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Abstract

Background and aim: Human milk has potential protective effects against bronchopulmonary dysplasia (BPD).
However, studies on the association between the dose of human milk and BPD in China are limited. This study
aimed to evaluate the dose-dependent effects of human milk on BPD and other neonatal morbidities in very low
birth weight (VLBW) infants.

Methods: This retrospective cohort study of preterm infants was conducted on preterm infants of gestational
age ≤ 34 weeks and birth weight < 1500 g admitted to the multicenter clinical research database for breastfeeding
quality improvement in Jiangsu province. The multivariate analysis was performed to compare the effect outcomes
of daily graded doses [1–24 mL/(kg · day), 25–49 mL/(kg · day), and ≥ 50 mL/(kg · day) of body weight] of human
milk on neonatal outcomes throughout the first 4 weeks of life versus a reference group receiving no human milk.
The models were adjusted for potential confounding variables.

Results: Of 964 included infants, 279 (28.9%) received exclusive preterm formula, 128 (13.3%) received 1–24 ml/(kg ·
day), 139 (14.4%) received 25–49 ml/(kg · day), and 418 (43.4%) received ≥50 ml/(kg · day) human milk for the first 4
weeks of life. Compared with infants receiving exclusive formula, those receiving the highest volume of human milk
daily [≥50 mL/(kg · day)] had lower incidences of BPD [27.5% in ≥50 mL/(kg · day) vs 40.1% in 0 mL/(kg · day)
human milk, P = 0.001)], moderate and severe BPD [8.9% in ≥50 mL/(kg · day) vs 16.1% in 0 mL/(kg · day), P = 0.004],
necrotizing enterocolitis [NEC; 3.8% in ≥50 mL/(kg · day) vs 10.8% in 0 mL/(kg · day), P = 0.001], late-onset sepsis
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[LOS; 9.3% in ≥50 mL/(kg · day) vs 19.7% in 0 mL/(kg · day), P <0.01], and extrauterine growth retardation [EUGR;
38.5% in ≥50 mL/(kg · day) vs 57.6% in 0 mL/(kg · day), P <0.01)]. The logistic regression indicated that those
receiving ≥50 ml/kg · day human milk had lower odds of BPD [adjusted odds ratio (AOR) 0.453; 95% confidence
interval (CI): 0.309, 0.666], moderate and severe BPD (AOR 0.430; 95% CI: 0.249, 0.742), NEC (AOR 0.314; 95% CI:
0.162, 0. 607), LOS (AOR 0.420; 95% CI: 0.263, 0.673), and EUGR (AOR 0.685; 95% CI: 0.479, 0.979).

Conclusions: A daily threshold amount of ≥50 ml/(kg · day) human milk in the first 4 weeks of life was associated
with lower incidence of BPD as well as NEC, LOS, and EUGR in VLBW infants.

Trial registration: ClinicalTrials.gov Identifier: NCT03453502. Registration date: March 5, 2018. This study was
retrospectively registered.

Keywords: Very low birth weight, Bronchopulmonary dysplasia, Human milk, Complications

Background
With the growth in survival rates of very low birth
weight (VLBW) infants, neonatal complications, such as
BPD, NEC, LOS, and EUGR, threaten the life and prog-
nosis of neonates. Especially bronchopulmonary dyspla-
sia (BPD) is an increasingly common adverse respiratory
outcome [1]. BPD prolongs neonatal intensive care unit
(NICU) hospitalization and impacts long-term pulmon-
ary morbidity and chronic neurologic impairment [2, 3].
BPD is affected by multiple factors, including exposure
of the immature lung to hypoxia and inflammation, and
inadequate nutrition, among others [4, 5]. Preventive
and therapeutic strategies are not clear [6]. Human milk
has potent protective mechanisms targeting oxidative
stress, inflammation, and inadequate nutrition [7]. How-
ever, exclusive breastfeeding rates in the early years of
life are very low in China, and most NICUs use mixed
feeding [8]. Multicenter studies conducted in China on
the association between the dose of human milk in
mixed feeding and BPD are lacking. This study was per-
formed to evaluate the dose-dependent impact of human
milk received up to the end of week 4 of life on BPD in
VLBW infants.

