
1Scientific RepoRtS |         (2020) 10:7870  | https://doi.org/10.1038/s41598-020-64243-6

www.nature.com/scientificreports

identifying task-relevant 
spectral signatures of perceptual 
categorization in the human cortex
ilya Kuzovkin  1 ✉, Juan R. Vidal2,6,10 ✉, Marcela perrone-Bertolotti3, philippe Kahane4,5, 
Sylvain Rheims6,7, Jaan Aru1,8, Jean-philippe Lachaux6,9 & Raul Vicente1,10 ✉

Human brain has developed mechanisms to efficiently decode sensory information according to 
perceptual categories of high prevalence in the environment, such as faces, symbols, objects. neural 
activity produced within localized brain networks has been associated with the process that integrates 
both sensory bottom-up and cognitive top-down information processing. Yet, how specifically the 
different types and components of neural responses reflect the local networks’ selectivity for categorical 
information processing is still unknown. In this work we train Random Forest classification models 
to decode eight perceptual categories from broad spectrum of human intracranial signals (4–150 Hz, 
100 subjects) obtained during a visual perception task. We then analyze which of the spectral features 
the algorithm deemed relevant to the perceptual decoding and gain the insights into which parts 
of the recorded activity are actually characteristic of the visual categorization process in the human 
brain. We show that network selectivity for a single or multiple categories in sensory and non-sensory 
cortices is related to specific patterns of power increases and decreases in both low (4–50 Hz) and 
high (50–150 Hz) frequency bands. By focusing on task-relevant neural activity and separating it into 
dissociated anatomical and spectrotemporal groups we uncover spectral signatures that characterize 
neural mechanisms of visual category perception in human brain that have not yet been reported in the 
literature.

Our capacity to categorize sensory information allows us to quickly process and recognize complex elements 
in our environment. Early studies revealed strong relations between the brain activity within certain localized 
networks and the neural representations of certain stimulus categories, as for example faces, bodies, houses, cars, 
objects and words1–7. These early assessments also revealed brain networks’ capability to rapidly extract categor-
ical information from short exposure to natural scenes8–10 based on models of parallel processing across neural 
networks3,11. In both animal and human studies, visual cortices and particularly inferior temporal cortex (ITC) 
appears as a key region to integrate information at the object-level12–14. In humans, a great deal of observations 
of cortical response selectivity have been achieved using fMRI, but measuring direct neuronal activity15,16 also 
revealed similar patterns. To further understand how stimulus features and perceptual experience is processed in 
neural networks, brain activity, especially in sensory cortices, has been decoded using a variety of methods and 
signals17–19. This decoding often relies on machine learning to avoid a priori selection of partial aspects of the data 
by the human observer, and unless additional analysis is performed on the model itself it does not emphasize the 
mechanisms of neuronal communication within and between neural networks involved in this processing.

A pervasive feature of electrophysiological neural activity are its spectral fingerprints. Neural oscillations have 
been proposed to reflect functional communication processes between neural networks20–23. Certain frequency 
bands are selectively associated with the operating of different cognitive processes in the human and animal 
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brain24–29, and lately, direct recordings from the human cortex have revealed the remarkable representation selec-
tivity of broadband high-gamma activity (50–150 Hz)30–32. Human intracranial recordings have previously shown 
evidence of functional processing of neural networks related to perceptual category representation33 and lately 
the prominence of broadband high-gamma activity in selective category responses in visual areas34–38. Yet, very 
little is known about the specific relation between the different components of the full power-spectrum, including 
high-gamma activity, and their level of selectivity in processing perceptual categories. Previous works have shown 
where and when perceptual category information can be decoded from the human brain, the approach intro-
duced in this work adds to that line of research by allowing to identify spectrotemporal patterns that contribute to 
category decoding without the need to formulate a priori hypothesis on which spectrotemporal regions of interest 
are worth investigating.

In this work we capitalize on an extensive dataset of deep intracranial electrical recordings on 100 human 
subjects to decode neural activity produced by 8 different stimulus categories. We analyzed the decoding models 
built by a random forest classifier to disentangle the most informative components of the time-frequency spec-
trum related to the simultaneous classification of 8 different perceptual categories. Via feature importance analysis 
we quantified the contribution of each TF component into the decoding decision, which allowed us to identify 
the activity patterns that were either characteristic of the processing of a specific visual category or were shared 
by several categories. In addition to feature importance we analyzed the predictive power of each activity pattern 
and identified how informative was their spectral signature for the classification of visual categories. We tested 
the predictive power of broadband high-gamma activity in comparison to lower frequency activity as they reflect 
different communication mechanisms elicited by networks seemingly involved in distinct temporal windows of 
functional neuronal processing. Through the analysis of feature importance we show the specific neuronal spec-
tral fingerprints from highly distributed human cortical networks that were elicited during automatic perceptual 
categorization. The uncovered spectral signatures provide insight into neural mechanisms of visual category per-
ception in human brain.

Results
feature importance allows to separate out the neural signals that are predictive of perceptual 
categorization from the mixture of stimulus-induced responses. To identify spectrotemporal fea-
tures that are characteristic of automatic perceptual categorization of a particular category we relied on time-fre-
quency (TF) maps of the neural responses of intracranially implanted electrodes. Out of the total set of 11321 
probes 11094 (98%) were responsive (see the Methods section on processing of neural data for details) to the 
stimuli from at least one of the categories. On one hand this provides us with abundance of data, on the other 
raises the question whether all of that activity was relevant to the processes that encode and process visual input.

Training a decoding model (see the Methods section on Random Forest as decoding model and the illustra-
tion on Fig. 1) for each of the probes allowed us to dissociate the predictive probes that exhibited activity that was 
useful for decoding from the rest of the responsive probes that did not carry such activity.

Green markers on Fig. 2a show the set of probes that are responsive to the house category, while the blue 
markers are the probes that are predictive of that category (4.8%, 535 probes). Figure showing the distribution of 
responsive and predictive probes for other categories are available in Supplementary Materials repository. 
Decoding models built on the neural responses of the predictive probes were successful at classifying at least one 
perceptual category ( > .F 0 391  for one or more classes), focusing on them in our further analysis allowed to work 
only with the locations that carry information relevant to the task of perceptual categorization.

