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Abstract: We generalize the Jensen-Shannon divergence and the Jensen-Shannon diversity index by
considering a variational definition with respect to a generic mean, thereby extending the notion
of Sibson’s information radius. The variational definition applies to any arbitrary distance and
yields a new way to define a Jensen-Shannon symmetrization of distances. When the variational
optimization is further constrained to belong to prescribed families of probability measures, we
get relative Jensen-Shannon divergences and their equivalent Jensen-Shannon symmetrizations of
distances that generalize the concept of information projections. Finally, we touch upon applications
of these variational Jensen-Shannon divergences and diversity indices to clustering and quantization
tasks of probability measures, including statistical mixtures.

Keywords: Jensen-Shannon divergence; diversity index; Rényi entropy; information radius; information
projection; exponential family; Bregman divergence; Fenchel–Young divergence; Bregman information;
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1. Introduction: Background and Motivations

The goal of the author is to methodologically contribute to an extension of the Sib-
son’s information radius [1] and also concentrate on analysis of the specified families of
distributions called exponential families [2].

Let (X ,F ) denote a measurable space [3] with sample space X and σ-algebra F on
the set X . The Jensen-Shannon divergence [4] (JSD) between two probability measures P
and Q (or probability distributions) on (X ,F ) is defined by:

DJS[P, Q] :=
1
2

(
DKL

[
P :

P + Q
2

]
+ DKL

[
Q :

P + Q
2

])
, (1)

where DKL denotes the Kullback–Leibler divergence [5,6] (KLD):

DKL[P : Q] :=

{ ∫
X log

(
dP(x)
dQ(x)

)
dP, P� Q

+∞, P 6� Q
(2)

where P � Q means that P is absolutely continuous with respect to Q [3], and dP
dQ is the

Radon–Nikodym derivative of P with respect to Q. Equation (2) can be rewritten using the
chain rule as:

DKL[P : Q] :=

{ ∫
X

dP(x)
dQ(x) log

(
dP(x)
dQ(x)

)
dQ, P� Q

+∞, P 6� Q
(3)

Consider a measure µ for which both the Radon–Nikodym derivatives p := dP
dµ

and q := dP
dµ exist (e.g., µ = P+Q

2 ). Subsequently the Kullback–Leibler divergence can
be rewritten as (see Equation (2.5) page 5 of [5] and page 251 of the Cover & Thomas’
textbook [6]):

Entropy 2021, 23, 464. https://doi.org/10.3390/e23040464 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5728-0726
https://doi.org/10.3390/e23040464
https://doi.org/10.3390/e23040464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040464
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23040464?type=check_update&version=2


Entropy 2021, 23, 464 2 of 28

DKL[p : q] :=
∫
X

p(x) log
(

p(x)
q(x)

)
dµ(x). (4)

Denote by D = D(X ) the set of all densities with full support X (Radon–Nikodym
derivatives of probability measures with respect to µ):

D(X ) :=
{

p : X → R : p(x) > 0 µ-almost everywhere,
∫
X

p(x)dµ(x) = 1
}

.

Subsequently, the Jensen-Shannon divergence [4] between two densities p and q of D is
defined by:

DJS[p, q] :=
1
2

(
DKL

[
p :

p + q
2

]
+ DKL

[
q :

p + q
2

])
. (5)

Often, one considers the Lebesgue measure [3] µ = µL on (Rd,B(Rd)), where B(Rd) is
the Borel σ-algebra, or the counting measure [3] µ = µ# on (X , 2X ) where X is a countable
set, for defining the measure space (X ,F , µ).

The JSD belongs to the class of f -divergences [7–9] which are known as the invariant
decomposable divergences of information geometry (see [10], pp. 52–57). Although the
KLD is asymmetric (i.e., DKL[p : q] 6= DKL[q : p]), the JSD is symmetric (i.e., DJS[p, q] =
DJS[q, p]). The notation ‘:’ is used as a parameter separator to indicate that the parameters
are not permutation invariant, and that the order of parameters is important.

In this work, a distance D(O1 : O2) is a measure of dissimilarity between two objects
O1 and O2, which do not need to be symmetric or satisfy the triangle inequality of metric
distances. A distance only satisfies the identity of indiscernibles: D(O1 : O2) = 0 if and
only if O1 = O2. When the objects O1 and O2 are probability densities with respect to
µ, we call this distance a statistical distance, use the brackets to enclose the arguments
of the statistical distance (i.e., D[O1 : O2]), and we have D[O1 : O2] = 0 if and only if
O1(x) = O2(x) µ-almost everywhere.

The 2-point JSD of Equation (4) can be extended to a weighted set of n densities P :=
{(w1, p1), . . . , (wn, pn)} (with positive wi’s normalized to sum up to unity, i.e., ∑n

i=1 wi = 1)
thus providing a diversity index, i.e., a n-point JSD for P :

DJS(P) :=
n

∑
i=1

wiDKL[pi : p̄], (6)

where p̄ := ∑n
i=1 wi pi denotes the statistical mixture [11] of the densities of P . We have

DJS[p : q] = DJS({( 1
2 , p), ( 1

2 , q)}). We call DJS(P) the Jensen-Shannon diversity index.
The KLD is also called the relative entropy since it can be expressed as the difference

between the cross entropy h[p : q] and the entropy h[p]:

DKL[p : q] :=
∫
X

p(x) log
(

p(x)
q(x)

)
dµ(x) (7)

=
∫
X

p(x) log p(x)dµ(x)−
∫
X

p(x) log q(x)dµ(x), (8)

= h[p : q]− h[p], (9)

with the cross-entropy and entropy defined, respectively, by

h[p : q] := −
∫
X

p(x) log q(x)dµ(x), (10)

h[p] := −
∫
X

p(x) log p(x)dµ(x). (11)

Because h[p] = h[p : p], we may say that the entropy is the self-cross-entropy.
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When µ is the Lebesgue measure, the Shannon entropy is also called the differential
entropy [6]. Although the discrete entropy H[p] = −∑i pi log pi (i.e., entropy with respect
to the counting measure) is always positive and bounded by log |X |, the differential entropy
may be negative (e.g., entropy of a Gaussian distribution with small variance).

The Jensen-Shannon divergence of Equation (6) can be rewritten as:

DJS[p, q] = h[ p̄]−
n

∑
i=1

wih[pi] := J−h[p, q]. (12)

The JSD representation of Equation (12) is a Jensen divergence [12] for the strictly convex
negentropy F(p) = −h[p], since the entropy function h[.] is strictly concave. Therefore, it is
appropriate to call this divergence the Jensen-Shannon divergence.

Because pi(x)
p̄(x) ≤

pi(x)
wi pi(x) = 1

wi
, it can be shown that the Jensen-Shannon diversity

index is upper bounded by H(w) := −∑n
i=1 wi log wi, the discrete Shannon entropy. Thus,

the Jensen-Shannon diversity index is bounded by log n, and the 2-point JSD is bounded by
log 2, although the KLD is unbounded and it may even be equal to +∞ when the definite
integral diverges (e.g., KLD between the standard Cauchy distribution and the standard
Gaussian distribution). Another nice property of the JSD is that its square root yields a
metric distance [13,14]. This property further holds for the quantum JSD [15]. The JSD
has gained interest in machine learning. See, for example, the Generative Adversarial
Networks [16] (GANs) in deep learning [17], where it was proven that minimizing the
GAN objective function by adversarial training is equivalent to minimizing a JSD.

To delineate the different roles that are played by the factor 1
2 in the ordinary Jensen-

Shannon divergence (i.e., in weighting the two KLDs and in weighting the two densities), let
us introduce two scalars α, β ∈ (0, 1), and define a generic (α, β)-skewed Jensen-Shannon
divergence, as follows:

DJS,α,β[p : q] := (1− β)DKL[p : mα] + βDKL[q : mα], (13)

= (1− β)h[p : mα] + βh[q : mα]− (1− β)h[p]− βh[q], (14)

= h[mβ : mα]− ((1− β)h[p] + βh[q]), (15)

where mα := (1− α)p + αq and mβ := (1− β)p + βq. This identity holds, because DJS,α,β

is bounded by (1− β) log 1
1−α + β log 1

α , see [18]. Thus, when β = α, we have DJS,α[p, q] =
DJS,α,α[p, q] = h[mα]− ((1− α)h[p] + αh[q]), since the self-cross entropy corresponds to the
entropy: h[mα : mα] = h[mα].

A f -divergence [9,19,20] is defined for a convex generator f , which is strictly convex
at 1 (to satisfy the identity of the indiscernibles) and that satisfies f (1) = 0, by

I f [p : q] :=
∫

p(x) f
(

q(x)
p(x)

)
dµ(x) ≥ f (1) = 0, (16)

where the right-hand-side follows from Jensen’s inequality [20]. For example, the total
variation distance DTV[p : q] = 1

2

∫
X |p(x)− q(x)|dµ(x) is a f -divergence for the generator

fTV(u) = |u− 1|: DTV[p : q] = I fTV [p : q]. The generator fTV(u) is convex on R, strictly
convex at 1, and it satisfies f (u) = 1.