Methods
Participating centers
A multicenter coordination group for improving breast-
feeding quality, with representation from 19 NICUs in
tertiary hospitals was established before data collection.
Eighteen NICUs were situated in Jiangsu province, and
one in Anhui province. Of the NICUs, 10 were at mater-
nity and child healthcare hospitals, 2 were at children’s
hospitals and 7 were at a general hospital.
Breastfeeding was encouraged at all the NICUs, two of

which had human milk banks. The Women’s Hospital of
Nanjing Medical University was responsible for coordin-
ating the survey, and the place where the data were ag-
gregated, stored, and analyzed. The research ethics
committee of Women’s Hospital of Nanjing Medical
University approved the study, and the parents of the

infants gave written informed consent for the prospect-
ive part of the study. The same diagnostic criteria were
applied to all the NICUs.

Study design
The study population comprised infants with birth
weight < 1500 g and gestational age (GA) ≤34 weeks, hos-
pitalized in the 19 NICUs in 2018, whose data were sub-
mitted to the multicenter clinical research database for
breastfeeding quality improvement in Jiangsu province.
Premature infants who began enteral feeding more than
2 weeks after birth and/or stayed in the hospital for less
than 28 days and/or who had major congenital malfor-
mations or genetic metabolic diseases were excluded
from the study.
In each hospital’s policy, all mothers were strongly en-

couraged to provide breast milk for their premature in-
fants. Donor milk and preterm formula were available if
own mother’s milk was insufficient. Intravenous nutri-
tion was continued until a daily enteral intake of 150
mL/(kg · day) was reached. Human milk was fortified
when human milk feeding reached 100mL/(kg · day).
Human milk included the infant’s own mother’ milk and
donor milk. The effect of various doses of human milk
on neonatal morbidity were compared. Human milk in-
take was classified according to a daily mean intake of
1–24 mL, 25–49 mL, or ≥ 50 mL/ (kg · day) to week 4 of
life, and the groups were compared with a reference
group receiving no human milk.

Data collection
The database was developed for Improving Mother
Milk Feeding Benefits in Neonatal Intensive Care
Units (Clinicaltrials.gov#NCT03453502). This study
entitled “The Dose-Dependent Effect of Human Milk
on Bronchopulmonary Dysplasia in Very Low Birth
Weight Infants” came from this database. The clinical
data of eligible patients admitted to NICUs between
January 1, 2018, and December 31, 2018, were col-
lected these patients comprised the present study
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population. Neonatal data were collected including sex,
birth weight, GA, small for GA, 5-min Apgar score, Score
for Neonatal Acute Physiology with Perinatal Extension II
(SNAPPE-II), and neonatal severity scores [9]. The use of
mechanical ventilator (MV), time on MV, length of hos-
pital stay, and time of full enteral feeding were also re-
corded. Neonatal outcomes examined included the
incidences of BPD, necrotizing enterocolitis (NEC), late-
onset sepsis (LOS), and extrauterine growth retardation
(EUGR). Nutritional intake was recorded daily for 4 weeks
after birth, including volume and type of enteral intake.

Definitions
Full feeding was defined as full enteral feeding with no
intravenous intake. BPD was defined as the need for
supplementary oxygen for 28 days or more, and classi-
fied as mild, moderate, or severe BPD following the 2005
consensus [10]. LOS was diagnosed by the presence of
clinical signs of sepsis and confirmed by blood culture
after 3 days of life. NEC and severity grades of NEC were
defined according to Bell’s stage [11]. EUGR was defined
as body weight being lower than tenth percentile at 36
weeks’ postmenstrual age (PMA) or at the time of
hospital discharge.

Statistical analysis
Statistical analyses were performed using SPSS 22.0.
Descriptive statistics included the mean and standard
deviation for continuous variables following a normal
distribution; median and interquartile range for skewed
variables; and frequencies and percentages for categor-
ical variables. We used The chi-square test, Kruskal-
Wallis test, and one way analysis of variance were used
to compare the varying dosages of human milk daily
with neonatal data and clinical information.
Logistic regression analyses were performed to exam-

ine the associations between the volume of human milk
daily and neonatal complications, with adjustment for
potential confounders. The risk was reported as an odds
ratio (OR) with 95% confidence interval (CI). Multivari-
ate analysis was used to adjust for confounding variables
including GA, small for GA (< 10 tenth percentile), sex,
multiple births, cesarean section, 5-min Apgar score ≤ 7;
SNAPPE-II; neonatal critical score, and mechanical ven-
tilation time ≥ 7 days. A P value < 0.05 was considered
statistically significant. In order to rule out multicolli-
nearity between independent variables, the test of multi-
collinearity was performed. Major income was the
dependent variable respectively. Gestational age, small
for gestational age, multiple births, cesarean section,
5’Apgar score ≤ 7, neonatal critical score, Score for Neo-
natal Acute Physiology II and/or mechanical ventilation
time ≥ 7 days were the independent variables. The vari-
ance inflation factors (VIF) as a diagnostic tool of

multicollinearity was both less than 5 in our studies,
which indicated there was no linear intercorrelation be-
tween explanatory variables.

