by reducing the simula-
tion’s computational demands.We achieve this by treating the system
dynamics with linearized Bohmian trajectories. Having numerical
properties similar to those of molecular dynamics for classical par-
ticles (1, 2), our approach permits calculations previously out of
reach: Systems containing thousands of particles can be modeled
for long (ionic) time periods, so that dynamic ion modes can be
calculated without discounting electron dynamics.
RESULTS AND DISCUSSION
To demonstrate the strength of our new method, we apply it to warm
dense matter (WDM). With densities comparable to solids and tem-
peratures of a few electron volts,WDMcombines the need for quantum
simulations of degenerate electrons with the description of a strongly
interacting ion component. These requirements make WDM an ideal
testbed for quantum simulations (3). Further, as the matter in the man-
tle and core of large planets is in a WDM state (4, 5), and experiments
toward inertial confinement fusion exhibit WDM states transiently on
the path to ignition (6, 7), simulations of WDM are of crucial impor-
tance in modern applications.

Key dynamic properties of theWDMstate can be represented by the
dynamic structure factor (DSF) (8). This quantity also connects theory
and experiment: Probabilities for diffraction and inelastic scattering are
directly proportional to the DSF (9–11), allowing testing of WDM
models. Here, we focus on the ion-ion DSF that is defined via

Sðk;wÞ ¼ 1
2pN

∫expðiwtÞ〈rðk; tÞrð�k; 0Þ〉dt ð1Þ

where N is the total number of ions and r(k, t) is the spatial Fourier
transform of the ion density. In the following, we assume the WDM
system to be isotropic and spatially uniform. Accordingly, the structure
factor depends only on the magnitude of the wave number, k = ∣k∣.
While the main contribution to S(k, w) is due to direct Coulomb inter-
actions between the ions, themodifications due to screening are strongly
affected by quantum behavior in the electron component.

State-of-the-art calculations of the structure factor are typically
carried out with variants of density functional theory (DFT) (12). DFT’s
Kohn-Sham formulation (13) has been the basis for many fundamental
physical insights, and it has been successfully applied to fields as diverse
as quantum chemistry, condensed matter, and dense plasmas (14–20).
Recent work, however, has shown that predictions from standard
DFT simulations for the ion-ion DSF are problematic due to the
use of the Born-Oppenheimer approximation (21). By using a Langevin
thermostat alongside DFT, it has been found that the dynamics of the
electron-ion interaction may strongly change the mode structure—in
particular, the strength of the diffusive mode. However, this approach
requires a very simple, uniform frequency dependence for electron-ion
collisions, which may not prove realistic in practice. It also contains an
arbitrary parameter, the Langevin friction, and is of limited predictive
power as a result.

We demonstrate here that our new method of Bohmian dynamics,
which retains the dynamics of the electron-ion interaction, can over-
come the shortcomings of previous approaches without introducing
free parameters. The specific case that we consider is compressed liquid
aluminum with a density of 5.2 g cm−3 and a temperature of 3.5 eV,
which allows for direct comparison with previous results. Full details
of the corresponding simulations and input parameters are given in
the Supplementary Materials.
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The validity and accuracy of our implementation of Bohmian
dynamics are strongly supported by the excellent reproduction of
static ion-ion correlations from DFT simulations. Figure 1 illustrates
the static ion-ion structure factor obtained with the Bohmian trajec-
tory technique. This quantity is the Fourier transform of the pair
distribution function and, thus, represents the degree of correlations
present in the system (8). The comparisons with orbital-free DFT
and the computationally more intensive Kohn-Sham DFT both yield
agreement within the statistical error of the simulations. This match
was achieved by a single parameter fit defining lee (see Materials and
Methods). The different simulation techniques predict almost the
same thermodynamics as shown by the small pressure difference.

Figure 2A shows calculations of the fully frequency-dependent DSF.
One can clearly notice the appearance of side peaks in the DSF that
correspond to ion acoustic waves. Their dispersion for smaller wave
numbers, and the corresponding sound speed, is very sensitive to the
interactions present in the system. Thus, they reflect the screening of
ions by electrons as well as dynamic electron-ion collisions. For larger
wave numbers k, these modes cease to exist because of increased
damping. The data also exhibit a diffusivemode aroundw = 0, although
it is not as prominent as predicted in (21).