The DJS,α,β divergence is a f -divergence

DJS,α,β[p : q] = I fJS,α,β
[p : q], (17)

for the generator:

fJS,α,β(u) = −
(
(1− β) log(αu + (1− α)) + βu log

(
1− α

u
+ α

))
. (18)
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We check that the generator fJS,α,β is strictly convex, since, for any a ∈ (0, 1) and b ∈ (0, 1),
we have

f ′′JS,α,β(u) =
a2(1− b)u + (a− 1)2b

a2u3 + 2a(1− a)u2 + (a− 1)2u
> 0, (19)

when u > 0.
The Jensen-Shannon principle of taking the average of the (Kullback–Leibler) di-

vergences between the source parameters to the mid-parameter can be applied to other
distances. For example, the Jensen–Bregman divergence is a Jensen-Shannon symmetriza-
tion of the Bregman divergence BF [12]:

BJS
F (θ1 : θ2) :=

1
2

(
BF

(
θ1 :

θ1 + θ2

2

)
+ BF

(
θ2 :

θ1 + θ2

2

))
, (20)

where the Bregman divergence [21] BF is defined by

BF(θ : θ′) := F(θ)− F(θ′)− (θ − θ′)>∇F(θ′). (21)

The Jensen–Bregman divergence BJS
F can also be written as an equivalent Jensen

divergence JF:

BJS
F (θ1 : θ2) = JF(θ1 : θ2) :=

F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
, (22)

where F is a strictly convex function ensuring JF(θ1 : θ2) ≥ 0 with equality if θ1 = θ2.
Because of its use in various fields of information sciences [22], various generalizations

of the JSD have been proposed: These generalizations are either based on Equation (5) [23]
or Equation (12) [18,24,25]. For example, the (arithmetic) mixture p̄ = ∑i wi pi in
Equation (6) was replaced by an abstract statistical mixture with respect to a generic mean
M in [23] (e.g., the geometric mixture induced by the geometric mean), and the two KLDS
defining the JSD in Equation (5) was further averaged using another abstract mean N,
thus yielding the following generic (M, N)-Jensen-Shannon divergence [23] (abbreviated as
(M, N)-JSD):

DM,N
JS [p : q] := N

(
DKL

[
p : (pq)M

1
2

]
, DKL

[
q : (pq)M

1
2

])
, (23)

where (pq)M
α denotes the statistical weighted M-mixture:

(pq)M
α :=

Mα(p(x), q(x))∫
X Mα(p(x), q(x))dµ(x)

. (24)

Notice that, when M = N = A (the arithmetic mean), Equation (23) of the (A, A)-JSD
reduces to the ordinary JSD of Equation (5). When the means M and N are symmetric,
the (M, N)-JSD is symmetric.

In general, a weighted mean Mα(a, b) for any α ∈ [0, 1] shall satisfy the in-betweeness
property [26] (i.e., a mean should be contained inside its extrema):

min{a, b} ≤ Mα(a, b) ≤ max{a, b}. (25)

The three Pythagorean means defined for positive scalars a > 0 and b > 0 are classic
examples of means:

• The arithmetic mean A(a, b) = a+b
2 ,

• the geometric mean G(a, b) =
√

ab, and
• the harmonic mean H(a, b) = 2ab

a+b .

These Pythagorean means may be interpreted as special instances of another paramet-
ric family of means: The power means
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Pα(a, b) :=
(

aα + bα

2

) 1
α

, (26)

defined for α ∈ R\{0} (also called Hölder means). The power means can be extended
to the full range α ∈ R by using the property that limα→0 Pα(a, b) = G(a, b). The power
means are homogeneous means: Pα(λa, λb) = λPα(a, b) for any λ > 0. We refer to the
handbook of means [27] to obtain definitions and principles of other means beyond these
power means.

A weighted mean (also called barycenter) can be built from a non-weighted mean
M(a, b) (i.e., α = 1

2 ) by using the dyadic expansion of the real weight α ∈ [0, 1], see [28]. That
is, we can define the weighted mean M(p, q; w, 1− w) for w = i

2k with i ∈ {0, . . . , 2k} and
k an integer. For example, consider a symmetric mean M(p, q) = M(q, p). Subsequently,
we get the following weighted means when k = 3:

M
(

p, q;
0
8
= 0,

8
8
= 1

)
= q

M
(

p, q;
1
8

,
7
8

)
= M(M(M(p, q), q), q)

M
(

p, q;
2
8
=

1
4

,
6
8
=

3
4

)
= M(M(p, q), q)

M
(

p, q;
3
8

,
5
8

)
= M(M(M(p, q), p), q)

M
(

p, q;
4
8
=

1
2

,
4
8
=

1
2

)
= M(p, q)

M
(

p, q;
5
8

,
3
8

)
= M(M(M(p, q), q), p)

M
(

p, q;
6
8
=

3
4

,
2
8
=

1
4

)
= M(M(p, q), p)

M
(

p, q;
7
8

,
1
8

)
= M(M(M(p, q), p), p)

M
(

p, q;
8
8
= 1,

0
8
= 0

)
= p

Let w = ∑∞
i=1

di
2i be the unique dyadic expansion of the real number w ∈ (0, 1), where

the di’s are binary digits (i.e., di ∈ {0, 1}). We define the weighted mean M(x, y; w, 1− w)
of two positive reals p and q for a real weight w ∈ (0, 1) as

M(x, y; w, 1− w) := lim
n→∞

M

(
x, y;

n

∑
i=1

di

2i , 1−
n

∑
i=1

di

2i

)
. (27)

Choosing the abstract mean M in accordance with the familyR = {pθ : θ ∈ Θ} of the
densities allows one to obtain closed-form formula for the (M, N)-JSDs that rely on definite
integral calculations [23]. For example, the JSD between two Gaussian densities does not
admit a closed-form formula because of the log-sum integral, but the (G, N)-JSD admits
a closed-form formula when using geometric statistical mixtures (i.e., when M = G).
The calculus trick is to find a weighted mean Mα, such that, for two densities pθ1 and

pθ2 , the weighted mean distribution Mα(pθ1(x), pθ2(x)) =
pθ1,2,α

(x)

ZMα (θ1,θ2)
, where ZMα(θ1, θ2)

is the normalizing coefficient and pθ1,2,α ∈ R. Thus, the integral calculation can be sim-
ply calculated as

∫
Mα(pθ1(x), pθ2(x))dµ(x) = 1

ZMα (θ1,θ2)
since pθ1,2,α(x), and, therefore,∫

pθ1,2,α(x)dµ(x) = 1. This trick has also been used in Bayesian hypothesis testing for
upper bounding the probability of error between two densities of a parametric family of
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distributions by replacing the usual geometric mean (Section 11.7 of [6], page 375) by a
more general quasi-arithmetic mean [29]. For example, the harmonic mean is well-suited
to Cauchy distributions, and the power means to Student t-distributions [29].

As an application of these generalized JSDs, Deasy et al. [30] used the skewed ge-
ometric JSD (namely, the (Gα, A1−α)-JSD for α ∈ (0, 1)), which admits a closed-form
formula between normal densities [23], and showed how regularizing an optimization
task with this G-JSD divergence improved reconstruction and generation of Variational
AutoEncoders (VAEs).

More generally, instead of using the KLD, one can also use any arbitrary distance D to
define its JS-symmetrization, as follows:

DJS
M,N [p : q] := N

(
D
[

p : (pq)M
1
2

]
, D
[
q : (pq)M

1
2

])
. (28)

These symmetrizations may further be skewed by using Mα and/or Nβ for α ∈ (0, 1) and
β ∈ (0, 1), yielding the definition [23]:

DJS
Mα ,Nβ

[p : q] := Nβ

(
D
[

p : (pq)M
α

]
, D
[
q : (pq)M

α

])
. (29)

With these notations, the ordinary JSD is DJS = DKL
JS
A,A, the (A, A) JS-symmetrization of

the KLD with respect to the arithmetic means M = A and N = A.
The JS-symmetrization can be interpreted as the Nβ-Jeffreys’ symmetrization of a

generalization of Lin’s α-skewed K-divergence [4] DK
Mα

[p : q]:

DJS
Mα ,Nβ

[p : q] = Nβ(DK
Mα

[p : q], DK
Mα

[p : q]), (30)

DK
Mα

[p : q] := D
[

p : (pq)Mα
α

]
. (31)

In this work, we consider symmetrizing an arbitrary distance D (including the KLD),
generalizing the Jensen-Shannon divergence by using a variational formula for the JSD.
Namely, we observe that the Jensen-Shannon divergence can also be defined as the follow-
ing minimization problem:

DJS[p, q] := min
c∈D

1
2
(DKL[p : c] + DKL[q : c]), (32)

since the optimal density c is proven unique using the calculus of variation [1,31,32] and it
corresponds to the mid density p+q

2 , a statistical (arithmetic) mixture.

Proof. Let S(c) = DKL[p : c] + DKL[q : c] ≥ 0. We use the method of the Lagrange multi-
pliers for the constrained optimization problem minc S(c) such that

∫
c(x)dµ(x) = 1. Let

us minimize S(c) + λ(
∫

c(x)dµ(x)− 1). The density c realizing the minimum S(c) satisfies
the Euler–Lagrange equation ∂L

∂c = 0, where L(c) := p log p
c + q log q

c +λc is the Lagrangian.
That is, − p

c −
q
c + λ = 0 or, equivalently, c = 1

λ (p + q). Parameter λ is then evaluated from
the constraint

∫
X c(x)dµ(x) = 1: we get λ = 2 since

∫
X (p(x) + q(x))dµ(x) = 2. Therefore,

we find that c(x) = p(x)+q(x)
2 , the mid density of p(x) and q(x).

Considering Equation (32) instead of Equation (5) for defining the Jensen-Shannon
divergence is interesting, because it allows one to consider a novel approach for general-
izing the Jensen-Shannon divergence. This variational approach was first considered by
Sibson [1] to define the α-information radius of a set of weighted distributions while using
Rényi α-entropies that are based on Rényi principled α-means [33]. The α-information
radius includes the Jensen-Shannon diversity index when α = 1. Sibson’s work is our
point of departure for generalizing the Jensen-Shannon divergence and proposing the
Jensen-Shannon symmetrizations of arbitrary distances.
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The paper is organized, as follows: in Section 2, we recall the rationale and definitions
of the Rényi α-entropy and the Rényi α-divergence [33], and explain the information radius
of Sibson [1], which includes, as a special case, the ordinary Jensen-Shannon divergence
and that can be interpreted as generalized skew Bhattacharyya distances. We report,
in Theorem 2, a closed-form formula for calculating the information radius of order α
between two densities of an exponential family when 1

α is an integer. It is noteworthy
to point out that Sibson’s work (1969) includes, as a particular case of the information
radius, a definition of the JSD, prior to the well-known reference paper of Lin [4] (1991).
In Section 3, we present the JS-symmetrization variational definition that is based on a
generalization of the information radius with a generic mean (Equation (88) and Defini-
tion 3). In Section 4, we constrain the mixture density to belong to a prescribed class of
(parametric) probability densities, like an exponential family [2], and obtain a relative
information radius generalizing information radius and related to the concept of informa-
tion projections. Our Definition 5 generalizes the (relative) normal information radius of
Sibson [1], who considered the multivariate normal family (Proposition 4). We illustrate
this notion of relative information radius by calculating the density of an exponential family
minimizing the reverse Kullback–Leibler divergence between a mixture of densities of that
exponential family (Proposition 6). Moreover, we get a semi-closed-form formula for the
Kullback–Leibler divergence between the densities of two different exponential families
(Proposition 5), generalizing the Fenchel–Young divergence [34]. As an application of these
relative variational JSDs, we touch upon the problems of clustering and quantization of
probability densities in Section 4.2. Finally, we conclude by summarizing our contributions
and discussing related works in Section 5.