Results
A total of 1363 VLBW infants were recruited from 19
hospitals during the time frame. Including 1337 infants
with GA ≤34 weeks. Of these, 345 cases had often hos-
pital stay of fewer than 28 days and 28 did not begin
milk feeding within 2 weeks of life. These were all ex-
cluded, leaving 964 infants that fulfilled the inclusion
criteria (Fig. 1).
The characteristics of the four groups by mean daily

volume of human milk are shown in Table 1. A total of
279 (28.9%) of the 964 infants received exclusive preterm
formula. A total of 853 (71.1%) received human milk, all
of whom also received preterm formula as needed to
achieve a full enteral intake. A total of 128 (13.3%) re-
ceived a mean volume of 1–24 mL/(kg · day) of human
milk daily during the first 4 weeks of life, 139 (14.4%) re-
ceived 25–49mL/(kg · day), and 418 (43.4%) received
≥50mL/(kg · day). Statistically significant differences
were found in GA, cesarean section, multiple births,
small for GA, SNAPPE-II, and time on total enteral nu-
trition (TEN) among the four groups.
Compared with infants receiving no human milk, those

with the highest volume of human milk [≥50mL/(kg · day)]
had a lower incidence of preterm complications of BPD
[27.5% for those receiving ≥50mL/(kg · day) human milk
daily vs 40.1% for those receiving 0mL/(kg · day) human
milk]; moderate and severe BPD [8.9% ≥50mL/(kg · day) vs
16.1% 0mL/(kg · day)]; NEC [3.8% 50mL/(kg · day) vs
10.8% 0mL/(kg · day)]; LOS [9.3% ≥50mL/(kg · day) vs
19.7% mL/(kg · day)]; and EUGR [38.5% ≥50mL/(kg · day)
vs 57.6% 0mL/(kg · day)]. No effect of 1–24mL/(kg · day)
or 25–49mL/(kg · day) of human milk on BPD and
moderate-to-severe BPD was observed daily during the first
4 weeks of life (Table 2).
Compared with infants receiving no human milk,

those receiving ≥50 mL/(kg · day) human milk had lower
odds of BPD (adjusted OR [AOR] 0.453; 95% CI: 0.309,
0.666); moderate and severe BPD (AOR 0.430; 95% CI:
0.249, 0.742); NEC (AOR 0.314; 95% CI: 0.162, 0.607);
LOS (AOR 0.420; 95% CI: 0.263, 0.673); and EUGR
(AOR 0.685; 95% CI: 0.479, 0.979) after adjustment for
confounders (Table 3).
Exclusive human milk feeding infants were divided

into two subgroups with ≥50 mL/(kg · day) donor milk
and ≥ 50 mL/(kg · day) own mother’s milk to clarify fur-
ther whether donor milk had the same protective effect
on BPD and other complications of preterm infants as
own mother’s milk. The effect on BPD and other com-
plications was compared between the two groups. The
results showed no statistically significant difference in
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BPD, moderate-to-severe BPD, NEC, LOS, and EUGR
(Table 4).

Discussion
Until recently, data suggesting a beneficial impact of hu-
man milk feeding on BPD were limited. Some studies
concluded that human milk decreased the incidence of
BPD [12–15] the result of other studies were contradict-
ory [16, 17]. The present study found that human milk
might reduce the incidence of BPD, with a dose-
dependent relationship between human milk and the oc-
currence of BPD.
The proportion of preterm infants receiving breast-

feeding in NICUs increased from 23.0% in 2005 to 37.2%
in 2015 in China [8, 18] with an improved understand-
ing of breastfeeding and strategies to promote breast-
feeding The breastfeeding rates increased in NICUs of
China. The proportion of exclusively formula-fed VLBW
infants with a hospital stay of ≥28 days in this study was
28.9%, less than one-third of the total. The proportion of