The dispersion relation of the ion acoustic modes is displayed in
Fig. 2B, which also contains results from the Langevin approach.
The latter approach requires ad hoc friction parameters that were
chosen to cover the range between the classical and quantum Born
limits [see (21)]. The strength of the Bohmian approach lies in the
fact that it does not require a free parameter, thereby allowing access
to a self-consistent prediction of the sound speed. This comparison
may also be used to assess the quality of the friction parameter ap-
plied in the Langevin approach. For the case considered, one finds that
neither the classical nor the weak coupling Born limit is applicable—a
finding that is typical of the WDM regime.
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Figure 2A demonstrate the strength of the Bohmian approach in
modeling quantum systems with strong interactions and nonlinear
ion dynamics. For static and thermodynamic properties, we obtain
results in very close agreement with DFT simulations. In addition,
while the standard implementation of DFT involves the Born-
Oppenheimer approximation, our Bohm approach can treat electrons
and ions nonadiabatically, retaining the full coupling of the electron
and ion dynamics. As a result, we can investigate the changes of the
ion modes due to dynamic electron-ion correlations that are in-
accessible to standard DFT. In contrast to a Langevin model, we have
no free parameters and can thus predict the strength of the electron
drag to the ion motion. Simulations based on time-dependent DFT
(22) represent another way to avoid the Born-Oppenheimer approx-
imation. However, this method is numerically extremely expensive,
drastically limiting particle numbers and simulation times; at present,
this limitation precludes results for the ion modes as presented here.

The principal advantage of our approach is its relative numerical
speed, which allows for the modeling of quantum systems with large
numbers of particles. For comparison, the recent time-dependent
DFT simulation of (23) models a system of 128 electrons for approxi-
mately 0.001 as per central processing unit (CPU) core and second. The
Fig. 1. Static ion-ion structure factors for aluminum. The static structure factor
is defined as S(k) = ∫ S(k, w)dw. The main graph compares our results from Bohmian
dynamics with data obtained by density functional theory molecular dynamics
(DFT-MD) with orbital-free DFT (OFDFT) (21) for a density of 5.2 g cm−3 and a tem-
perature of 3.5 eV. The lower insets compare our results to data from full Kohn-
Sham DFT (KS-DFT) simulations at solid density and two different temperatures.
The excellent agreement of the methods is also demonstrated by the very small
differences in pressure as quantified by the parameter R: These values give the
difference in ionic pressure between the methods normalized to the difference of
the DFT pressures and the pressure of an ideal gas, that is, R = (PBohm − PDFT)/(PDFT − P0).
A

B

Fig. 2. Results for thedynamic ionstructure for aluminumat3.5 eVand5.2g cm−3.
(A) The frequency-resolved DSF from the Bohmian dynamics. (B) Comparison of
the dispersion relation of the ion acoustic modes from our Bohmian approach
with the data from the Langevin model of (21).
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comparative Bohmian dynamics system models eight times as many
electrons for approximately 20 as per CPU-core and second. This
vast difference in computation time enables our method to access
a new class of correlated quantum systems. These calculations are
not only relevant for WDM but also address core problems in chem-
ical and biological systems (e.g., protein folding), as well as radiation
damage of materials (24–26).

While our initial implementation of Bohmian dynamics focuses on
establishing dynamic correlations of systems in thermal equilibrium,
generalization to nonequilibrium systems is also possible through dy-
namically updating the system potentials to account for local, time-
dependent thermodynamic conditions. In particular, the electron-ion
or electron-phonon energy exchange in two-temperature systems is
amenable to this approach.
Larder et al., Sci. Adv. 2019;5 : eaaw1634 22 November 2019
MATERIALS AND METHODS
To begin constructing our method, we consider Bohm’s formulation of
quantum mechanics. We can imagine a classical N-body system as an
“N-trajectory” moving through 3N-dimensional configuration space.
Bohm’s theory treats an N-body quantum system as an ensemble of
these classical N-trajectories, interacting through an additional N-body
potential VB. This Bohm potential is a functional of the density of
N-trajectories in configuration space, F, and a function of the spatial
position x, that is,VB =VB(x∣F). Providedmatching initial conditions,
the Bohm ensemble of N-trajectories reproduces the dynamics of the
probability density—as given by the Schrödinger equation—exactly
(1) (see also the Supplementary Materials for more details).