2. Rényi Entropy and Divergence, and Sibson Information Radius

Rényi [33] investigated a generalization of the four axioms of Fadeev [35], yielding
the unique Shannon entropy [20]. In doing so, Rényi replaced the ordinary weighted
arithmetic mean by a more general class of averaging schemes. Namely, Rényi considered
the weighted quasi-arithmetic means [36]. A weighted quasi-arithmetic mean can be
induced by a strictly monotonous and continuous function g, as follows:

Mg(x1, . . . , xn; w1, . . . , wn) := g−1

(
n

∑
i=1

wig(xi)

)
, (33)

where the xi’s and the wi’s are positive (the weights are normalized, so that ∑n
i=1 wi = 1).

Because Mg = M−g, we may assume without loss of generality that g is a strictly increasing
and continuous function. The quasi-arithmetic means were investigated independently by
Kolmogorov [36], Nagumo [37], and de Finetti [38].

For example, the power means Pα(a, b) =
(

aα+bα

2

) 1
α introduced earlier are quasi-

arithmetic means for the generator gP
α (u) := uα:

Pα(a, b) = MgP
α

(
a, b;

1
2

,
1
2

)
. (34)

Rényi proved that, among the class of weighted quasi-arithmetic means, only the
means induced by the family of functions

gα(u) := 2(α−1)u, (35)

g−1
α (v) :=

1
α− 1

log2 v, (36)
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for α > 0 and α 6= 1 yield a proper generalization of Shannon entropy, nowadays called the
Rényi α-entropy. The Rényi α-mean is

MR
α (x1, . . . , xn; w1, . . . , wn) = Mgα(x1, . . . , xn; w1, . . . , wn), (37)

=
1

α− 1
log2

(
n

∑
i=1

wi2(α−1)xi

)
. (38)

The Rényi α-means MR
α are not power means: They are not homogeneous means [31].

Let MR
α (p, q) = MR

α

(
p, q; 1

2 , 1
2

)
= 1

α−1 log2
2(α−1)p+2(α−1)q

2 . Subsequently, we have limα→∞

MR
α (p, q) = max{p, q} and limα→1 MR

α (p, q) = A(p, q) = p+q
2 . Indeed, we have

MR
α (p, q) =

1
α− 1

log2
2(α−1)p + 2(α−1)q

2
,

=
1

α− 1
log2

e(α−1)p log 2 + e(α−1)q log 2

2
,

≈α→1
1

α− 1
log2

(
1 + (α− 1)

p + q
2

log 2
)

,

≈α→1
1

α− 1
1

log 2
(α− 1)

p + q
2

log 2,

≈α→1
p + q

2
= A(p, q),

using the following first-order approximations: ex ≈x→0= 1 + x and log(1 + x) ≈x→0= x.
To obtain an intuition of the Rényi entropy, we may consider generalized entropies

derived from quasi-arithmetic means, as follows:

hg[p] := −Mg(log2 p1, . . . , log2 pn; p1, . . . , pn). (39)

When g(u) = u, we recover Shannon entropy. When g2(u) = 2u, we get hg2 [p] =
− log2 ∑i p2

i , called the collision entropy, since − log Pr[X1 = X2] = hg2 [p], when X1
and X2 are independent and identically distributed random variables with X1 ∼ p and
X2 ∼ p. When g(u) = gα(u) = 2(α−1)u, we get

hgα [p] = − 1
α− 1

log2

(
∑

i
pi2(α−1) log2 pi

)
, (40)

=
1

1− α
log2 ∑

i
pi pα−1

i =
1

1− α
log2 ∑

i
pα

i . (41)

The formula of Equation (41) is the discrete Rényi α-entropy [33], which can be defined
more generally on a measure space (X ,F , µ), as follows:

hR
α [p] :=

1
1− α

log
(∫
X

pα(x)dµ(x)
)

, α ∈ (0, 1) ∪ (1, ∞). (42)

In the limit case α→ 1, the Rényi α-entropy converges to Shannon entropy: limα→1 hR
α [p] =

h[p]. Rényi α-entropies are non-increasing with respect to increasing α: hR
α [p] ≥ hR

α′ [p] for
α < α′. In the discrete case (i.e., counting measure µ on a finite alphabet X ), we can further
define h0[p] = log |X | for α = 0 (also called max-entropy or Hartley entropy). The Rényi
+∞-entropy

h+∞[p] = − log max
x∈X

p(x)

is also called the min-entropy, since the sequence hα is non-increasing with respect to
increasing α.
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Similarly, Rényi obtained the α-divergences for α > 0 and α 6= 1 (originally called
information gain of order α):

DR
α [p : q] :=

1
α− 1

log2

(∫
X

p(x)αq(x)1−αdµ(x)
)

, (43)

generalizing the Kullback–Leibler divergence, since limα→1 DR
α [p : q] = DKL[p : q]. Rényi

α-divergences are non-decreasing with respect to increasing α [39]: DR
α [p : q] ≤ DR

α′ [p : q]
for α′ ≥ α.

Sibson (Robin Sibson (1944–2017) is also renown for inventing the natural neighbour
interpolation [40]) [1] considered both the Rényi α-divergence [33] DR

α and the Rényi α-
weighted mean MR

α := Mgα to define the information radius Rα of order α of a weighted
set P = {(wi, pi)}n

i=1 of densities pi’s as the following minimization problem:

Rα(P) := min
c∈D

Rα(P , c), (44)

where
Rα(P , c) := MR

α

(
DR

α [p1 : c], . . . , DR
α [pn : c]; w1, . . . , wn

)
. (45)

The Rényi α-weighted mean MR
α can be rewritten as

MR
α (x1, . . . , xn; w1, . . . , wn) =

1
α− 1

LSE((α− 1)x1 log 2 + log w1, . . . , (α− 1)xi log 2 + log wi), (46)

where function LSE(a1, . . . , an) := log(∑n
i=1 eai ) denotes the log-sum-exp (convex) func-

tion [41,42].
Notice that 2(α−1)DR

α [p:q] =
∫
X p(x)αq(x)1−αdµ(x), the Bhattacharyya α-coefficient [12]

(also called Chernoff α-coefficient [43,44]):

CBhat,α[p : q] :=
∫
X

p(x)αq(x)1−αdµ(x). (47)

Thus, we have

Rα(P , c) =
1

α− 1
log2

(
∑ wiCBhat,α[pi : c]

)
. (48)

The ordinary Bhattacharyya coefficient is obtained for α = 1
2 : CBhat[p : q] :=

∫
X
√

p(x)√
q(x)dµ(x).

Sibson [1] also considered the limit case α→ ∞ when defining the information radius:

DR
∞[p : q] := log2 sup

x∈X

p(x)
q(x)

. (49)

Sibson reported the following theorem in his information radius study [1]:

Theorem 1 (Theorem 2.2 and Corollary 2.3 of [1]). The optimal density c∗α = arg minc∈D Rα

(P , c) is unique, and we have:

c∗1(x) = ∑i wi pi(x), R1(P) = R1(P , c∗1) =
∫
X ∑i wi pi log2

pi

∑j wj pj(x)dµ(x),

c∗α(x) = (∑i wi pi(x)α)
1
α∫

X (∑i wi pi(x)α)
1
α dµ(x)

, Rα(P) = Rα(P , c∗α) =
1

α−1 log2

(∫
X (∑i wi pi(x)α)

1
α dµ(x)

)α
,

α ∈ (0, 1) ∪ (1, ∞)

c∗∞(x) = maxi pi(x)∫
X (maxi pi(x))dµ(x) , R∞(P) = R∞(P , c∗∞) = log2

∫
X (maxi pi(x))dµ(x),

Observe that R∞(P) does not depend on the (positive) weights.
The proof follows from the following decomposition of the information radius:
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Proposition 1. We have:

Rα(P , c)− Rα(P , c∗α) = DR
α (c
∗
α, c) ≥ 0. (50)

Because the proof is omitted in [1], we report it here:

Proof. Let ∆(c, c∗α) := Rα(P , c)− Rα(P , c∗α). We handle the three cases, depending on the
α values:

• Case α ∈ (0, 1) ∪ (1, ∞): Let Pα(P)(x) := (∑i wi pi(x)α)
1
α . We have (c∗α(x))α =

∑i wi pi(x)α

(
∫

Pα(P)(x)dµ(x))α . We obtain

∆(c, c∗α) =
1

α− 1
log2

(
∑

i
wi

∫
pi(x)αc(x)1−αdµ(x)

)
− 1

α− 1
log2

(∫
Pα(P)(x)dµ(x)

)α

, (51)

=
1

α− 1
log2

∑i wi
∫

pi(x)αc(x)1−αdµ

(
∫

Pα(P)(x)dµ(x))α
, (52)

=
1

α− 1
log2

∫
(∑i wi pi(x)α)c(x)1−α

(
∫

Pα(P)(x)dµ(x))α
dµ(x), (53)

=
1

α− 1
log2

∫
(c∗α(x))αc(x)1−αdµ(x), (54)

:= DR
α (c
∗
α, c). (55)

• Case α = 1: we have ∆(c, c∗1) := R1(P , c) − R1(P , c∗1) with c∗1 = ∑i wi pi. Because
R1(P , c) = ∑i wiDKL[pi : c], we have

R1(P , c) = ∑
i

wih[pi : c]− wih[pi], (56)

= h[∑
i

wi pi : c]−∑
i

wih[pi], (57)

= h[c∗1 : c]−∑
i

wih[pi]. (58)

It follows that

∆(c, c∗1) = h[c∗1 : c]−∑
i

wih[pi]−
(

h[c∗1 : c∗1 ]−∑
i

wih[pi]

)
, (59)

= h[c∗1 : c]− h[c∗1 ], (60)

= DKL[c∗1 : c] = DR
1 [c
∗
1 : c]. (61)

• Case α = ∞: we have c∗∞ = maxi pi(x)∫
(maxi pi(x))dµ(x) , R∞(P , c∗∞) = log2

∫
(maxi pi(x))dµ(x),

and DR
∞[p : q] = log2 supx

p(x)
q(x) . We have R∞(P , c) = log2 supx

pi(x)
c(x) Thus, ∆(c, c∗α) :=

R∞(P , c)− R∞(P , c∗∞) = log2 supx
c∗∞(x)
c(x) = DR

∞[c∗∞ : c].