mixed feeding of human milk and formula was signifi-
cantly higher than that of exclusive breastfeeding and
exclusive formula – feeding due to limitations from vari-
ous factors. This led to the question regarding the dose-
dependent effect of human milk on the risk of BPD and
other morbidities in VLBW infants. Several meta-
analyses [12, 15, 19, 20] comparing human milk or own
mother’s milk and any human milk with exclusive for-
mula drew different conclusions, although most found
that exclusive human milk feeding was associated with
decreased incidence of BPD. Partially receiving human
milk was also shown to have a protective effect com-
pared with exclusive formula feeding, but the level of
evidence was not high [12]. Patel et al. [21] revealed a
9.5% reduction in the odds of BPD for each 10% increase
in enteral feedings consisting of mothers’ milk received
from birth to 36 weeks PMA. Another study found that
the risk of BPD reduced when the average breast milk
volume given was more than 7mL/(kg · day) at 42 days
after birth [22]. This dose of human milk was far lower

Fig. 1 Flow diagram of the selection of the study population. BW, Birth weight; GA, gestational age
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than that in the present study. The difference might
be explained by different time period and different
GA. The GA in the aforementioned study was less
than 32 weeks and the time of feeding was 42 days
after birth. However, while the gestational age in the
present study was less than and equal to 34 weeks
and the time of feeding was 28 days after birth. The
time of feeding in the present study was selected ac-
cording to the definition of BPD.

Furman et al. [17] and Schanler et al. [16, 23] found
that feeding with at least 50 mL/(kg · day) of human milk
reduced the incidence of LOS. However, the effect on
NEC and BPD was not consistent, due to a limited sam-
ple size. The detailed clinical and feeding information of
VLBW infants from 19 NICUs in Jiangsu province in
2018 was collected, providing a sufficiently large sample.
At least 50 mL/(kg · day) of human milk daily given up
to the end of the fourth week of life decreased the rates

Table 1 Infant characteristics according to human milk intake in first 4 weeks of life

Characteristic Daily volume of human milk, ml/kg body weight

0 1–24 25–49 ≥50 sum Statistical value P-value

Number of subjects, n (%) 279 (28.9) 128 (13.3) 139 (14.4) 418 (43.4) 964

Gender (male), n (%) 139 (49.8) 72 (56.3) 73 (52.5) 214 (51.2) 498 (51.7) χ2 = 1.535 0.674

Birth weight (grams), mean ± SD 1215 ± 179 1184 ± 186 1228 ± 165 1219 ± 186 1215 ± 181 F = 1.594 0.189

1250–1499, n (%) 144 (51.6) 62 (48.4) 67 (48.2) 215 (51.4) 488 (50.6)

1000–1249, n (%) 95 (34.1) 43 (33.6) 58 (41.7) 153 (36.6) 349 (36.2)

750–999, n (%) 39 (14) 21 (16.4) 14 (10.1) 41 (9.8) 115 (11.9)

< 750, n (%) 1 (0.4) 2 (1.6) 0 (0) 9 (2.2) 12 (1.2)

Gestational age (weeks), mean ± SD 30.1 ± 1.8 29.6 ± 2.0 29.7 ± 1.8 29.5 ± 1.9 29.7 ± 1.9 F = 6.466 0.000

32–34, n (%) 50 (17.9) 21 (16.4) 18 (12.9) 50 (12.0) 139 (14.4)

30–31, n (%) 104 (37.3) 28 (21.9) 40 (28.8) 106 (25.4) 278 (28.8)

28–29, n (%) 96 (34.4) 54 (42.2) 63 (45.3) 190 (45.5) 403 (41.8)

<28, n (%) 29 (10.4) 25 (19.5) 18 (12.9) 72 (17.2) 144 (14.9)

Cesarean section, n (%) 175 (62.7) 63 (49.2) 70 (50.4) 219 (52.4) 525 (54.7) χ2 = 10.820 0.013

Multiple births, n (%) 55 (19.7) 31 (24.2) 45 (32.4) 106 (25.5) 237 (24.6) χ2 = 13.196 0.040

5’Apgar score≤ 7, n (%) 97 (34.8) 38 (29.7) 28 (20.1) 65 (15.6) 228 (23.7) χ2 = 37.812 0.000

Small for GA, n (%) 24 (8.6) 7 (5.5) 16 (11.5) 19 (4.5) 66 (6.8) χ2 = 9.941 0.019