In its exact form, Bohm’s formulation is as intractable as the N-
body Schrödinger equation, requiring simulation of a huge number
ofN-body interacting classical systems. However, we can construct a
fast computational method solving Bohm’s theory by introducing a
thermally averaged, linearized Bohm potential. The exact (but in-
accessible) calculation for a pure quantum state with many parti-
cles—based on the theory above—would require us to propagate
an array of N-trajectories through time, at each step recalculating
their density and, thereby, VB (see Fig. 3A). Reliable calculations of
density in 3N-dimensional space would require a prohibitive number
ofN-trajectories, however, making this unfeasible. Here, we propose an
alternative: As opposed to applying this theory to a pure quantum state,
we consider propagating an array of thermally coupled N-trajectories
in a similar manner, as a model of a system at finite temperature. Our
core assumption is that the time evolution of a finite-temperature
quantum system can be approximated by a similar procedure to that
used for the pure state; we consider an array of N-trajectories, each
coupled to a heat bath setting its temperature, evolving under a potential
that is a functional of N-trajectory density in configuration space. This
procedure can be seen as a trajectory-based analog of the linearization of
the Bohm potential over states in quantum hydrodynamics (27).

For simplicity, we focus initially on systems in thermal equilibrium.
We allow our thermal N-trajectories—together modeling the prob-
ability density of our finite-temperature system—to evolve in time
under a linearized mean Bohm potential of the underlying pure states.
In this linear approximation, we replace the mean Bohm potential
experienced, expressible as a sum over functionals of individual states,
with a functional of a sum over individual states. In this way, we con-
struct an effective configuration space potential that is an approximate
average over the corresponding potentials of the exact N-body wave
functions. This averaging scheme then acts as a direct estimate of the
full thermal system.

In addition to moving focus from a pure state to a more practically
important finite-temperature state, the key feature of our approxi-
mation is that it markedly reduces the computational expense re-
quired to simulate the system (as compared with the exact pure
state case). Crucially, now that we are considering finite-temperature
N-trajectories, we need only to track a single N-trajectory through
time, rather than an impractical number of them. This follows from
two observations:

1) Properties of a classical system with correlation-dependent po-
tentials can be determined self-consistently. For an arbitrary system
of N well-localized particles, the N-particle correlation function can
be written as g(x) = P(x)/P0(x), where P denotes the joint positional
probability distribution of the particles and P0 is the distribution for a
noninteracting classical system with equal particle densities. Here, the
variable x is the set of particle positions, x = {x1, x2, …, xN}. We may
Fig. 3. Schematic of the applied linearization approximation. (A) The time
evolution of an N-trajectory in an exact Bohmian representation of a pure quan-
tum state (top) and the Bohm potential, VB, that it experiences (bottom). VB isa
functional of the density of N-trajectories in configuration space, F. At each time
step, all of the N-trajectories in the ensemble must be updated, F calculated, and
the updated Bohm potential determined. (B) The time evolution of an N-trajectory
in our linearized Bohmian representation of a thermal state (top) and the Bohm
potential that it experiences (bottom). We need only to track a single N-trajectory:
Its coupling to a heat bath ensures its ergodicity, so thatF becomes equal, in equi-
librium, to its time-averaged density in configuration space. As a result, theN-trajectory
evolves with a time-independent Bohmpotential, generated self-consistently by its
own time-integrated density. (C) The block panel summarizes our scheme to deter-
mine the Bohmian dynamics and gives the sources for the different potentials
needed as input.
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construct interparticle potentials that are functionals of g:V(x) =V0(x) +
Vg(x∣g), whereV0 denotes pair interactions and external forces andVg

is a contribution that varies with g. The equilibrium properties of a
system in this potential can be found self-consistently. Starting from
an initial guess for V(x), we can calculate g(x) through a Monte Carlo
simulation or a similar method (28). This value of the N-particle cor-
relation function g then gives rise to a new approximation for the
potential. Iterating this procedure allows for both g andV to be found.

2) Our linearized Bohmian system is equivalent to a classical system
with correlation-dependent potentials. Consider a number of coupled
thermal N-trajectories representing our linearized Bohmian system.
Assuming that the system is in a temperature regime in which the par-
ticle motion is ergodic, we find that each N-trajectory has the same
time-integrated correlations, that is, each has the same g. In the limit
of infinite N-trajectories in our ensemble, it follows that the
configuration space density of N-trajectories F is exactly proportional
to this common g. As a result, each N-trajectory moves in a common
static potential (see Fig. 3B), and, as this static potential is a functional of
configuration space density, F, it is equivalently just a functional of g.