It follows that

min
c

Rα(P , c) = min
c

Rα(P , c∗α) + DR
α (c
∗
α, c) ≡ min

c
DR

α (c
∗
α, c) ≥ 0.

Thus we have c = c∗α since DR
α (c∗α, c) is minimized for c = c∗α.

Notice that c∗∞(x) = max{p1(x),...,pn(x)}∫
X (maxi pi(x))dµ(x) is the upper envelope of the densities pi(x)’s

normalized to be a density. Provided that the densities pi’s intersect pairwise in at most
s locations (i.e., |{pi(x) ∩ pj(x)}| ≤ s for i 6= j), we can efficiently compute this upper
envelope using an output-sensitive algorithm [45] of computational geometry.

When the point set is P =
{(

1
2 , p
)

,
(

1
2 , q
)}

with w1 = w2 = 1
2 , the information radius

defines a (2-point) symmetric distance, as follows:
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R1(p, q) = 1
2

∫
X p(x) log2

2p
p(x)+q(x)dµ(x) + 1

2

∫
X q(x) log2

2q(x)
p(x)+q(x)dµ(x), α = 1

Rα(p, q) = α
α−1 log2

∫
X

(
p(x)α+q(x)α

2

) 1
α dµ(x) = α

α−1 log2
∫
X Pα(p(x), q(x))dµ(x), α ∈ (0, 1) ∪ (1, ∞)

R∞(p, q) = log2
∫
X max{p(x), q(x)}dµ(x), α = ∞.

This family of symmetric divergences may be called the Sibson’s α-divergences,
and the Jensen-Shannon divergence is interpreted as a limit case when α → 1. No-
tice that, since we have limα→∞ Pα(p, q) = max{p, q} and limα→∞

α
α−1 = 1, we have

limα→∞ Rα(p, q) = R∞(p, q). Notice that, for α = 1, the integral and logarithm operations
are swapped as compared to Rα for α ∈ (0, 1) ∪ (1, ∞).

Theorem 2. When α = 1
k for an integer k ≥ 2, the Sibson α-divergences between two densities

pθ1 and pθ2 of an exponential family {pθ : θ ∈ Θ} with cumulant function F(θ) is available in
closed form:

Rα(pθ1 , pθ2 ) = −
1

k− 1
log2

(
1
2k

k

∑
i=0

(
k
i

)
exp

(
F
(

i
k

θ1 +

(
1− i

k

)
θ2

)
−
(

i
k

F(θ1) +

(
1− i

k

)
F(θ2)

)))
.

Proof. Let p = pθ1 and q = pθ2 be two densities of an exponential family [2] with cumulant
function F(θ) and natural parameter space Θ. Without a loss of generality, we may consider
a natural exponential family [2] with densities written canonically as pθ(x) = exp(x>θ −
F(θ)) for θ ∈ Θ. It can be shown that the cumulant function F(θ) = log

∫
X exp(x>θ)dµ(x)

is strictly convex and analytic on the open convex natural parameter space Θ [2].
When α = 1

2 (i.e., k = 2), we have:

R 1
2
(p, q) = − log2

∫
X

(√
p(x) +

√
q(x)

2

)2

dµ(x), (62)

= − log2

(
1
2
+

1
2

∫
X

√
p(x)

√
q(x)dµ(x)

)
, (63)

= − log2

(
1
2
+

1
2

CBhat[p : q]
)
≥ 0, (64)

where CBhat[p : q] :=
∫
X
√

p(x)
√

q(x)dµ(x) is the Bhattacharyya coefficient (with 0 ≤
CBhat[p : q] ≤ 1). Using Theorem 3 of [12], we have

CBhat[pθ1 , pθ2 ] = exp
(

F
(

θp + θq

2

)
−

F(θp) + F(θq)

2

)
,

so that we obtain the following closed-form formula:

R 1
2
(pθ1 , pθ2) = − log2

(
1
2
+

1
2

exp
(

F
(

θp + θq

2

)
−

F(θp) + F(θq)

2

))
≥ 0,

Now, assume that k = 1
α ≥ 2 is an arbitrary integer, and let us apply the binomial

expansion for Pα(pθ1 , pθ2) in the spirit of [46,47]:

∫
X

Pα(pθ1(x), pθ2(x))dµ(x) =
∫
X

(
pθ1(x)

1
k + pθ2(x)

1
k

2

)k

dµ(x), (65)

=
1
2k

k

∑
i=0

(
k
i

) ∫
X

(
pθ1(x)

1
k

)i(
pθ2(x)

1
k

)k−i
dµ(x). (66)
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Let Ik,i(θ1, θ2) :=
∫
X

(
pθ1(x)

1
k

)i(
pθ2(x)

1
k

)k−i
dµ(x). Because i

k θ1 + k−i
k θ2 = θ2 +

i
k (θ1 − θ2) ∈ Θ for i ∈ {0, . . . , k}, we get by following the calculation steps in [12]:

Ik,i(θ1, θ2) := exp
(

F
(

i
k

θ1 +

(
1− i

k

)
θ2

)
−
(

i
k

F(θ1) +

(
1− i

k

)
F(θ2)

))
< ∞.

Notice that I2,1 = CBhat[pθ1 , pθ2 ], and Ik,0 = Ik,k = 1.
Thus, we get the following closed-form formula:

Rα(pθ1 , pθ2 ) = − 1
k− 1

log2

(
1
2k

k

∑
i=0

(
k
i

)
exp

(
F
(

i
k

θ1 +

(
1− i

k

)
θ2

)
−
(

i
k

F(θ1) +

(
1− i

k

)
F(θ2)

)))
. (67)

This closed-form formula applies, in particular, to the family {N (µ, Σ)} of (multivari-
ate) normal distributions: In this case, the natural parameters θ are expressed using both a
vector parameter component v and a matrix parameter component M:

θ = (v, M) =

(
Σ−1m,−1

2
Σ−1

)
, (68)

and the cumulant function is:

FN (θ) =
d
2

log π − 1
2

log | − 2M| − 1
4

v>M−1v, (69)

where | · | denotes the matrix determinant.
In general, the optimal density c∗α = arg minc∈D Rα(P , c) yielding the information

radius Rα(P) can be interpreted as a generalized centroid (extending the notion of Fréchet
means [48]) with respect to (MR

α , DR
α ), where a (M, D)-centroid is defined by:

Definition 1 ((M, D)-centroid). Let P = {(w1, p1), . . . , (wn, pn)} be a normalized weighted
parameter set, M a mean, and D a distance. Subsequently, the (M, D)-centroid is defined as

cM,D(P) = arg min
c

M(D(p1 : c), . . . , D(pn : c); w1, . . . , wn).

Here, we give a general definition of the (M, D)-centroid for an arbitrary distance (not
necessarily a symmetric nor metric distance). The parameter set can either be probability
measures having densities with respect to a given measure µ or a set of vectors. In the
first case, the distance D is called a statistical distance. When the densities belong to a
parametric family of densities P = {pθ : θ ∈ Θ}, the statistical distance D[pθ1 : pθ2 ]
amounts to a parameter distance: DP (θ1 : θ2) := D[pθ1 : pθ2 ]. For example, when all of the
densities pi’s belong to a same natural exponential family [2]

P = {pθ(x) = exp(θ>t(x)− F(θ)) : θ ∈ Θ}

with cumulant function F(θ) = log
∫

exp(θ>t(x))dµ(x) (i.e., pi = pθi ) and sufficient
statistic vector t(x), we have DKL[pθ : pθi ] = B∗F(θ : θi) := BF(θi : θ), where B∗F denotes the
reverse Bregman divergence (by parameter order swapping) the Bregman divergence [21]
BF defined by

BF(θ : θ′) := F(θ)− F(θ′)− (θ − θ′)>∇F(θ′). (70)

Thus, we have DP (θ1 : θ2) := B∗F(θ1 : θ2) = DKL[pθ1 : pθ2 ].
Let V = {(w1, θ1), . . . , (wn, θn)} be the parameter set corresponding to P . Define

RF(V , θ) :=
n

∑
i=1

wiBF(θi : θ). (71)



Entropy 2021, 23, 464 13 of 28

Subsequently, we have the equivalent decomposition of Proposition 1:

RF(V , θ)− RF(V , θ∗) = BF(θ
∗ : θ), (72)

with θ∗ = θ̄ := ∑n
i=1 wiθi. (this decomposition is used to prove Proposition 1 of [21]). The

quantity RF(V) = RF(V , θ∗) was termed the Bregman information [21,49]. The Bregman
information generalizes the variance that was obtained when the Bregman divergence is
the squared Euclidean distance. RF(V) could also be called Bregman information radius
according to Sibson. Because RF(V) = ∑n

i=1 wiDKL[pθ̄ : pθi ], we can interpret the Bregman
information as a Sibson’s information radius for densities of an exponential family with
respect to the arithmetic mean MR

1 = A and the reverse Kullback–Leibler divergence:
D∗KL[p : q] := DKL[q : p]. This observation yields us the JS-symmetrization of distances
based on generalized information radii in Section 3.