Predictive probes had a heterogeneous distribution in the brain, yet remained mostly concentrated in visual 
cortices and inferior temporal regions (76%), from BA17 to BA20, including early visual areas (BA 18, 19), fusi-
form gyrus (BA 37) and inferior temporal cortex (BA 20). A majority of the predictive probes were in fusiform 
cortex (average of 52% over all categories, Fig. 2b), followed by BA 19 (27%), across all category networks. The 
detailed numbers of the distribution of predictive and responsive probes across categories and Brodmann areas 
can be found in Table 1 of the Supplementary Materials Section.

Within the primary visual cortex, BA 17 and 18, the scrambled was the stimulus that elicited most predic-
tive probes (28) amongst all stimulus categories (Fig. 2c), followed by pseudowords (13). Probes predictive of 
faces were mostly concentrated in BA19, BA37 and BA20 (72%, 108 out of 150). The low number of predictive 
probes in area 17 is explained by the fact that less than 1% of the implantation sites in the original dataset were 
located in primary visual cortex.

Previous studies have shown that perceptual category-selective networks are located in occipito-temporal 
cortex4,6,12. To test whether predictive power of the Random Forest model trained to decode activity of probes 
is coherent with known functional processing by cortical networks we evaluated the selectivity of the predictive 
power in three known functional networks: Fusiform Face Area (FFA)1, Visual Word Form Area (VWFA)7 and 
Parahippocampal Place Area (PPA)39. We checked whether the probes located in each of these areas and the 
Random Forest model trained on these probe’s activity to discriminate between 8 categories produces the highest 
predictive power for the category for which this area is known to be selective. Probes in FFA are associated with 
facial recognition and encoding facial information40–44 and thus we expect their activity to be predictive of the 
face category, probes in VWFA should be predictive of characters and pseudowords categories42,45,46 
and probes in PPA should be responsive to scenes and houses39,47–49.

There were 12 probes in the FFA that were significantly (permutation test < −p e1 4) predictive (classifica-
tion score > .F 0 391 ) of a category: 5 were predictive of faces, 4 of animals (which mostly have faces on the 
image), 2 of pseudowords and 1 of scrambled images. Most probes that were in FFA and were predictive, 
carried information of the categories containing facial features.
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There were 8 probes in the VWFA that were predictive of a category: 5 were predictive of pseudowords, 2 
of characters and 1 of faces. This points to the fact that the predictive probes in VWFA are predictive of the 
stimuli with written characters on them. These results confirm that predictive power of a Random Forest model 
trained on probes activity in VWFA reflects the functional role known to be carried by this area.

For probes in the PPA results were less selective. There were 23 probes inside that area that were predictive of a 
category: 5 were predictive of houses, 4 of scenes, 5 of characters, 5 of scrambled images, 2 of tools 
and 2 of pseudowords. The probes from PPA predicted not only houses and scenes, but also other catego-
ries. However, houses and scenes were among the categories that the probes from PPA were able to identify 
successfully in highest proportion as compared to the other categories.

These confirmatory findings give credibility to the methodology by which the probes that are identified as 
predictive of a certain category are involved in the processing of the stimuli that belong to that category.

Training per-probe decoding models not only allowed us to identify the predictive locations, but also to apply 
feature importance analysis to decoding models trained on local activity. Computing the feature importance 
across the time-frequency map (4–150 Hz and −500 to 1000 ms) allowed us to see which parts of neural activity 
are crucial for the decoding. Overlaying the importance over time-frequency map showed at which frequencies 
and at what times the activity that was important for the algorithm has occurred. This can be applied both on 
aggregated level, where the importance map is averaged over probes, and on individual probe level. “Feature 

Figure 1. Major steps of the data processing pipeline. (a) Image stimuli from 8 categories were presented to test 
subjects. (b) Human brain responses to images were recorded with deep intracranial electrodes. (c) LFP signals 
were preprocessed and transformed into time-frequency domain. (d) Random Forest models were trained to 
decode image category from each electrode’s activity. (e) Feature importances of each model were calculated to 
identify the region on each electrode’s activity map that was relevant to visual object recognition. Notice how the 
final results on panel (e) tell us that high gamma activity in 90–120 ms window and the subsequent activity in 
the low gamma range in 120–250 ms window are the only bands and time windows in that particular electrode’s 
activity that are relevant for the classification task, while the spectrogram on panel c also shows that there was 
activity in early theta, beta and low gamma bands. Our analysis revealed that not all activity was relevant (or 
useful) for the classification of an object and showed which parts of the activity are actually playing the role in 
the process.
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importance of the analysis of task-relevant neural activity” part of the Methods section explains the application of 
probe importance map to filter irrelevant activity and obtain spectrotemporal signature of a particular category 
on a particular probe. Now we can use the feature importance map as a mask and perform the analysis of the 
activity itself, focusing only on the relevant parts of it. When applicable, this methodology helps to filter out irrel-
evant activity and allows to focus on the activity that is important to the scientific question under investigation.

We took an average over importance maps of all individual probes within each category to obtain the global 
picture of where the category-specific activity lies in time and frequency space. Figure 3 visualizes average impor-
tance maps of each of eight categories and allows to single out the spectrotemporal signatures that are unique to 
specific categories and those that are less selective. From these importance maps we notice that certain TF com-
ponents are distinctly present per category, as for example high (significantly higher than 81 out of 112 regions of 
interest, Mann-Whitney U < . −p 8 9e 7, corrected) importance of the transient theta activity (theta burst) in all 
categories, or the almost absence of importance of broadband gamma (significantly lower than 10 out of 12 other 
regions of interest, Mann-Whitney U < . −p 8 3e 5, corrected) in the control scrambled condition.

In the following sections we expand our analysis to the comparison of the feature maps and analyzing the 
activity under the regions that the method identifies as important.

polypredictive and monopredictive probes. The analysis revealed two types of neural locations: poly-
predictive probes are predictive of multiple visual categories, while monopredictive are useful for decoding only 
one out of 8 different types of stimuli revealing a high degree of specialization (Fig. 4b). We considered a probe to 
be predictive of a category if cross-validation F1 score for that category was higher than 0.39 (see the Methods for 
details on the threshold selection), which is a stricter condition than above-chance criterion ( > .F 0 1251 ). We use 
the term ‘predictive‘ to highlight the difference in meaning with the classical terms ‘selective‘ and ‘responsive‘. 