Neonatal critical score, mean ± SD 96 ± 7 96 ± 6 97 ± 6 97 ± 7 96 ± 7 F = 1.095 0.350

SNAPPE-II, median (P25, P75) 18 (5, 35) 15 (7, 31) 12 (5, 21) 9 (0, 21) 13 (5, 26) Z = 40.598 0.000

MV, n (%) 90 (32.3) 55 (43.0) 53 (38.1) 172 (41.1) 370 (38.4) χ2 = 6.919 0.075

Time on MV ≥7 days, n (%) 36 (12.9) 16 (12.5) 14 (10.1) 35 (8.4) 101 (10.5) χ2 = 4.306 0.230

Time on TEN (days), median (P25, P75) 28 (21, 39) 30 (22, 41) 24 (16, 30) 19 (13, 26) 23 (16, 32) Z = 149.286 0.000

Length of stay (days), median (P25, P75) 45 (37, 57) 47 (36, 58) 45 (37, 56) 43 (35, 53) 44 (36, 56) Z = 6.246 0.100

Table 2 Neonatal outcomes of various doses of human milk intake in first 4 weeks of life

Neonatal outcomes Daily volume of human milk, ml/kg body weight

0 1–24 25–49 ≥50 sum Statistical value P-value

Main outcomes, n (%)

BPD 112 (40.1) 52 (40.6) 48 (34.5) 115 (27.5) 327 (33.9) χ2 = 15.069 0.002

Moderate-severe BPD 45 (16.1) 15 (11.7) 13 (9.4) 37 (8.9) 110 (11.4) χ2 = 9.447 0.024

Secondary outcomes, n (%)

NEC 30 (10.8) 18 (14.1) 22 (15.8) 16 (3.8) 86 (8.9) χ2 = 26.821 0.000

NEC (≥Bell’s stage 2) 3 (1.1) 3 (2.3) 3 (2.2) 5 (1.2) 14 (1.5) χ2 = 1.664 0.645

Late-onset sepsis 55 (19.7) 34 (26.6) 27 (19.4) 39 (9.3) 155 (16.1) χ2 = 28.419 0.000

EUGR 160 (57.6) 69 (54.3) 60 (43.8) 155 (38.5) 444 (47.0) χ2 = 27.531 0.000

BPD Bronchopulmonary dysplasia; EUGR extrauterine growth retardation; GA gestational age; MV mechanical ventilation; TEN total enteral nutrition; NEC
necrotizing enterocolitis; SD standard deviation; SNAPPE-II Score for Neonatal Acute Physiology II
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of BPD, as well as NEC, LOS, and EUGR in VLBW
infants.
Infection is a risk factor for BPD, which alters lung

development through inflammatory cytokines. Bioactive
components of human milk can contribute to the de-
velopment of the immunity system in preterm infants
and reduce the chance of infection. Human milk can

reduce the occurrence of BPD by reducing the inci-
dence of sepsis and NEC.
Oxidative stress is a common pathway shared by BPD,

NEC, sepsis, and EUGR, it causes lipid, protein, and
DNA damage. Preterm infants have poor antioxidant de-
fenses in response to oxidative challenge, because the
physiologic increase in antioxidant ability occurs at the

Table 3 Logistic regression analyses examining protective effect on neonatal morbidity of various doses of human milk versus no
human milk in first 4 weeks of life

Neonatal morbidity Daily volume of human milk (ml/kg) Univariate P-value Multivariate P-value