More generally, we may consider the densities belonging to a deformed q-exponential
family (see [10], page 85–89 and the monograph [50]). Deformed q-exponential families
generalize the exponential families, and include the q-Gaussians [10]. A common way
to measure the statistical distance between two densities of a q-exponential family is the
q-divergence [10], which is related to Tsallis’ entropy [51]. We may also define another
statistical divergence between two densities of a q-exponential family which amounts to
Bregman divergence. For example, we refer to [52] for details concerning the family of
Cauchy distributions, which are q-Gaussians for q = 2.

Sibson proved that the information radii of any order are all upper bounded (Theo-
rem 2.8 and Theorem 2.9 of [1]) as follows:

R1(P) ≤ ∑
i

wi log2
1

wj
≤ log2 n < ∞, (73)

Rα(P) ≤
α

α− 1
log2

(
∑

i
w

1
α
i

)
≤ log2 n < ∞, α ∈ (0, 1) ∪ (1, ∞) (74)

R∞(P) ≤ log2 n < ∞. (75)

We interpret Sibson’s upper bounds of Equations (73)–(75), as follows:

Proposition 2 (Information radius upper bound). The information radius of order α of a
weighted set of distributions is upper bounded by the discrete Rényi entropy of order 1

α of the weight
distribution: Rα(P) ≤ HR

1
α

[w], where HR
α [w] := 1

1−α log
(
∑i wα

i
)
.

3. JS-Symmetrization of Distances Based on Generalized Information Radius

Let us give the following definitions generalizing the information radius (i.e., Jensen-
Shannon symmetrization of the distance when |P| = 2) and the ordinary Jensen-Shannon
divergence:

Definition 2 ((M, D)-information radius). Let M be a weighted mean and D a distance. Subse-
quently, the generalized information radius for a weighted set of points (e.g., vectors or densities)
(w1, p1), . . . , (wn, pn) is:

RM,D(P) := min
c∈D

M(D(p1 : c), . . . , D(pn : c); w1, . . . , wn).

Recall that we also defined the (M, D)-centroid in Definition 1 as follows:

cM,D(P) := arg min
c∈D

M(D(p1 : c), . . . , D(pn : c); w1, . . . , wn).

When M = A, we recover the notion of Fréchet mean [48]. Notice that, although the
minimum RM,D(P) is unique, several generalized centroids cM,D(P) may potentially
exist, depending on (M, D). In particular, Definition 2 and Definition 1 apply when D is
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a statistical distance, i.e., a distance between densities (Radon–Nikodym derivatives of
corresponding probability measures with respect to a dominating measure µ).

The generalized information radius can be interpreted as a diversity index or an n-
point distance. When n = 2, we get the following (2-point) distances, which are considered
as a generalization of the Jensen-Shannon divergence or Jensen-Shannon symmetrization:

Definition 3 (M-vJS symmetrization of D). Let M be a mean and D a statistical distance.
Subsequently, the variational Jensen-Shannon symmetrization of D is defined by the formula of a
generalized information radius:

DvJS
M [p : q] := min

c∈D
M(D[p : c], D[q : c]).

We use the acronym vJS to distinguish it with the JS-symmetrization reported in [23]:

DJS
M[p : q] = DJS

M,A[p : q] :=
1
2

(
D
[

p : (pq)M
1
2

]
+ D

[
q : (pq)M

1
2

])
.

We recover Sibson’s information radius Rα[p : q] induced by two densities p and q
from Definition 3 as the MR

α -vJS symmetrization of the Rényi divergence DR
α . We have BF

vJS
A ,

which is the Bregman information [21]. Notice that we may skew these generalized JSDs
by taking weighted mean Mβ instead of M for β ∈ (0, 1), yielding the general definition:

Definition 4 (Skew Mβ-vJS symmetrization of D). Let Mβ be a weighted mean and D a
statistical distance. Subsequently, the variational skewed Jensen-Shannon symmetrization of D is
defined by the formula of a generalized information radius:

DvJS
Mβ

[p : q] := min
c∈D

Mβ(D[p : c], D[q : c])

Example 1. For example, the skewed Jensen–Bregman divergence of Equation (20) can be inter-
preted as a Jensen-Shannon symmetrization of the Bregman divergence BF [12] since we have:

BF
vJS
Aβ

(θ1 : θ2) = min
θ∈Θ

Aβ(BF(θ1 : θ), BF(θ2 : θ)), (76)

= min
θ∈Θ

(1− β)BF(θ1 : θ) + βBF(θ2 : θ), (77)

= (1− β)BF(θ1 : (1− β)θ1 + βθ2) + βBF(θ2 : (1− β)θ1 + βθ2), (78)

=: JBF,β(θ1 : θ2). (79)

Indeed, the Bregman barycenter arg minθ∈Θ(1− β)BF(θ1 : θ) + BF(θ2 : θ) is unique and it
corresponds to θ = (1− β)θ1 + βθ2, see [21]. The skewed Jensen–Bregman divergence JBF,β(θ1 :
θ2) can also be rewritten as an equivalent skewed Jensen divergence (see Equation (22)):

JBF,β(θ1 : θ2) = (1− β)BF(θ1 : (1− β)θ1 + βθ2) + βBF(θ2 : (1− β)θ1 + βθ2), (80)

= (1− β)F(θ1) + βF(θ2)− F((1− β)θ1 + βθ2), (81)

=: JF,β(θ1 : θ2). (82)

Example 2. Consider a conformal Bregman divergence [53] that is defined by

BF,ρ(θ1 : θ2) = ρ(θ1)BF(θ1 : θ2), (83)



Entropy 2021, 23, 464 15 of 28

where ρ(θ) > 0 is a conformal factor. Subsequently, we have

BF,ρ
vJS
Aβ

(θ1 : θ2) = min
θ∈Θ

Aβ

(
BF,ρ(θ1 : θ), BF,ρ(θ2 : θ)

)
, (84)

= min
θ∈Θ

(1− β)BF,ρ(θ1 : θ) + BF,ρ(θ2 : θ), (85)

= (1− β)BF(θ1 : γ1θ1 + γ2θ2) + βBF(θ2 : γ1θ1 + γ2θ2), (86)

where γ1 = (1−β)ρ(θ1)
(1−β)ρ(θ1)+βρ(θ2)

and γ2 = βρ(θ2)
(1−β)ρ(θ1)+βρ(θ2)

= 1− γ1.

Notice that this definition is implicit and it can be made explicit when the centroid
c∗(p, q) is unique:

DvJS
Mβ

[p : q] = Mβ(D[p : c∗(p, q)], D[q : c∗(p, q)] (87)

In particular, when D = DKL, the KLD, we obtain generalized skewed Jensen-Shannon
divergences for Mβ a weighted mean with β ∈ (0, 1):

D
Mβ

vJS [p : q] := min
c∈D

Mβ(DKL[p : c], DKL[q : c]). (88)

Example 3. Amari [31] obtained the (A, Dα)-information radius and its corresponding unique
centroid for Dα, the α-divergence of information geometry [10] (page 67).

Example 4. Brekelmans et al. [54] studied the geometric path (p1 p2)
G
β (x) ∝ p1−β

1 (x)pβ
2 (x)

between two distributions p1 and p2 of D, where Gβ(a, b) = a1−βbβ (with a, b > 0) is the
weighted geometric mean. They proved the variational formula:

(p1 p2)
G
β = min

c∈D
(1− β)DKL[c : p1] + βDKL[c : p2]. (89)

That is, (p1 p2)
G
β is a Gβ-D∗KL centroid, where D∗KL is the reverse KLD. The corresponding

(Gβ, D∗KL)-vJSD is studied is [23] and it is used in deep learning in [30].
It is interesting to study the link between (Mβ, D)-variational Jensen-Shannon symmetriza-

tion of D and the (M′α, N′β)-JS symmetrization of [23]. In particular, the link between Mβ for
averaging in the minimization and M′α the mean for generating abstract mixtures.

More generally, Brekelmans et al. [55] considered the α-divergences extended to positive
measures (i.e., a separable divergence built as the different between a weighted arithmetic mean and
a geometric mean [56]):

De
α[p : q] :=

4
1− α2

∫
X

(
1− α

2
p(x) +

1 + α

2
q(x)− p

1−α
2 (x)q

1+α
2 (x)

)
dµ(x) (90)

and proved that
c∗β = arg min

c∈D
{(1− β)De

α[p1 : c] + βDe
α[p2 : c]} (91)

is a density of a likelihood ratio q-exponential family: c∗β = p1(x)
Zβ,q

expq(β logq
p2(x)
p1(x) ) for q = 1+α

2 .

That is, c∗β is the (Aβ, De
α)-generalized centroid, and the corresponding information radius is the

variational JS symmetrization:

De
α

vJS[p1 : p2] = (1− β)De
α[p1 : c∗β] + βDe

α[p2 : c∗β] (92)

Example 5. The q-divergence [57] Dq between two densities of a q-exponential family amounts
to a Bregman divergence [10,57]. Thus, DvJS

q for M = A is a generalized information radius that
amounts to a Bregman information.
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For the case α = ∞ in Sibson’s information radius, we find that the information radius
is related to the total variation:

Proposition 3 (Lemma 2.4 [1]). :

DvJS,R
∞ [p : q] = log2(1 + DTV[p : q]), (93)

where DTV denotes the total variation

DTV[p : q] =
1
2

∫
X
|p(x)− q(x)|dµ(x). (94)

Proof. Because max{p(x), q(x)} = p(x)+q(x)
2 + 1

2 |q(x)− p(x)|, it follows that we have:∫
X

max{p(x), q(x)}dµ(x) = 1 + DTV[p : q].

From Theorem 1, we have R∞({( 1
2 , p), ( 1

2 , q)) = log2
∫
X max{p(x), q(x)}dµ(x) and, there-

fore, R∞({( 1
2 , p), ( 1

2 , q)) = log2(1 + DTV[p : q]).

Notice that, when M = Mg is a quasi-arithmetic mean, we may consider the diver-
gence Dg[p : q] = g−1(D[p : q)), so that the centroid of the (Mg, Dg)-JS symmetrization is:

arg min
c

g−1

(
n

∑
i=1

wiD[pi : c]

)
≡ arg min

c

n

∑
i=1

wiD[pi : c]. (95)

The generalized α-skewed Bhattacharyya divergence [29] can also be considered with
respect to a weighted mean Mα:

DBhat,Mα
[p : q] = − log

∫
X

Mα(p(x), q(x))dµ(x).