Figure 2. Distribution of predictive probes. (a) Green markers indicate all of the probes that were responsive 
to stimuli from the house category. Blue markers indicate only the predictive probes that carry information 
that is relevant to decoding the neural response as reaction to house stimulus. The house category was 
selected for this figure as an illustrative example, similar effect can be seen across all 8 categories, please see the 
Supplementary Materials repository for the visualization of the distributions of responsive and predictive probes 
in all eight categories. (b) Distribution of predictive probes over areas within each category (each row sums up 
to 100%). Color shows the percentage across categories. (c) Distribution of predictive probes over a category 
within each area (each column sums up to 100%). Color shows the percentage across areas.
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Both these terms describe the post-stimulus activity of an electrode in terms of the relationship of the 
post-stimulus response to the pre-stimulus baseline. The relevance of the electrode’s activity to the classification 
task, however, is measured in this work using classifier’s prediction score.

Figure 4a shows that polypredictive probes reside mainly (94%, 136 out of 145) in posterior occipital and 
posterior temporal, while the monopredictive probes extend, in addition to occupying similar posterior occipital 
and temporal locations, to frontal cortex (92%, 45 out of 49 probes in this area are monopredictive) and anterior 
temporal cortex (88%, 51 out of 58 probes). Both mono- and polypredictive probes are also observed in parietal 
cortex. Monopredictive probes that extend beyond ventral stream and temporal cortex pertain to the following 
perceptual categories: faces (orbitofrontal cortex), animals and pseudowords (dorsofrontal cortex, infe-
rior frontolateral cortex, premotor cortex), and, to a smaller extent, scrambled images (prefrontal cortex).

The unique association of specific TF feature importance components with either polypredictive and mono-
predictive probes was category specific, as shown in Fig. 5a–h. While all of the data presented on these figures 
shows statistically significant differences between monopredictive and polypredictive neural locations, we will 
focus only on a few that were supported by the strongest signal in the data. For face stimuli, most of the feature 
importance in the early broadband gamma response was significantly (4σ) higher in polypredictive probes as 

Figure 3. Average importance map of each of eight categories over probes predictive of that category. The 
color shows the relative importance of each spectrotemporal feature, indicating how informative that particular 
feature was for the task of decoding.

Figure 4. Anatomical distribution of mono- and polypredictive locations. (a) Red markers are the locations 
of monopredictive probes, blue markers are the locations of polypredictive ones. Polypredictive probes (145 
unique locations) are mostly confined to visual areas and temporal lobe (both parts of the ventral stream), while 
monopredictive (specialized, 401 unique locations) probes are, in addition to visual areas, also found in frontal and 
parietal cortical structures. (b) The histogram shows how many categories are predictable by how many probes.
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compared to monopredictive probes, indicating that the most useful information for distinguishing faces from 
other visual categories is coded in that region of time-frequency space and is carried by polypredictive probes 
(Fig. 5b). Decoding of animals and tools relied on the activity patterns produced by monopredictive neural 
locations in late broadband gamma range (>300 ms) and in even later (350–600 ms) alpha/beta range, with very 
little involvement of the activity of polypredictive probes. Scenes and houses also show strong feature impor-
tance in late alpha and beta band responses of monopredictive probes ( σ4  higher). Interestingly, for charac-
ters (Fig. 5g), feature importance in the early broadband gamma range was dominant for polypredictive probes 
(4σ higher than monopredictive), while the opposite was true for the pseudowords (Fig. 5f) – the late broad-
band gamma revealed to be dominant for monopredictive probes, also note the difference in the anatomical 
locations that were the most useful for the decoding of the pseudowords compared to the locations that were 
useful for decoding characters. Pseudowords also elicited a significantly stronger TF feature importance 
in monopredictive probes in late (350–750 ms) low-frequency (4–12 Hz) range, similar to animal and tool 
stimulus categories. Finally, an interesting observation was that animals and faces share most of their poly-
predictive probes (51%) indicating a large overlap of categorization networks of these two categories.

Further decomposition of important activity reveals clusters of distinct time-frequency pat-
terns. We ran clustering analysis of the probes predictive of a category based on their activity to see which 
probes in the category-network behave in a similar way. Left column of Fig. 6 shows an averaged feature impor-
tance map for a given category. We look into the regions of the time-frequency map that are indicated as impor-
tant by the feature importance map, extract baseline-normalized activity in those regions and cluster the probes 
according to that activity using hierarchical complete linkage clustering with cosine distance (see the Methods 

Figure 5. Statistically significant differences between the importance of monopredictive and polypredictive 
probes’ activity. Gray regions indicate the areas of TF spectrum where both monopredictive and polypredictive 
probes exhibit important (2σ from the mean) activity. On top of it, if one of the groups is statistically 
significantly (4σ difference) more important than another, the region is colored with blue (polypredictive) or 
red (monopredictive) to show which of two kinds of neural specialization dominates this TF region in terms 
of importance. For example decoding of scenes (d) involves early theta activity of polypredictive (blue) 
probes, followed broadband gamma activity that is significantly important (gray), and is slightly dominated by 
monopredictive (red) probes, then followed by late alpha activity produced predominantly by monopredictive 
neural locations. (a) house, (b) face, (c) animal, (d) scene, (e) tool, (f) pseudoword, (g) 
characters, (f) scrambled.
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section on hierarchical clustering for details). The second column of Fig. 6 shows the activity of four most popu-
lated clusters for each category. Each cluster represents the activity pattern exhibited by the probes in that cluster. 
Only the probes whose activity had predictive power ( > .F 0 391 ) are included in this analysis. As the final step we 
identified the anatomical locations of the probes from each cluster to see whether difference in the activity pat-
terns could be attributed to the functional regions of the brain. The visualization of this step in the last two col-
umns of Fig. 6.