When combining the results above, our linearization approximation
becomes a simple mapping

VBðx∣FÞ↦ Vgðx∣gÞ ¼ � lħ2

2
ffiffiffi

g
p ∑

N

i¼1

∇2
i

mi

ffiffiffi

g
p ð2Þ

where mi is the mass of particle i and l is a linearization factor that
still needs to be determined. As g is common to allN-trajectories, our
approximation scheme allows us to consider just a single N-body
classical system (Fig. 3B). The required simulation is thus amenable
to (computationally cheap) classical molecular dynamics (28). The
classical particle trajectories simulated then approximate the statistics
of the full quantum system.

Before the scheme above can be implemented, wemust overcome
a final fundamental hurdle: The full correlation function g appearing
in Eq. 2 is too complicated to be modeled directly (similar to the full
N-body wave function). Therefore, we seek an approximate closure
for this object in terms of lower-order correlations, which can be
calculated accurately. For this goal, we use the pair product approxima-
tion, whereby the N-body correlation is replaced by a product of pair
correlations. Furthermore, we generalize the dependence on l to a set of
lij to accommodate different particle species in the pair interactions.

The use of the pair product may appear to restrict our method to
weakly coupled systems; however, the corresponding closure enters on-
ly into the calculation of the Bohm potential functional, rather than as a
global restriction on the correlations treated. The pair correlation
functions themselves are calculated with the fullN-body system at each
step of the algorithm, and the hierarchy of theN-body correlation effects
is implicitly taken into account. We expect the pair product closure to
begin to break down only when the system properties deviate strongly
from those of a simple liquid—in such cases, a higher-order correlation
closure should be constructed.

We need an additional correction to our potentials to fulfill the spin
statistics theorem, as the Schrödinger equation—and thus Bohmian
mechanics—does not incorporate particle spin directly. In particular,
this correction will generate a Fermi distribution for the electrons in
thermal equilibrium. Similar to successful approaches applied in quan-
tum hydrodynamics and classical map methods (27, 29, 30), we intro-
duce an additional Pauli potential term. This term is constructed such
Larder et al., Sci. Adv. 2019;5 : eaaw1634 22 November 2019
that exchange effects are reproduced exactly for a reference electron gas
system. We also use pseudopotentials, commonly applied in modern
DFT calculations, to represent core electrons bound in deep shells of
the ions by an effective ion potential seen by the valence electrons.

Last, it remains to set the linearization parameters lij to fully
determine the system’s Hamiltonian. In this work, we take lij = 1 for
the ion-ion and ion-electron terms. To determine the electron-electron
parameter lee, we match static ion correlations—that is, pair distribu-
tion functions—obtained by DFT calculations. This matching can be
carried out rigorously with a generalized form of inverse Monte Carlo
(see the Supplementary Materials). In this way, we determine lee with
only static information of the system. Subsequent dynamic simulations
can then be carried out without any free parameters.

We can now implement the Bohmian dynamics method with a
molecular dynamics simulation inclusive of the potentials discussed
above. Within the microcanonical ensemble, we could simply integrate
the equation of motion for the particles. However, we want to
simulate systems with a given temperature which requires the cou-
pling of the system to a heat bath. Here, we used a modified version
of theNosé-Hoover thermostat. Its standard form is popular in classical
molecular dynamics studies, achieving reliable thermodynamic proper-
ties while having minimal impact on the dynamics (31). We use this
standard version to control the ion temperature. The electrons, howev-
er, should relax to a Fermi distribution, which is not possible with this
classical form.We have, thus, produced amodified version of theNosé-
Hoover thermostat for the dynamic electrons. It creates an equilibrium
distribution equal to that of a noninteracting electron gas of the same
density (see the Supplementary Materials for details and derivation).
With this, we ensure the ions interact with an electron subsystem with
a corrected energy distribution.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/11/eaaw1634/DC1
Bohm’s theory of quantum mechanics
Correlation closure
Fermi statistical corrections
Pseudopotentials
Generalized IMC parameter search
Modified thermostats
Simulation parameters
Fig. S1. Reproduction of a Fermi kinetic energy distribution using our modified thermostat.
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