In particular, when Mα is a quasi-arithmetic weighted mean that is induced by a strictly
continuous and monotone function g, we have

DBhat,g,α[p : q] := − log
∫
X

Mg(p(x), q(x); α)dµ(x) =: DBhat,(Mg)α
[p : q].

Because min{p(x), q(x)} ≤ Mg(p(x), q(x); α) ≤ max{p(x), q(x)}, min{a, b} = a+b
2 −

|b−a|
2 and max{a, b} = a+b

2 + |b−a|
2 , we deduce that we have:

0 ≤ 1− DTV[p, q] ≤
∫
X

Mg(p(x), q(x); α)dµ(x) ≤ 1 + DTV[p, q] ≤ 2. (96)

The information radius of Sibson for α ∈ (0, 1) ∪ (1, ∞) may be interpreted as gener-
alized scaled α-skewed Bhattacharyya divergences with respect to the power means Pα,
since we have Rα(p, q) = α

α−1 log2
∫
X Pα(p(x), q(x); α)dµ(x) = α

1−α DBhat,Pα
[p : q].

4. Relative Information Radius and Relative Jensen-Shannon Symmetrizations
of Distances
4.1. Relative Information Radius

In this section, instead of considering the full space of densities D on (X ,F , µ) for
performing the variational optimization of the information radius, we rather consider
a subfamily of (parametric) densities R ⊂ D. Subsequently, we define accordingly the
R-relative Jensen-Shannon divergence (R-JSD for short) as

DRvJS[p : q] := min
c∈R

{
1
2

DKL[p : c] +
1
2

DKL[q : c]
}

. (97)
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In particular, Sibson [1] considered the normal information radius, i.e., theR-relative
Jensen-Shannon divergence with R = {N (µ, Σ) : (µ, Σ) ∈ Rd × Pd

++}, where Pd
++

denotes the open cone of d × d positive-definite matrices (positive-definite covariance
matrices of Gaussian distributions). More generally, we may consider any exponential
family E [2].

Definition 5 (Relative (R, M)-JS symmetrization of D). Let M be a mean and D a statistical
distance. Subsequently, the relative (R, M)-JS symmetrization of D is:

DvJS
M,R[p : q] := min

c∈R
M(D[p : c], D[q : c]).

We obtain the relative Jensen-Shannon divergences when D = DKL.

Example 6. Grosse et al. [58] considered geometric and moment average paths for annealing. They
proved that, when p1 = pθ1 and p2 = pθ2 belong to an exponential family [2] EF with cumulant
function F, we have

(p1 p2)
G
β =

p1(x)1−β p2(x)β∫
p1(x)1−β p2(x)βdµ(x)

= arg min
c∈EF
{(1− β)DKL[c : p1] + βDKL[c : p2]}, (98)

and
pη̄ = arg min

c∈EF
{(1− β)DKL[p1 : c] + βDKL[c : p2]}, (99)

where η̄ = (1− β)η1 + βη2, ηi = Epθi
[t(x)] (this is not an arithmetic mixture, but an exponential

family density moment parameter that is a mixture of the parameters).
The corresponding minima can be interpreted as relative skewed Jensen-Shannon symmetriza-

tion for the reverse KLD D∗KL (Equation (98)) and the relative skewed Jensen-Shannon divergence
(Equation (99)):

D∗KL
vJS
Aβ ,EF

[p1 : p2] = min
c∈EF
{(1− β)D∗KL[p1 : c] + βD∗KL[p2 : c]}, (100)

DvJS
Aβ ,EF

[p1 : p2] = min
c∈EF
{(1− β)DKL[c : p1] + βDKL[c : p2]}, (101)

where Aβ(a, b) := (1− β)a + βb is the weighted arithmetic mean for β ∈ (0, 1).

Notice that, when p = q, we have DvJS
M,R[p : p] = minc∈R D[p : c], which is the

information projection [59] with respect to D of density p to the submanifold R. Thus,
when p 6∈ R, we have DvJS

M,R[p : p] > 0, i.e., the relative JSDs are not proper divergences,
since a proper divergence ensures that D[p : q] ≥ 0 with equality if p = q. Figure 1
illustrates the main cases of the relative Jensen-Shannon divergenc between p and q: Either
p and q are both inside or outside R, or one point is inside R, while the other point is
outside R. When p = q, we get an information projection when both of the points are
outside R, and DRvJS[p : p] = 0 when p ∈ R. When p, q ∈ R with p 6= q, the value
DRvJS[p : q] corresponds to the information radius (and the arg min to the right-sided
Kullback–Leibler centroid).
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DRJS[p : q] := minc∈R
1
2DKL[p : c] + 1

2DKL[q : c]

R

D

p

q

c∗R(p, q)

c∗R(p, q) := argminc∈R
1
2DKL[p : c] + 1

2DKL[q : c]

R

D

p = q

DRJS[p : p] := minc∈RDKL[p : c]

c∗R(p) := c∗R(p, q) := argminc∈RDKL[p : c]

2-point information projection Information projection

c∗R(p)

R

D

p

q

c∗R(p, q)

Right-sided KL centroid

R

D
p

q

Traversing

c∗R(p, q)

Figure 1. Illustrating several cases of the relative Jensen-Shannon divergence based on whether p ∈ R and q ∈ R or not.

4.2. Relative Jensen-Shannon Divergences: Applications to Density Clustering and Quantization

Let DKL[p : qθ ] be the Kullback–Leibler divergence between an arbitrary density p and
a density qθ of an exponential family Q = {qθ : θ ∈ Θ}. Let us canonically express [2,60]
the density qθ(x), as

qθ(x) = exp
(

θ>tQ(x)− FQ(θ) + kQ(x)
)

,

where tQ(x) denotes the sufficient statistics, kQ(x) is an auxiliary carrier measure term (e.g.,
k(x) = 0 for the Gaussian family and k(x) = log(x) for the Rayleigh family [60]), and FQ(θ)
the cumulant function. Assume that we know in closed-form the following quantities:

• mp := Ep[tQ(x)] =
∫

p(x)tQ(x)dµ(x) and
• the Shannon entropy h[p] = −

∫
p(x) log p(x)dµ(x) of p.

Subsequently, we can express the KLD using a semi-closed-form formula.

Proposition 4. Let qθ ∈ Q be a density of an exponential family and p an arbitrary density with
mp = Ep[tQ(x)]. Subsequently, the Kullback–Leibler divergence between p and qθ is expressed as:

DKL[p : qθ ] = FQ(θ)−m>p θ − Ep[kQ(x)]− h[p], (102)

where h[p : qθ ] = FQ(θ)−m>p θ − Ep[kQ(x)] is the cross-entropy between p and qθ .
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Proof. The proof is straightforward since log qθ(x) = θ>tQ(x)− FQ(θ) + kQ(x). Therefore,
we have:

DKL[p : qθ ] = h[p : qθ ]− h[p], (103)

= −
∫
X

p(x) log qθ(x)dµ(x)− h[p], (104)

= FQ(θ)−m>p θ − Ep[kQ(x)]− h[p]. (105)

Example 7. For example, when qθ = qµ,Σ is the density of a multivariate Gaussian distribution
N (µ, Σ) (with kN (x) = 0), we have

DKL[p : qµ,Σ] =
1
2

(
log |2πΣ|+ (µ−m)>Σ−1(µ−m) + tr(Σ−1S)

)
− h[p], (106)

where m = µ(p) = Ep[X] and S = Cov(p) := Ep
[
XX>

]
− Ep[X]Ep[X]>.

The formula of Proposition 4 is said in semi-closed-form, because it relies on knowing
both the entropy h of p and the sufficient statistic moments Ep[tQ(x)]. Yet, this semi-closed
formula may prove to be useful in practice: For example, we can answer the compari-
son predicate

“Is DKL[p : qθ1 ] ≥ DKL[p : qθ2 ] or not?”
by checking whether FQ(θ1)− FQ(θ2)−m>p (θ1− θ2) ≥ 0 or not (i.e., the terms−Ep[kQ(x)]−
h[p] in Equation (102) cancel out). Thus, we get a closed-form predicate, although DKL is
only known in semi-closed-form. This KLD comparison predicate shall be used later on
when clustering densities with respect to centroids in Section 4.2.

Remark 1. Note that when Y = f (X) for an invertible and differentiable transformation f then
we have h[Y] = h[X] + EX [log |J f (X)|] where J f denotes the Jacobian matrix. For example, when
Y = f (X) = AX, we have h[Y] = h[X] + log |A|.

When p belongs to an exponential family P (P may be different from Q) with cu-
mulant function FP , sufficient statistics tP (x), auxiliary carrier term kP (x), and natural
parameter θ, we have the entropy [61] expressed, as follows:

h[p] = FP (θ)− θ>∇FP (θ)− Ep[kP (x)], (107)

= −F∗P (η)− Ep[kP (x)], (108)

where F∗P (η) = θ>∇F(θ)− F(θ) is the Legendre transform of F(θ) and η = η(θ) = ∇F(θ)
is called the moment parameter since we have η(θ) = Ep[tP (x)] [2,60].

It follows the following proposition refining Proposition 4 when p = pθ ∈ P :

Proposition 5. Let pθ be a density of an exponential family P and qθ′ be a density of an exponential
family Q. Subsequently, the Kullback–Leibler divergence between pθ and qθ′ is expressed as:

DKL[pθ : qθ′ ] = FQ(θ′) + F∗P (η)− Epθ
[tQ(x)]>θ′ + Epθ

[kP (x)− kQ(x)]. (109)

Proof. We have

DKL[pθ : qθ′ ] = h[pθ : qθ′ ]− h[pθ ], (110)

= FQ(θ′)−m>pθ
θ′ − Epθ

[kQ(x)] + F∗P (η) + Epθ
[kP (x)], (111)

= FQ(θ′) + F∗P (η)− Epθ
[tQ(x)]>θ′ + Epθ

[kP (x)− kQ(x)]. (112)
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In particular, when p and q belong both to the same exponential family (i.e., P = Q
with kP (x) = kQ(x)), we have F(θ) := FP (θ) := FQ(θ) and Epθ

[tQ(x)] = ∇F(θ) =: η, and

DKL[pθ : qθ′ ] = F(θ′) + F∗(η)− θ′>η.