Figure 6. Detailed analysis of spectral activity of (a) animals, (b) faces, (c) pseudowords and (d) 
scrambled images. For this figure we have selected the four categories that contained the most interesting 
observations, same visualization of activity importance, cluster assignations and the anatomical locations of 
those clusters for other four categories are available in the Supplementary Materials repository. Leftmost column 
contains the importance maps extracted from Random Forest models and shows where in time and frequency 
the important activity is. Second column visualizes the four largest (by the number of recording sites) clusters 
of activity patterns inside those spectrotemporal regions that are deemed important. The numbers in the top 
right corner of each cluster’s activity pattern show the average predictive power (F1 score) of the probes in that 
cluster and proportion of polypredictive locations that exhibited this particular pattern of activity. Note how 
every cluster has a designated color: green, blue, red or black. This color of the cluster matches the color of MNI 
location markers in the last two columns, that show sagittal and dorsal views of the brain. White markers show 
the probes that have predictive power, but their activity pattern does not belong to any of the four major clusters.
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This analysis allowed us make a number of global and category-specific observations. The set of visual catego-
ries presented in our data is diverse enough to consider category-specific findings to be general and emerge under 
any comparable set of visual stimuli.

The first global observation was that it is not only broadband gamma activity that is useful for the decoder’s 
(Random Forest) performance, but low-frequency activity also contributed significantly (41% of predictive 
probes exhibited only low-frequency activity in the regions of importance), sometimes overshadowing the activ-
ity of higher frequency bands altogether (for face and scrambled stimuli low frequency activity was signifi-
cantly more important than broadband gamma activity, Mann-Whitney U test < −p 1e 7, corrected). Most 
clusters were composed of a combination of low and high-frequency components (Fig. 6, second column) and 
were mostly (87%) located in occipito-temporal cortices, though some electrodes in parietal and frontal cortex 
(7%) also appeared to contribute with predictive responses in the decoding process (Fig. 6, two right columns), 
especially for such stimulus categories as animal and pseudoword.

The second observation spanning across all categories was that the classifier used not only the increases in 
power to perform the classification, but also relied on power decreases in different brain networks (7 out of 32 
dominant activity clusters consisted solely from the activity patterns characterized by power decrease). The most 
prominent examples are the clusters faces-2 (Fig. 6b), animals-2 (Fig. 6a), tools-2, pseudowords-1, 
pseudowords-2 (Fig. 6c), scrambled-1 and scrambled-2 (Fig. 6d). For example, to decode face or 
pseudowords from the activity of the blue cluster network, the RF classifier used broadband gamma power 
decreases located in posterior inferior temporal cortex and inferior occipital gyrus. None of the probes for which 
the decrease in activity was identified as important for decoding were located in classically defined Default Mode 
Network50,51.

Across all categories, the earliest component that often appeared in clusters was the brief power increase 
(mean non-zero power increase was 2.8 times the baseline in the region of interest) in the low-frequency interval 
(4–25 Hz), which for one group of probes can be associated to an almost instantaneous broadband gamma power 
increase (6b, cluster 3, mean broadband gamma increase of 1.9 times the baseline), but remains the only source of 
important activity for another group of probes (6b, cluster 1).

Studying the anatomical locations of the probes belonging to different clusters of activity revealed interesting 
observations. Figure 6c, pseudowords, clusters 1 and 3 show a clear example how clustering by activity pat-
terns leads to assigning the probes into functionally different anatomical areas. The gamma-band increase signa-
ture captured by cluster 3 occurs only in the left hemisphere (red markers on Fig. 6c), the late theta-alpha power 
decrease captured by cluster 1 also occurs only in the left hemisphere (green markers) and is spatially clearly 
distinct from probes in cluster 3. Because it is known that pseudoword stimuli elicit top-down language-related 
(orthographic, phonological and semantic) analysis, which elicits highly left-lateralized networks identifiable in 
iEEG recordings52,53, we know that this observation reflects a functional brain process. This dissociation in both 
the spectrotemporal and anatomical domains provides us with valuable data on the locations and associated 
activity patterns emerging during automatic perceptual categorization and highlights the benefit of disentangling 
the activity into functionally and anatomically disassociated clusters.

Finally, the relevance of the different components in the TF domain for the Random Forest classification pro-
cess was assessed. Specifically, we tested whether the activity in the broadband gamma range, commonly present 
on most clusters across categories, is in general the most valuable neural signature for category networks as com-
pared to the low-frequency parts of the spectrum. To test whether broadband gamma was solely the most inform-
ative frequency interval we statistically compared predictive power of three intervals: broadband gamma 
(50–150 Hz), low-frequency (4–50 Hz) and full spectrum (4–150 Hz). Overall, across 7 perceptual categories out 
of 8 (except for scenes), using the full spectrum was more informative than using the broadband gamma inter-
val or the low-frequency interval alone (Mann–Whitney U test, < .p 0 001563, corrected to the number of clus-
ters compared, see Fig. 7), which is in line with the results reported by54. Importantly, for scrambled images 
and faces the broadband gamma carried less (Mann-Whitney U < −p 1e 7, corrected) decoding-relevant 
information than the lower frequencies.

Discussion
In the present work we explored the bottom-up approach to the analysis of human intracerebral neural activ-
ity. Due to a rich dataset and powerful methodology we were able to uncover facts about neural processing of 
automatic visual categorization that we would not necessarily address in a hypothesis-driven study. We trained 
a machine learning model to decode 8 different perceptual categories from human intracerebral neural spectral 
activity and analyzed the resulting statistical model to expose what information does the model rely on in order 
to make decoding decisions. We then drew the parallels between the patterns of neural activity that the machine 
learning algorithm deemed important and the functional role of that activity for the task of decoding perceptual 
categories in human brain. This allowed us to distinguish between the spectral activity that is relevant for the 
task from the activity that is not. The study was conducted using a large dataset consisting of 4528400 local field 
potential recordings, from a cohort of 100 human patients whose combined electrode implantations spanned 
across all major brain cortical areas. The decoding process confronted neural responses elicited by 8 different per-
ceptual categories (from 8 different stimulus sets), which allowed obtaining a high resolution in the dissociation 
between neural response patterns across categories. All classifications were operated on a broad frequency spec-
trum ranging from 4 to 150 Hz and allowed to distinguish degrees of selectivity of neural responses and which 
spectral components most strongly enable this selectivity. Previous works have shown where and when perceptual 
category information can be decoded from the human brain, our study adds to that line of research by identifying 
spectrotemporal patterns that contribute to category decoding without the need to formulate a priori hypothesis 
on which spectral components and at which times are worth investigating.
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The classifier model first allowed us to globally identify two types of neural responses: those that were predic-
tive of a certain category and those that did not predict any category despite eliciting strong amplitude modula-
tion across multiple frequency bands. Surprisingly, when comparing the level of predictability of probe responses 
we found that only 4.8% of the responsive probes were predictive of a category. This very low percentage high-
lights an important fact regarding the level of “selectivity” of a neural responses. In this decoding approach, the 
level of single-probe neural response selectivity depends on the diversity and overall quantity of the comparison/
reference group to which it is compared to. Stimulus-induced neural signal selectivity is thus a graded quality 
that can be assessed through multiple comparisons with a broad variety of stimulation conditions. This result also 
implies that although any stimulus can elicit a local neural response throughout the cerebral cortex, in the light of 
our results, there is a high probability of it being non-predictive of any of the categories or being polypredictive 
of several categories at once.