BPDa 0 OR = 1 OR = 1

1–24 1.020 (0.666, 1.563) 0.927 0.811 (0.496, 1.325) 0.403

25–49 0.786 (0.515, 1.201) 0.267 0.746 (0.459, 1.213) 0.237

≥50 0.566 (0.410, 0.781) 0.001 0.453 (0.309, 0.666) 0.000

Moderate-severe BPDa 0 OR = 1 OR = 1

1–24 0.690 (0.369, 1.291) 0.246 0.501 (0.246,1.013) 0.054

25–49 0.537 (0.279, 1.032) 0.062 0.549 (0.267,1.129) 0.103

≥50 0.505 (0.317, 0.803) 0.004 0.430 (0.249,0.742) 0.002

NECb 0 OR = 1 OR = 1

1–24 1.358 (0.726, 2.540) 0.338 1.208 (0.626,2.331) 0.574

25–49 1.561 (0.863, 2.822) 0.141 1.631 (0.870,3.059) 0.127

≥50 0.330 (0.176, 0.618) 0.001 0.314 (0.162.0.607) 0.001

NEC(≥Bell’s stage 2)b 0 OR = 1 OR = 1

1–24 2.208 (0.440, 11.093) 0.336 1.244 (0.198, 7.823) 0.816

25–49 2.029 (0.404, 10.188) 0.390 2.037 (0.387, 10.714) 0.401

≥50 1.114 (0.264, 4.698) 0.883 0.854 (0.193, 3.786) 0.836

Later onset sepsisb 0 OR = 1 OR = 1

1–24 1.473 (0.902, 2.406) 0.122 1.413 (0.851, 2.346) 0.182

25–49 0.982 (0.588, 1.641) 0.944 1.038 (0.607, 1.774) 0.892

≥50 0.419 (0.269, 0.652) 0.000 0.420 (0.263, 0.673) 0.000

EUGRa 0 OR = 1 OR = 1

1–24 0.877 (0.575, 1.339) 0.544 1.287 (0.803,2.062) 0.294

25–49 0.575 (0.380, 0.868) 0.009 0.701 (0.434.1.132) 0.147

≥50 0.461 (0.338, 0.629) 0.000 0.685 (0.479,0.979) 0.038

BPD Bronchopulmonary dysplasia; CI confidence interval; EUGR extrauterine growth retardation; NEC necrotizing enterocolitis; OR odds ratio
aAdjusted for gestational age, small for gestational age, multiple births, cesarean section, 5’Apgar score ≤ 7, neonatal critical score, Score for Neonatal Acute
Physiology II; mechanical ventilation time ≥ 7 days
bAdjusted for gestational age, small for gestational age, multiple births, cesarean section, 5’Apgar score ≤ 7; Score for Neonatal Acute Physiology II, neonatal
critical score

Table 4 The effect on neonatal morbidity of donor milk versus maternal milk in first 4 weeks of life

Subgroup BPD
n(%)

Moderate-severe
BPD n(%)

NEC n(%) NEC(≥Bell’s
stage 2 n(%))

Later onset
sepsis n(%)

EUGR n(%)

Donor milk ≥50ml/kg/d 21 (14.3) 21 (0) 21 (0) 21 (0) 21 (0) 21 (36.8)

Maternal milk ≥50 ml/kg/d 127 (26.0) 127 (9.4) 127 (4.7) 127 (0.8) 127 (11.8) 127 (30.2)

Statistical value 1.340 2.159 1.034 0.166 2.760 0.345

P-value 0.247 0.142 0.309 0.683 0.097 0.557
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end of term birth [24–28]. Therefore, preterm infants
are more susceptible to reactive oxygen species (ROS)-
induced damage. Inadequate nutrition increases oxida-
tive stress [28]. Human milk has many bioactive compo-
nents that prevent oxidative stress [7, 29, 30]. The
composition of human milk can vary with the infant’s
requirements according to its age and other characteris-
tics [31, 32]. High-dose human milk feeding may provide
nutritional and bioactive components that mitigate
oxidative stress, inflammation, and dietary inadequacies
[33, 34]. Furthermore, these protective components of
human milk are highly concentrated as the volume of
human milk increases.
The human milk included own mother’s milk and

donor milk. Only two of the NICUs in present multicen-
ter study. The volumes of donor milk were low and were
combined with human milk. The methods of storage
and disinfection of donor milk may also have affected its
nutritional composition [35, 36]. A subgroup analysis
was performed to verify dose-related effects of donor
milk and own mother’s milk. The donor milk intake of
≥50mL/(kg · day) during the first 4 weeks of life also
reduced the incidence of BPD, NEC, LOS, and EUGR as
own mother’s milk.
A limitation of the present study is was baseline differ-

ences in the participants who received different volumes
of human milk daily for the first 4 weeks of life. The stat-
istical analyses adjusted for these differences; however, it
was possible that not all the differences between these
groups could be controlled statistically. Additionally,
very few infants were fed donor milk. The sample size
needs to be enlarged for further verification.

Conclusion
A daily threshold amount of at least 50 mL/(kg · day) hu-
man milk throughout the first 4 weeks of life reduced
the risk of BPD as well as NEC, LOS, and EUGR in
VLBW infants.
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