This last equation is the Fenchel–Young divergence in Bregman manifolds [34,62] (called
dually flat spaces in information geometry [10]). Thus the divergence can be rewritten as
equivalent dual Bregman divergences:

DKL[pθ : qθ′ ] = F(θ′) + F∗(η)− η>θ′, (113)

= BF(θ
′ : θ), (114)

= BF∗(η : η′), (115)

where η′ = ∇F(θ′).
Notice that DKL[pθ : Q] := minθ′∈Θ′ DKL[pθ : qθ′ ] is unique and can be calculated as

η′ = ∇FQ(θ′) = Epθ
[tQ(x)].

Let us report two examples of calculations of the KLD between two densities of two
exponential families.

Example 8. For the first exponential family, consider the family of Laplacian distributions:

P = L =

{
pσ(x) :=

1
2σ

exp
(
−|x|

σ

)
: σ > 0

}
.

The canonical decomposition of the density yields tL(x) = |x|, θ = − 1
σ , kL(x) = 0, and FL(θ) =

log 2
−θ . (i.e., FL(θ(σ)) = log 2σ). It follows that η(θ) = F′L(θ) = − 1

θ (η(σ) = σ = E[|x|]),
θ(η) = − 1

η , and F∗L(η) = −1− log(2η) and, therefore, F∗L(η(σ)) = −1− log(2σ).
For the second family, consider the exponential family of zero-centered Gaussian distributions:

Q = N0 =

{
qσ′(x) =

1√
2π(σ′)2

exp
(
− x2

2(σ′)2

)}
.

We have tN0(x) = x2, kN0(x) = 0, θ′ = − 1
2(σ′)2 , and FN0(σ

′) = 1
2 log(2π(σ′)2).

Moreover, let us calculate Epσ [tN0(x)] = Epσ [x
2] = 2σ2. Subsequently, we can calculate the

Kullback–Leibler divergence between pσ ∼ L(σ) and qσ′ ∼ N0(σ
′), as follows:

DKL[pσ : qσ′ ] = FQ(θ′(σ′)) + F∗P (η(σ))− Epσ [tQ(x)]>θ′(σ′) + Epσ [kP (x)− kQ(x)], (116)

=
1
2

log(2π(σ′)2)− 1− log(2σ)− 2σ2
(
− 1

2(σ′)2

)
, (117)

= log
(

σ′

σ

)
+
( σ

σ′

)2
+

1
2

log
(π

2

)
− 1. (118)

Notice that DKL[pσ : qσ′ ] ≥ 0, but never 0 since the P ∩Q = ∅.
Let us now compute the reverse Kullback–Leibler divergence DKL[qσ′ : pσ]. We first calculate

Eqσ′ [tL(x)] = Eqσ′ (σ
′)[|x|] =

√
2
π σ′. Since FQ(θ′) = 1

2 log( π
−θ′ ), we have η′(θ′) = F′Q(θ

′) =

− 1
2θ′ . Thus η′(σ′) = (σ′)2 and F∗Q(η

′) = − 1
2 −

1
2 log(2πη). Therefore, we get F∗Q(η

′(σ′)) =

−h[qσ′ ] = − 1
2 log(2πe(σ′)2).

It follows that

DKL[qσ′ : pσ] = FP (θ(σ)) + F∗Q(η
′(σ′))− Eqθ′ [tP (x)]>θ(σ) + Eqθ′ [kP (x)− kQ(x)], (119)

= log(2σ)− 1
2

log(2πe(σ′)2)−
√

2
π

σ′ ×
(
− 1

σ

)
, (120)

=

√
2
π

σ′

σ
+ log

( σ

σ′

)
− 1

2
log(

π

2
e). (121)
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Again, we have DKL[qσ′ : pσ] ≥ 0, but never 0, because P ∩Q = ∅.

Example 9. Let us use the formula of Equation (109) to calculate the KLD between two Weibull
distributions [63]. A Weibull distribution of shape κ > 0 and scale σ > 0 has a density defined on
X = [0, ∞), as follows:

pWei
κ,σ (x) :=

κ

σ

( x
σ

)κ−1
exp

(
−
( x

σ

)κ)
.

For a fixed shape κ, the set of Weibull distributions Wκ := {pWei
κ,σ : σ > 0} form an

exponential family with natural parameter θ = − 1
σκ , sufficient statistic tκ(x) = xκ , auxiliary

carrier term kκ(x) = (κ − 1) log x + log κ, and cumulant function Fκ(θ) = − log(−θ) (so that
Fκ(θ(σ)) = Fκ(σ) = κ log σ):

pWei
κ,σ (x) := exp

(
− 1

σκ
xk + log

1
σκ

+ k(x)
)

.

We recover the exponential family of exponential distributions of rate parameter λ = 1
σ when

κ = 1:

pExp
λ (x) = pWei

1,σ (x) =
1
σ

exp
(
− x

σ

)
,

= λ exp(−λx),

and the exponential family of Rayleigh distributions when κ = 2 with scale parameter σRay = σ√
2

:

pRay
σRay(x) = pWei

2,σ (x) =
2x
σ2 exp

(
− x2

σ2

)
,

=
x

σ2
Ray

exp

(
− x2

2σ2
Ray

)
.

Now, assume that we are given the differential entropy of the Weibull distributions [64]
(pp. 155–156):

h
[

pWei
κ1,σ1

]
= γ

(
1− 1

κ1

)
+ log

σ1

κ1
+ 1,

where γ ≈ 0.5772156649 is the Euler–Mascheroni constant, and the Weibull raw moments [64]
(p. 155):

m = EpWei
κ1,σ

[xκ2 ] = σκ2
1 Γ
(

1 +
κ2

κ1

)
,

where Γ(x) =
∫ ∞

0 tx−1e−tdt is the gamma function (with Γ(n) = (n− 1)! for integers n). Because
h[pWei

κ,σ ] = Fκ(θ)− θ>∇Fκ(θ)− EpWei
κ,σ

[kκ(x)] = −F∗κ (η)− EpWei
κ,σ

[kκ(x)], we deduce that

EpWei
κ,σ

[kκ(x)] = −F∗κ (η)− h
[

pWei
κ,σ

]
,

where F∗κ (η) is the Legendre transform of Fκ(θ) and η(θ) = ∇Fκ(θ) = − 1
θ = E[t(x)] = E[xκ ].

We have θ(η) = ∇F∗κ (η) = − 1
η and F∗κ (η) = η>∇F∗κ (η) − Fκ(∇F∗κ (η)) = −1− log η. It

follows that

EpWei
κ,σ

[kκ(x)] = 1 + log
(

σΓ
(

1 +
1
κ

))
− γ

(
1− 1

κ

)
− log

σ

κ
+ 1.

Therefore, we deduce that the logarithmic moment of pWei
κ1,σ is:

EpWei
κ1,σ

[log x] = − γ

κ1
+ log σ1.
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This coincides with the explicit definite integral calculation reported in [63].
Subsequently, we calculate the KLD between two Weibull distributions using Equation (109),

as follows:

DKL

[
pWei

κ1 ,σ1
: pWei

κ2 ,σ2

]
= Fκ2 (θ

′) + F∗κ1
(η)− Epκ1,σ1

[xκ2 ]>θ′ + Epκ1,σ1
[kκ1 (x)− kκ2 (x)] (122)

= log
κ1

σ
κ1
1
− log

κ2

σ
κ2
2

+ (κ1 − κ2)

[
log σ1 −

γ

κ1

]
+

(
σ1

σ2

)κ2

Γ
(

κ2

κ1
+ 1
)
− 1 (123)

since we have the following terms:

Fκ2(θ
′) = log σκ2

2 ,

F∗κ1
(η) = −1− log σκ1

1 ,

−Epκ1,σ1
[xκ2 ]>θ′ =

1
σκ2

2
σκ2

1 Γ
(

1 +
κ2

κ1

)
Epκ1,σ1

[kκ1(x)− kκ2(x)] = (κ1 − κ2)Epκ1,σ1
[log x] + log

κ1

κ2
,

= log
κ1

κ2
+ (κ1 − κ2)

(
log σ1 −

γ

κ1

)
.

This formula matches the formula reported in [63].
When κ1 = κ2 = 1, we recover the ordinary KLD formula between two exponential distribu-

tions [60] with λi =
1
σi

since Γ(2) = (2− 1)! = 1:

DKL

[
pWei

1,σ1
: pWei

1,σ2

]
= log

σ2

σ1
+

σ1

σ2
− 1, (124)

=
λ2

λ1
− log

λ2

λ1
− 1. (125)

When κ1 = κ2 = 2, we recover the ordinary KLD formula between two Rayleigh distribu-
tions [60], with σRay = σ√

2
:

DKL

[
pWei

2,σ1
: pWei

2,σ2

]
= log

(
σ2

2
σ2

1

)
+

σ2
1

σ2
2
− 1, (126)

= log

(
σRay

2
2

σRay
2
1

)
+

σRay
2
1

σRay
2
2
− 1. (127)

The formulae of Equations (125) and (127) are linked by the fact that if X ∼ Exp(λ) and
Y =

√
X then Y ∼ Ray

(
1√
2λ

)
, and f -divergences [65], including the Kullback–Leibler divergence

are invariant by a differentiable transformation [66].