In line with a vast literature on the localization of category related networks1–7,12–14 predictive probes con-
centrated mostly in the inferior temporal cortex, namely the fusiform gyrus (BA 37), yet surprisingly for some 
categories, probes in primary visual cortex were also predictive of these categories. This effect is probably related 
to the specifics of the physical content of certain images that uniquely characterize certain categories amongst all 
others, as for example the content in high-contrast edge information in scrambled and written text stimuli. 
The existence of polypredictive neural locations could be an important finding in the context of the debate con-
cerning the functional organization of the inferior temporal cortex. Specifically, this finding contradicts a mod-
ular organisation in which each region is involved in processing a single category55, and instead favours a more 
distributed, overlapping representation of categories across the IT56.

Predictive probes were subsequently classified according to their level of selectivity towards a single or mul-
tiple visual categories. Polypredictive probes (36%) clustered in visual cortices and inferior temporal cortex and 
were associated with early spectral components (<300 ms) such as broadband gamma power increases and a 
transient theta burst shortly after stimulus presentation. Monopredictive probes (64%) were abundant in these 
same regions, but extending uniquely in frontal, parietal, superior temporal and anterior limbic cortex. Their 
activity was strongly associated with the later (>300 ms) time and with power suppression of spectral impor-
tance features, versus baseline, in the theta (4–7 Hz), alpha (8–15 Hz) and beta bands (16–40 Hz). In a subgroup 
of probes the associated power suppression of the feature importances extended into the broad gamma band 
(50–150 Hz).

Importantly, the capacity to ascribe category selectivity to predictive probes (mono vs polypredictive probes) 
arises from the fact that the decoding model was trained to discriminate between all 8 categories simultaneously. 
The separation between mono and polypredictive probes revealed specific effects in terms of network localization 
and time-frequency components. The high concentration of polypredictive probes (and local networks) in early 
visual cortices, from primary visual cortex up to inferior temporal cortex is coherent with the idea that networks 

Figure 7. Comparison of predictive power of the electrodes from three different sets of features: full spectrum 
(4–150 Hz), broadband gamma alone (50–150 Hz) and lower frequencies alone (4–50 Hz) across categories. The 
bracket with the p-value indicates a significant difference according to Mann–Whitney U test. The dashed line 
indicates change classification level for an 8-class problem.
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in the ventral visual stream progressively integrate more complex features into object representations, thus 
becoming progressively more selective, and converge within median temporal lobe to more stimulus-invariant 
representations15. This progressive information integration by spectral features of neuronal responses across the 
visual hierarchy has been recently connected with the computations carried out by deep convolutional neural 
networks trained to solve the task of visual recognition57.

Globally, the random forest data classification provided results that are coherent with current knowledge on 1) 
the implication of networks located in visual cortex and inferior temporal cortex in processing visual categories, 
2) the timing of object categorization in the human brain and 3) the role of broadband gamma responses in pro-
cessing category-selective information within these networks. Previous studies have shown that certain stimulus 
categories elicit clustered cortical responses of highly localized networks in the occipito-temporal ventral stream 
such as the fusiform-face-area (FFA) and the visual-word-form area (VWFA)1,7. Yet, other studies have broadened 
this scope by showing that certain categories, as for example faces, rely on the involvement of a larger brain-wide 
distributed network34,58. Our classification analysis shows that the spatial extent of this network distribution is 
category specific, certain stimuli eliciting larger network responses, such as for faces, animals and pseu-
dowords, as compared to scenes, houses and scrambled images which concentrate in the fusiform cor-
tex, the parahippocampal cortex and primary visual cortex respectively.

Our results largely agree with previous works trying to decode visual object categories over time with MEG59,60 
or intracranial recordings61. All these studies converge on the result that perceptual categories can be decoded 
from human brain signals as early as 100 ms. Our current work goes a step beyond these previous investigations 
by demonstrating which spectral components underlie this fast decoding. Previous intracranial studies have also 
shown that broadband gamma is modulated by information about object categories34,37,38. Moreover, broadband 
gamma has been suggested as a proxy to population spiking output activity30,62–64. It has since then been con-
sidered as a hallmark of local population processing31. Our classification results however show that broadband 
gamma is not the sole selectivity marker of functional neural processing, and that higher decoding accuracy can 
be achieved by including low-frequency components of the spectrum. For certain stimulus categories, as scram-
bled images, the broadband gamma range is even outperformed by the predictive power of the low-frequency 
range.

To understand which spectral components play a specific role in stimulus categorization we analyzed the 
decision process that drives the decoding model and identified the combined spectrotemporal regions that 
are informative for the output of the random forest classification procedure. This allowed us 1) to identify the 
category-selective spectral components of high importance for the automatic visual categorization process, and 
2) identify the correlates functional involvement of positive as well as negative power modulations (increases and 
decreases versus baseline) in early and late time windows of neural processing involved in visual categorization.

While the distinctive activity of polypredictive neural locations is mostly reflected by early TF components 
(i.e. broadband gamma and theta burst in faces), the sustained decrease in power in the alpha/beta band was 
extended in space and time. This process is probably dependent on the degree of difficulty for the networks 
in reaching a perceptual decision and which appeals to the involvement of top-down processing required to 
resolve perceptual ambiguity elicited by the different stimulus categories. For example, animal and tool stim-
uli are highly diverse in their physical image structure, as compared to face stimuli. This affects the efficiency 
of bottom-up process in extracting category information, often associated with increase in gamma activity, 
and probably in parallel triggers top-down processes through selective activity modulation in low-frequency 
channels65. In our data, this latter phenomenon could be mirrored by a decrease of predictive power in the 
low-frequency range. Studies have shown that power modulations reflect changes in network connectivity66 and 
that top-down processes, eliciting a decrease in power in the alpha-beta band, are accompanied by an increase in 
distant network connectivity67.

Finally, we also show that certain probes elicit decreased broadband gamma responses (versus baseline) while 
representing a significant feature importance for the classification model. It has been shown that neural activity 
in the Default Mode Network can be negatively modulated by attending sensory stimulation50, and intracranial 
studies have found that this was reflected by decreases (versus baseline) in the broad gamma range68–70. Here we 
found no evidence of such power decreases in probes located in the DMN50. However, the random forest classifier 
singled-out broad spectral patterns of power decreases at probes located in visual regions and beyond for catego-
ries faces, pseudowords and characters. This is the first time, to our knowledge, that power decreases 
in the broadband gamma range outside the DMN have been associated with highly functional neural signal 
classification of perceptual categories. Their functional significance should be studied in the future as they could 
reflect an important phenomenon of communication regulation between networks during perceptual decision 
making of visual categories.

In this work we studied the information that allows local cortical populations of neurons to make predictions 
of the category of a visual stimulus. Expanding on this work by including more subject data in the future might 
allow us to make a transition from the observations of local activity and the analysis of its role to being able to 
detect signatures of global decision-making processes. It is possible that these signatures would be reflected in 
specific spectral fingerprints as many classic theories would suggest22,71–73. The methodology proposed in this 
study can facilitate the search of those fingerprints without the need to formulate a priori hypothesis about which 
spectrotemporal components are worth investigating.

Methods
patients and recordings. 100 patients of either gender (49 females, 51 males) of the mean age of 
33.18 ± 10.13 years with drug-resistant partial epilepsy and candidates for surgery were considered in this study 
and recruited from Neurological Hospitals in Grenoble and Lyon (France). All patients were stereotactically 
implanted with multi-lead EEG depth electrodes (DIXI Medical, Besançon, France). All participants provided 
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written informed consent, and the experimental procedures were approved by local ethical committee of 
Grenoble hospital (CPP Sud-Est V 09-CHU-12). All methods were performed in accordance with the guidelines 
and regulations of the ethical committee of Grenoble hospital. Recording sites were selected solely according to 
clinical indications, with no reference to the current experiment. All patients had normal or corrected to normal 
vision.

Electrode implantation. 11 to 15 semi-rigid electrodes were implanted per patient. Each electrode had a diam-
eter of 0.8 mm and was comprised of 10 or 15 contacts of 2 mm length, depending on the target region, 1.5 mm 
apart. The coordinates of each electrode contact with their stereotactic scheme were used to anatomically localize 
the contacts using the proportional atlas of Talairach and Tournoux74, after a linear scale adjustment to correct 
size differences between the patient’s brain and the Talairach model. These locations were further confirmed by 
overlaying a post-implantation MRI scan (showing contact sites) with a pre-implantation structural MRI with 
VOXIM® (IVS Solutions, Chemnitz, Germany), allowing direct visualization of contact sites relative to brain 
anatomy.

All patients voluntarily participated in a series of short experiments to identify local functional responses at 
the recorded sites34. The results presented here were obtained from a test exploring visual recognition. All data 
were recorded using approximately 120 implanted depth electrode contacts per patient using SD LTM Express, 
Micromed system for signal acquisition with a sampling rate of 512 Hz, high-pass filter 0.15 Hz, low-pass filter 
500 Hz. Data were obtained from a total of 11321 recording sites.

Stimuli and task. The visual recognition task lasted for about 15 minutes. Patients were instructed to press a 
button each time a picture of a fruit appeared on screen (visual oddball paradigm). Only non-target stimuli were 
used in this work, the target fruit category was excluded from the analysis. Non-target stimuli consisted of pic-
tures of objects of eight possible categories: houses, faces, animals, scenes, tools, pseudo words, consonant strings, 
and scrambled images. Natural images for the appropriate categories were obtained from the public domain on 
the Internet. Pseudoword and character images were generated by inserting a desired string onto a white back-
ground. All the included stimuli had the same average luminance. All categories were presented within an oval 
aperture of 2 × 3 in visual angle (illustrated on Fig. 1a) at a distance of 70–90 cm using NeuroBehavioral Systems 
(NBS) Presentation® software. Stimuli were presented for a duration of 200 ms every 1000–1200 ms in series of 
5 pictures interleaved by 3 second pause periods during which patients could freely blink. Patients reported the 
detection of a target through a right-hand button press and were given feedback of their performance after each 
report. A 2 second delay was placed after each button press before presenting the follow-up stimulus in order to 
avoid mixing signals related to motor action with signals from stimulus presentation. Altogether, responses to 400 
unique natural images were measured per subject, 50 from each category.

processing of neural data. The analyzed dataset consisted of 4528400 local field potential (LFP) recordings 
– responses from 11321 recording sites to 400 stimuli. To remove the artifacts the signals were linearly detrended 
and the recordings that contained values ≥ 10σimages, where σimages is the standard deviation of voltage values (in 
the time window from −500 ms to 1000 ms) of that particular probe over all stimuli, were excluded from data. All 
electrodes were re-referenced to a bipolar reference and the reference electrodes were excluded from the analysis. 
The signal was segmented in the range from −500 ms to 1000 ms, where 0 marks the moment when the stimulus 
was shown. The −500 to −100 ms time window served as a baseline.