Jeffreys’ divergence symmetrizes the KLD divergence, as follows:

DJ [p : q] := DKL[p : q] + DKL[q : p] = 2A(DKL[p : q], DKL[q : p]). (128)

The Jeffreys divergence between two densities of different exponential families P and Q is

DJ [pθ : qθ′ ] = θ′>(η′ − Epθ
[tQ(x)]) + θ>(η − Eqθ′ [tP (x)]) + Epθ

[kP (x)− kQ(x)] + Eqθ′ [kQ(x)− kP (x)]. (129)

When P = Q, we have Epθ
[tQ(x)] = η and Eqθ′ [tP (x)]) = η′, so that we find the

usual expression of the Jeffreys divergence between two densities of an exponential family:

DJ [pθ : pθ′ ] = (θ′ − θ)>(η′ − η). (130)
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To find the best density qθ approximating p by minimizing minθ DKL[p : qθ ], we solve
∇F(θ) = η = m and, therefore, θ = ∇F∗(m) = (∇F)−1(m), where F∗(η) = Eqη [log qη(m)],
with F∗ denoting the Legendre–Fenchel convex conjugate [2]. In particular, when p =

∑ wi pθi is a mixture of EFs (with m = Ep[t(x)] = ∑ wiηi with ηi = Epθi
[t(x)] thanks to the

linearity of the expectation), then the best density of the EF simplifying p is

min
θ

DKL[p : qθ ] = min
θ

F(θ)−m>θ, (131)

= min
θ

F(θ)−∑ wiη
>
i θ. (132)

Taking the gradient with respect to θ, we have ∇F(θ) = η = ∑ wiηi. This yields
another proof without the Pythagoras theorem [67,68].

Proposition 6. Let m(x) = ∑ wi pθi (x) be a mixture with components that belong to an ex-
ponential family with cumulant function F. Subsequently, θ∗ = argθ minθ DKL[p : qθ ] is
∇F∗(∑n

i=1 wiηi), where the ηi = ∇F(θi) are the moment parameters of the mixture components.

Consider the following two problems:

Problem 1 (Density clustering). Given a set of n weighted densities (w1, p1), . . . , (wn, pn),
partition them into k clusters C1, . . . , Ck in order to minimize the k-centroid objective function with
respect to a statistical divergence D: ∑n

i=1 wi minl∈{1,...,k} D[pi : cl ], where cl denotes the centroid
of cluster Cl for l ∈ {1, . . . , k}.

For example, when all the densities pi’s are isotropic Gaussians, we recover the
k-means objective function [69].

Problem 2 (Mixture component quantization). Given a statistical mixture m(x) = ∑n
i=1 wi

pi(x), quantize the mixture components into k densities q1, . . . , qk in order to minimize ∑i wi
minl∈{1,...,k} D[pi : ql ].

Notice that, in Problem 1, the input densities pi’s may be mixtures, i.e., pi(x) =

∑ni
j=1 wi,j pi,j(x). Using the relative information radius, we can cluster a set of distributions

(potentially mixtures) into an exponential family mixture, or quantize an exponential
family mixture. Indeed, we can implement an extension of k-means [69] with k-centers qθi ,
to assign density pi to cluster Cj (with center qj), we need to perform basic comparison
tests DKL[pi : qθl ] ≥ DKL[pi : qθj ]. Provided that the cumulant F of the exponential family
is in closed-form, we do not need formula for the entropies h(pi).

Clustering and quantization of densities/mixtures have been widely studied in the
literature, see, for example, [70–76].

5. Conclusions

To summarize, the ordinary Jensen-Shannon divergence has been defined in three
equivalent ways in the literature:

DJS[p, q] := min
c∈D

1
2
(DKL[p : c] + DKL[q : c]), (133)

=
1
2

(
DKL

[
p :

p + q
2

]
+ DKL

[
q :

p + q
2

])
, (134)

= h
[

p + q
2

]
− h[p] + h[q]

2
. (135)

The JSD Equation (133) was studied by Sibson in 1969 within the wider scope of infor-
mation radius [1]: Sibson relied on the Rényi α-divergences (relative Rényi α-entropies [77])
and recovered the ordinary Jensen-Shannon divergence as a particular case of the α-
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information radius when α = 1 and n = 2 points. The α-information radii are related to
generalized Bhattacharyya distances with respect to power means and the total variation
distance in the limit case of α = ∞.

Lin [4] investigated the JSD Equation (134) in 1991 with its connection to the JSD
defined in Equation (134)). In Lin [4], the JSD is interpreted as the arithmetic symmetriza-
tion of the K-divergence [24]. Generalizations of the JSD based on Equation (134) were
proposed in [23] using a generic mean instead of the arithmetic mean. One motivation
was to obtain a closed-form formula for the geometric JSD between multivariate Gaussian
distributions, which relies on the geometric mixture (see [30] for a use case of that formula
in deep learning). Indeed, the ordinary JSD between Gaussians is not available in closed-
form (not analytic). However, the JSD between Cauchy distributions admit a closed-form
formula [78], despite the calculation of a definite integral of a log-sum term. Instead of
using an abstract mean to define a mid-distribution of two densities, one may also consider
the mid-point of a geodesic linking these two densities (the arithmetic means p+q

2 is inter-
preted as a geodesic midpoint). Recently, Li [79] investigated the transport Jensen-Shannon
divergence as a symmetrization of the Kullback–Leibler divergence in the L2-Wasserstein
space. See Section 5.4 of [79] and the closed-form formula of Equation (18) obtained for the
transport Jensen-Shannon divergence between two multivariate Gaussian distributions.

The generalization of the identity between the JSD of Equation (134) and the JSD of
Equation (135) was studied while using a skewing vector in [18]. Although the JSD is
a f -divergence [8,18], the Sibson-M Jensen-Shannon symmetrization of a distance does
not belong, in general, to the class of f -divergences. The variational JSD definition of
Equation (133) is implicit, while the definitions of Equations (134) and (135) are explicit
because the unique optimal centroid c∗ = p+q

2 has been plugged into the objective function
that was minimized by Equation (133).

In this paper, we proposed a generalization of the Jensen-Shannon divergence based
on the variational definition of the ordinary Jensen-Shannon divergence based on the
variational JSD definition of Equation (133): DvJS[p : q] = minc

1
2 (DKL[p : c] + DKL[q :

c]). We introduced the Jensen-Shannon symmetrization of an arbitrary divergence D by
considering a generalization of the information radius with respect to an abstract weighted
mean Mβ: DvJS

M [p : q] := minc Mβ(D[p : c], D[q : c]). Notice that, in the variational JSD,
the mean Mβ is used for averaging divergence values, while the mean Mα in the (Mα, Nβ)
JSD is used to define generic statistical mixtures. We also consider relative variational JS
symmetrization when the centroid has to belong to a prescribed family of densities. For
the case of exponential family, we showed how to compute the relative centroid in closed
form, thus extending the pioneering work of Sibson, who considered the relative normal
centroid used to calculate the relative normal information radius. Figure 2 illustrates the
three generalizations of the ordinary skewed Jensen-Shannon divergence. Notice that,
in general, the (M, N)-JSDs and the variational JDSs are not f -divergences (except in the
ordinary case).
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∫
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JS [p : q] := (1− β)DKL[p : mα] + βDKL[q : mα] =: Ifα,β

JS
[p : q]

fα,βJS (u) = −
(
(1− β) log (αu+ (1− α)) + βu log

(
1−α
u + α

))

DJS[p, q] := minc∈D
1
2 (DKL[p : c] +DKL[q : c])DJS[p, q] := h[p+q2 ]− h[p]+h[q]

2
DJS[p, q] := 1

2

(
DKL

[
p : p+q2

]
+DKL

[
q : p+q2

])

Dα,w
JS (p : q) :=

∑k
i=1 wiDKL[(1− αi)p+ αiq : (1− ᾱ)p+ ᾱq]

Dα,w
JS (p : q) = h [(1− ᾱ)p+ ᾱq]−

∑k
i=1 wih [(1− αi)p+ αi]

ᾱ =
∑k
i=1 wiαi

fα,w(u) =
∑k
i=1 wi(αiu+ (1− αi)) log (1−αi)+αiu

(1−ᾱ)+ᾱu

D
Mα,Nβ
JS (p : q) := Nβ(DKL[p, (pq)Mα ], DKL[q :, (pq)Mα ]) D

Mβ

vJS[p : q] := minc∈DMβ (D[p : c], D[q : c])

(pq)Mα (x) := Mα(p(x),q(x))∫
Mα(p(x),q(x))dµ(x)

Figure 2. Three equivalent expressions of the ordinary (skewed) Jensen-Shannon divergence which yield three differ-
ent generalizations.

In a similar vein, Chen et al. [80] considered the following minimax symmetrization
of the scalar Bregman divergence [81]:

Bminmax
f (p, q) := min

c
max

λ∈[0,1]
λB f (p : c) + (1− λ)B f (q : c), (136)

= max
λ∈[0,1]

λB f (p : λp + (1− λ)q) + (1− λ)B f (q : λp + (1− λ)), (137)

= λ f (p) + (1− λ) f (q)− f (λp + (1− λ)) (138)

where B f denotes the scalar Bregman divergence induced by a strictly convex and smooth
function f :

B f (p : q) = f (p)− f (q)− (p− q) f ′(q). (139)

They proved that
√

Bminmax
f (p, q) yields a metric when 3(log f ′′)′′ ≥ ((log f ′′)′)2, and ex-

tend the definition to the vector case and conjecture that the square-root metrization still
holds in the multivariate case. In a sense, this definition geometrically highlights the
notion of radius, since the minmax optimization amount to find a smallest enclosing
ball enclosing [82] the source distributions. The circumcenter, also called the Chebyshev
center [83], is then the mid-distribution instead of the centroid for the information ra-
dius. The term "information radius” is well-suited to measure the distance between two
points for an arbitrary distance D. Indeed, the JS-symmetrization of D is defined by
DJS[p : q] := minc{ 1

2 D[p : c] + 1
2 D[q : c]}. When D[p : q] = DE[p : q] = ‖p− q‖ is the

Euclidean distance, we have c = p+q
2 , and D[p : c] = D[q : c] = 1

2‖p − q‖ =: r (i.e.,
the radius being half of the diameter ‖p− q‖). Thus, DJS

E [p : q] = r; hence, the term chosen
by Sibson [1] for DJS: information radius. Besides providing another viewpoint, varia-
tional definitions of divergences have proven to be useful in practice (e.g., for estimation).
For example, a variational definition of the Rényi divergence generalizing the Donsker–
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Varadhan variational formula of the KLD is given in [84], which is used to estimate the
Rényi Divergences.
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