To quantify the power modulation of the signals across time and frequency we used standard time-frequency 
(TF) wavelet decomposition75. The signal s t( ) was convoluted with a complex Morlet wavelet w t f( , )0 , which has 
Gaussian shape in time σ( )t  and frequency σ( )f  around a central frequency f0 and defined by σ πσ= 1/2f t and a 
normalization factor. To achieve good time and frequency resolution over all frequencies we slowly increased the 
number of wavelet cycles with frequency, 

σ

f

f

0  was set to: 6 for high (61–150 Hz) and low (31–60 Hz) gamma, 5 for 

beta (15–30 Hz), 4 for alpha (9–14 Hz) and 3 for theta (4–8 Hz) frequency ranges. This method allowed to obtain 
better frequency resolution than applying a constant cycle length76. The square norm of the convolution results in 
a time-varying representation of spectral power, given by: P t f w t f s t( , ) ( , ) ( )0 0

2= ⋅ . Baseline normalization was 
performed by dividing the average power after stimulus onset (0 to 1000 ms) in each frequency by the average 
power of that frequency in the baseline window (−500 to −100 ms). Each LFP recording was transformed from 
768 data points (1.5 seconds of voltage readings at 512 Hz sampling rate) into a matrix of size 146 × 48 where each 
row represents a 1 Hz frequency band from 4 Hz to 150 Hz and columns represent 31.25 ms time bins. Value in 
each cell of that matrix is the power of that specific frequency averaged over 16 time points.

Further analysis was done only on the electrodes that were responsive to the visual task. In each frequency 
band we compared each electrode’s average post-stimulus band power to the average baseline power with a 
Wilcoxon signed-rank test for matched-pairs. Only the probes that showed a post-stimulus response that is sta-
tistically significantly (p-value ≤ 0.005, corrected for multiple comparisons with the false discovery rate (FDR) 
procedure77) different from the baseline response in at least two frequencies were preserved for future analysis. 
Please note that eliciting a significant response in at least 2 out of 146 frequencies is a relaxed requirement. The 
use of such a relaxed criterion allowed us to include into analysis not only the areas that had a strong response in 
the visual areas, but also the responses from other brain areas that might reflect downstream processes related to 
automatic perceptual categorization. This was possible due to the fact that the proposed method, given sufficiently 
large dataset, will not be hindered by the additional volume of irrelevant data and is able to detect narrow phe-
nomena even in the large corpus of data.

To anatomically localize the source of each signal in subject’s brain each electrode’s MNI coordinates were 
mapped to a corresponding Brodmann brain area78 using Brodmann area atlas from MRICron79 software.
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To confirm that probe’s predictiveness of a certain category implies that the probe belongs to the network 
selective of that category we ran a set of experiments on three well-known functional areas: Fusiform Face Area 
(FFA)1, Visual Word Form Area (VWFA)7 and Parahippocampal Place Area (PPA). Following Montreal 
Neurological Institute (MNI) coordinates of FFA reported in80 and81 we defined FFA bounding box as 

∈ − −x [ 44, 38], ∈ − −y [ 61, 50], ∈ − −z [ 24, 15] in the left hemisphere and ∈x [36, 43], ∈ − −y [ 55, 49], 
∈ − −z [ 25, 13] in the right hemisphere. Based on the Table 1 from82 we defined VWFA area as MNI bounding 

box ∈ − −x [ 50, 38], ∈ − −y [ 61, 50], ∈ − −z [ 30, 16] in the left hemisphere. From MNI coordinates reported 
in83 and84,85 we defined PPA bounding box to be ∈ − −x [ 31, 22], ∈ − −y [ 55, 49], ∈ − −z [ 12, 6] in the left 
hemisphere and ∈x [24, 32], ∈ − −y [ 54, 45], ∈ − −z [ 12, 6] in the right hemisphere.

Random forest as a decoding model. A Random Forest86 is a collection of decision trees, where each 
tree gets to operate on a subset of features. Each tree is assigned a random set of features and it has to find the 
decision boundaries on those features that lead to best classification performance. At each branching point the 
algorithm must decide using which feature will be most efficient in terms of reducing the entropy of class assig-
nations to the data points under current branch of the decision tree. To achieve that, the feature that is most 
useful will be selected first and will be responsible for largest information gain. For example, if the activity of a 
probe at 52 Hz at 340 ms is high when a subject is presented with a face and low for all other categories, decision 
tree will use that fact and rely on the “52 Hz at 340 ms” feature, thus assigning it some importance. How high the 
importance of a feature is will depend on how well does this feature distinguish faces from all other categories. As 
Random Forest is a collection of trees and the same feature will end up being included into several different trees, 
being important in many trees contributes to the overall importance of a feature (for the exact computation see 
the section on feature importance below).

We treated each electrode’s responses as a separate dataset consisting of 400 data points (one per stimulus 
image), and 7008 features – time-frequency transformation of LFP response into 146 frequencies and 48 time 
bins. For each electrode we trained a Random Forest with 3000 trees and used 5-fold cross-validation to meas-
ure the predictive power of the neural activity recorded by each of the electrodes. Per-class F1 score, a harmonic 
mean of precision and recall of a statistical model, provides us with a metric of success of the classification. The 
parameters were selected by performing informal parameter search. Random Forest was the algorithm of choice 
in our analysis due to its previous application to spectrotemporal features87 and, more importantly, due to the 
interpretability of the resulting models. Highly interpretable structure of the resulting decision trees allowed us 
to follow the decision-making process that led each particular model to a decoding decision, and to estimate each 
feature’s contribution to this process, allowing to identify and characterize category-specific spectral signatures. 
We used scikit-learn88 implementation of the above-mentioned methods with default parameters unless 
indicated otherwise.

As the first step of the decoding analysis we estimated which of 11321 electrodes have predictive power. For 
that we split each electrode’s 400-sample dataset into 320 samples for training and 80 for prediction estimation. 
Repeating this procedure 5 times provided us with 400 predictions that we could compare to the true categories. 
By running a permutation test 100000 times on electrodes with randomly permuted class labels we estimated that 
99.999th percentile (equivalent to significance threshold of ≤ .p 0 00001) of F1 score is 0.390278. F1 score is an 
aggregated metric of the performance of a classifier that combines both the precision (the ratio of the data samples 
that truly belong to a category among the ones that were assigned to that category by the model) and recall (the 
ratio of data samples that were correctly identified to belong to a category to the total number of samples of that 
category in the dataset) into one number: = ⋅ ⋅

+
F 21

precision recall
precision recall

. In total 787 electrodes had a predictive power of 
F1 > 0.390278 in at least one of the categories. Although none of the results of this work depend on direct compar-
ison of F1 scores, we have estimated the noise level of this metric by computing standard deviation over 5 folds of 
each electrode and calculated the average standard deviation of F1 metric to be σ = .0 1008 over all predictive 
electrodes. For each of those electrodes a Random Forest model was retrained once more on whole data (400 
samples instead of 320) and that model was used for calculating feature importances and, ultimately, for under-
standing which parts of the recorded activity were relevant for visual object recognition in human brain.

feature importance for the analysis of task-relevant neural activity. During the process of con-
structing the decision trees, Random Forest relies on some features more than on the others. We chose Gini 
impurity89 as a measure of which features should be used to make the branching decisions in the nodes of a tree. 
This score, along with the number of times each particular feature was used across trees, informed us on the rela-
tive importance of each particular feature with respect to other features. Gini impurity G is calculated as

∑= −
=

=

G p p(1 ),
(1)i

i n

i i
1

c

where nc is the number of categories and pi is the proportion of class i in a node. To pick a feature for a parent 
node, Gini impurity of both child nodes of that parent are calculated and used to estimate the reduction in impu-
rity that will be achieved by picking that particular features as the branching factor for the node. The feature that 
decreases impurity the most is selected to be the branching factor of that parent node. The reduction in impurity 
is calculated as

= − −I G G G (2)parent left child right child
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and is called node importance. Feature importance of a feature f is estimated by calculating the sum of Gini impu-
rity reductions over all samples in the dataset that were achieved with the use of a particular feature f and normal-
izing it by the total number of samples. Figure 1e is a visual representation of relative feature importance, color 
intensity shows the importance of each of 7008 (146 frequencies × 48 time bins) spectrotemporal features from 
one probe. In total our analysis has produced 787 × 8 such images – one for each probe-class pair.

The importance map computed as depicted on Fig. 1 is a global map for all 8 categories, such that the regions 
that are highlighted on the map are important for distinguishing between all 8 categories. There is, however, a 

Figure 8. Using the importance map to filter out irrelevant activity. The three rows show three different 
examples of how filtering of the activity by importance is beneficial: in patient 23, probe 74 we see that only 
later portion of the broadband gamma activity increase was useful for identifying this activity as a response 
to the animal stimulus; patient 27, probe 97 shows that although there is an increase in broadband activity, 
the actually useful information contained in decrease in the lower frequency bands; patient 87, probe 
52 demonstrates that for decoding this particular probe’s activity one must focus on the activity in lower 
frequencies at specific time and, despite prominent presence, ignore the increase in broadband gamma. (a) 
Probe’s importance map, color codes the relative importance of each spectrotemporal feature within the map. 
(b) Full spectrotemporal activity of the probe, features with importances one standard deviation higher than 
the average (in contour) mark the regions of activity that were useful for the decoding model. Color shows the 
activity in the power spectrum normalized by the baseline. (c) Activity of the probes filtered by the importance 
mask, only the relevant activity is preserved. Color shows the activity in the power spectrum normalized by the 
baseline.
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way to look at category-specific importances as well. The final set of nodes of a decision tree, called leaves, are 
the end-points of the classification process and each leaf is associated with a certain category. If we take one TF 
activity map (TF components are the features) and start traversing a decision tree following the rules set by the 
nodes of the tree, we will end up in a certain leaf. That leaf will be associated with a certain category, for example, 
with faces. The fact that we followed the rules and ended up in that leaf indicates that the TF map we used as the 
input to the tree probably comes from a trial where a face stimulus was shown to the subject. In order to get 
category-specific feature importance map we took all the leaves associated with a category, traversed the tree 
backwards and tracked all the features that were used on the path from the leaf to the root of the tree. This way 
we got a list of features (TF components) that were used to identify a neural response as belonging to a certain 
category. Random Forest feature importance allowed us to identify which sub-regions of neural activity (TF 
maps) are relevant for decoding. It showed that only a small portion of activity is actually crucial for identifying 
the categories.

To compare importance maps between each other we fit a normal distribution on the difference between two 
maps and considered statistically significant the differences that are bigger than μ + 4σ. One spectrotemporal 
importance map consists of 7008 values. To filter out false positives we stipulated that only 1 false positive out of 
7008 pixels can be tolerated and tuned the threshold accordingly. That requirement resulted in the p-value of 
0.0001427 and confidence level of 99.99%, corresponding to 3.89σ, which we rounded up to σ = .4 0.

Hierarchical clustering to reveal types of activity patterns. To further analyze the spectrotemporal 
signatures elicited by different visual categories in different parts of human brain we clustered filtered activity 
patterns and identified the most prominent groups. The result of this analysis is shown in the second column of 
Fig. 6. For each category, the four most populated (in terms of the number of probes) clusters of activity patterns 
elicited by this category are shown.

To do the clustering we first took each probe’s category-specific activity separately by averaging probe’s 
responses to 50 images of each particular category in time-frequency domain. We then masked the activity with 
the category importance map (as shown on Fig. 8), leaving only those features out of 146 × 48 that have impor-
tance score larger that μ + σ, where μ is the average importance score for that category and σ is one standard 
deviation of the score distribution.

Masked activity patterns were hierarchically clustered using Eq. 3 to calculate the distance between a pair 
of clusters U and V as the maximal cosine distance between all of the clusters’ member observations (complete 
linkage clustering):

d U V max U Vu v
u v

u v( , ) ,
(3)

=





⋅ 




∀ ∈ ∀ ∈

SciPy90 implementation of the hierarchical clustering methods was used in this work. Resulting clustering 
assignments were visually inspected and corrected.

Data and code availability
The final pre-processed spectrotemporal data are available for download under Academic Free License 3.0 from 
https://web.gin.g-node.org/ilyakuzovkin/Spectral-Signatures-of-Perceptual-Categorization-in -Human-Cortex. 
The code that was used to produce this data from the raw recordings and to perform all of the subsequent analysis 
steps is available at https://github.com/kuz/Spectral-signatures-of-perceptual-categori zation-in-human-cortex. 
All raw human brain recordings that support the findings of this study are available from Lyon Neuroscience 
Research Center but restrictions apply to the availability of these data, which were used under license for the 
current study, and are not publicly available. Raw data are however available from the authors upon reasonable 
request and with permission of Lyon Neuroscience Research Center.
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